QQ截图20131212212751.gif
QQ截图20131212212751.gif

梳棉机箱体结合件钻孔专机设计

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:23665485    类型:共享资源    大小:1.24MB    格式:RAR    上传时间:2019-11-11 上传人:qq77****057 IP属地:江苏
30
积分
关 键 词:
梳棉机 箱体 结合 钻孔 专机 设计
资源描述:
梳棉机箱体结合件钻孔专机设计,梳棉机,箱体,结合,钻孔,专机,设计
内容简介:
编号无锡太湖学院毕业设计(论文)相关资料题目: 梳棉机箱体结合件钻孔专机设计 信机 系 机械工程及自动化专业学 号: 0923146学生姓名: 徐道明 指导教师: 刘新佳 (职称:副教授 ) (职称: ) 2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 梳棉机箱体结合件钻孔专机设计 信机 系 机械工程及自动化 专业学 号: 0923146 学生姓名: 徐道明 指导教师: 刘新佳(职称:副教授 ) (职称: ) 2012年11月12日 课题来源来源于工厂生产实际科学依据(1)课题科学意义人们把梳棉机看成纺纱厂的“心脏”。就梳棉机来讲:它是利用包在刺辊、锡林、道夫、盖板上的针布对纤维进行梳理加工的。在梳理过程中,完成将纤维束分梳成单纤维,将各纤维均匀、混合,并清除尘杂疵点和短绒。上述分梳、除杂、均匀、混合作用效果的好坏,将直接影响成纱质量,而分梳成单纤维又是除杂、均匀、混合的基础。本文结合前有文章,以梳棉机箱体结合件为例进行了工艺技术及加工设备、装夹设备的简单设计。