




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
命题及其关系,1.1.1 命题,思考,下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 125; (2) 3是12的约数; (3) 0.5是整数; (4)对顶角相等; (5)3 能被2整除; (6)若x2=1,则x=1.,语句都是陈述句,,并且可以判断真假。,一、命题的概念,用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。 判断为真的语句叫做真命题。 判断为假的语句叫做假命题。,用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。如何判断一个语句是不是命题?,7是23的约数吗? X5. -2a3. 画线段AB=CD.,开语句,判断一个语句是不是命题,关键看这语句是否符合“是陈述句”和“可以判断真假” 这两个条件。,有些语句中含有变量,在不给定变量的值之前,我们无法确定这语句的真假,这样的语句叫开语句。,疑问句,祈使句,今天天气如何? 你是不是作业没交? 这里景色多美啊! -2不是整数。 43。 x4。,例1、看看下列语句是不是命题?,不是(疑问句) 不是(疑问句) 不是(感叹句) 是(否定陈述句) 是(肯定陈述句) 不是(开语句),命题“若整数a是素数,则a是奇数。”具有“若p则q”的形式。,p叫做命题的条件,q叫做命题的结论。 “若p则q”形式也可写成“如果p,那么q” ,其中p和q可以是命题也可以不是命题.,二、命题的形式,“若p则q”形式的命题的书写,对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句, 确定条件与结论。 如命题:“垂直于同一条直线的两个平面平行”。 写成“若p则q”的形式为: 若两个平面垂直于同一条直线,则这两个平面平行。,例2、指出下列命题中的条件p和结论q:,若整数a能被2整除,则a是偶数; 菱形的对角线互相垂直且平分。,解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。,2) 写成若p,则q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。,练习1、把下列命题改写成“若p,则q”的形式,并判断它们的真假.,(1)等腰三角形两腰的中线相等; (2)偶函数的图象关于y轴对称; (3)垂直于同一个平面的两个平面平行。,(1)若三角形是等腰三角形,则三角形两边上的中线相等。这是真命题。,(2)若函数是偶函数,则函数的图象关于y轴对称,这是真命题。,(3)若两个平面垂直于同一平面,则这两个平面互相平行。这是假命题。,2.把下列命题改写成“若p则q”的形式, 并判定真假。,(4) 负数的平方是正数. (5) 正方形的四条边相等. (6) 相切两圆的连心线经过切点. (7) 面积相等的两个三角形全等. (8) 等边三角形的三个内角相等.,真命题 真命题 真命题 假命题 真命题,注意:,3、将命题“a0时,函数y=ax+b的值随x值的增加而增加”改写成“p则q”的形式,并判断命题的真假。,解答:a0时,若x增加,则函数y=ax+b的值也随之 增加,它是真命题,在本题中,a0是大前提,应单独给出,不能把大前提也放在命题的条件部分内,命题及其关系,1.1.2 四种命题,下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?,若f(x)是正弦函数,则f(x)是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; 若f(x)不是周期函数,则f(x)不是正弦函数。,观察命题(1)与命题(2)的条件和结论之间分别有什么关系?,若f(x)是正弦函数,则f(x)是周期函数; 若f(x)是周期函数,则f(x)是正弦函数;,互逆命题:一个命题的条件和结论分别是另 一个命题的结论和条件,这两个 命题叫做互逆命题。 原 命 题:其中一个命题叫做原命题。 逆 命 题:另一个命题叫做原命题的逆命题。,即 原命题:若p,则q,逆命题:若q,则p,观察命题(1)与命题(3)的条件和结论之间分别有什么关系?,若f(x)是正弦函数,则f(x)是周期函数; 3. 若f(x)不是正弦函数,则f(x)不是周期函数.,原命题:若p,则q,为书写简便,常把条件p的否定和结论q的否定分别记作 “p” “q”,读作“非p,非q”,否命题:若p,则q,互否命题 原命题 (原命题的)否命题,观察命题(1)与命题(4)的条件和结论之间分别有什么关系?,若f(x)是正弦函数,则f(x)是周期函数; 4. 若f(x)不是周期函数,则f(x)不是正弦函数.,原命题: 若p, 则q,逆否命题: 若q, 则p,互为逆否命题 原命题 (原命题的)逆否命题,、互否命题:如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做互否命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。,、互为逆否命题:如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。,、互逆命题:如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫互逆命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。,三个概念,原命题,逆命题,否命题,逆否命题,四种命题形式: 原命题: 逆命题: 否命题: 逆否命题:,若 p, 则 q 若 q, 则 p 若 p, 则 q 若 q, 则 p,判断正误,并说明理由:,(1)若原命题是“对顶角相等”, 它的否命题是“对顶角不相等”。 (2)若原命题是“对顶角相等”, 它的否命题是“不成对顶关系的 两个角不相等”。,例3 设原命题是“当c 0 时,若a b ,则ac bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假:,解: 逆命题:当c 0 时,若ac bc ,则a b 逆命题为真,否命题:当c 0 时,若a b ,则ac bc 否命题为真,逆否命题:当c 0 时,若ac bc ,则a b 逆否命题为真,准确地作出否定结论是非常重要的,下面是一些常见的结论的否定形式.,不是,不都是,不大于,大于或等于,一个也没有,至少有两个,至多有(n-1)个,至少有(n+1)个,非p且非q,非p或非q,命题及其关系,1.1.3 四种命题的相互关系,回顾,交换原命题的条件和结论,所得的命题是_ 同时否定原命题的条件和结论,所得的命题是_ 交换原命题的条件和结论,并且同时否定,所得的命题是_,逆命题。,否命题。,逆否命题。,原命题,逆命题,否命题,逆否命题,四种命题形式: 原命题: 逆命题: 否命题: 逆否命题:,若 p, 则 q 若 q, 则 p 若p, 则q 若q, 则p,互 逆,互 逆,互 否,互 否,互为 逆否,互为 逆否,四种命题之间的相互关系,原命题的真假与其它三种命题的真假有什么关系?,逆命题:角的平分线上的点,到这个角的 两边距离相等. 否命题:到一个角的两边距离不相等的点, 都不在这个角的平分线上. 逆否命题:不在这个角的平分线上的点,到这 个角的两边距离不相等.,(1)到一个角的两边距离相等的点,都在 这个角的平分线上.,原命题 (真) 逆命题 (真) 否命题 (真) 逆否命题 (真),.,逆命题:两个三角形的面积相等,则它们全等. 否命题:两个三角形不全等,则它们的面积不 相等. 逆否命题:两个三角形的面积不相等,则它们 不全等.,(2)两个三角形全等,则它们的面积相等.,原命题 (真) 逆命题 (假) 否命题 (假) 逆否命题 (真),逆命题: 对顶角相等. 否命题: 不相等的角不是对顶角. 逆否命题: 不是对顶角就不相等.,(3)相等的角是对顶角,原命题 (假) 逆命题 (真) 否命题 (真) 逆否命题 (假),逆命题: 凡奇数都是质数. 否命题: 不是质数就不是奇数. 逆否命题: 不是奇数就不是质数.,(4)凡质数都是奇数.,原命题 (假) 逆命题 (假) 否命题 (假) 逆否命题 (假),结 论:,原命题与逆否命题同真假。,原命题的逆命题与否命题同真假。,(2)两个命题为互逆命题或互否命题,它们的真假性 没有关系。,(1),一般地,四种命题的真假性,有而且仅有下面四种情况:,真,真,真,真,真,假,假,假,假,假,假,假,假,真,真,真,练一练:,判断下列说法是否正确。,1)一个命题的逆命题为真, 它的逆否命题不一定为真;,(对),2)一个命题的否命题为真, 它的逆命题一定为真。,(对),3)一个命题的原命题为假, 它的逆命题一定为假。,(错),4)一个命题的逆否命题为假, 它的否命题为假。,(错),例1:设原命题是:当c0时,若ab,则acbc. 写出它的逆命题、否命题、逆否命题。 并分别判断它们的真假。,解:逆命题:当c0时,若acbc, 则ab.,否命题:当c0时,若ab, 则acbc.,逆否命题:当c0时,若acbc, 则ab.,(真),(真),(真),分析:“当c0时”是大前提,写其它命题时应该保留。,原命题的条件是“ab”,,结论是“acbc”。,(真),例2 若m0或n0,则m+n0。写出其逆命题、否命题、逆否命题,并分别指出其假。,分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。,解:逆命题:若m+n0,则m0或n0。,否命题:若m0且n0, 则m+n0.,逆否命题:若m+n0, 则m0且n0.,(真),(真),(假),小结:在判断四种命题的真假时,只需判断两种命题的真假。因为逆命题与否命题真假等价,逆否命题与原命题真假等价。,反证法:,要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的。 即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。,反证法的步骤:,假设命题的结论不成立,即假设结论的反面成立。 从这个假设出发,通过推理论证,得出矛盾。 由矛盾判定假设不正确,从而肯定命题的结论正确。,可能出现矛盾四种情况:,与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论。,反证法的步骤: (1)假设命题的结论不成立,即假设结论的反面成立 (2)从这个假设出发,通过推理论证,得出矛盾 (3)由矛盾判定假设不正确,从而肯定命题的结论正确,例 用反证法证明: 如果ab0,那么 .,练 用反证法证明:,圆的两条不是直径的相交弦不能互相平分。,已知:如图,在O中,弦AB、CD交于P,且AB、CD不是直径. 求证:弦AB、CD不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 混凝土管涵的施工方案
- 铁路公路桥墩施工方案
- 云南省安全员b证题库及答案解析
- 护理用物分类处理教程
- 饮水安全题库及答案解析
- 安全知识生产竞赛题库及答案解析
- 烧伤病人的护理BPL查房
- 安全操作规程培训 试题及答案解析
- 作文教学名师课件下载
- 浆纱工艺改造方案范本
- 网信专员考试题及答案
- 2019ESCEAS血脂异常管理指南2025重点更新解读
- 《现代传感与检测技术》教学大纲
- 挖煤专业毕业论文
- 山路车辆行车安全培训课件
- 2025北京京剧院招聘工作人员10人笔试备考题库及答案解析
- 转基因玉米培训课件
- 建筑设计公司结构设计师工作手册
- 2025年青海省事业单位招聘考试卫生类护理学专业知识试题
- 宝宝呛奶科普课件
- 北京科技大学机械制图杨皓第四版习题集答案PPT课件
评论
0/150
提交评论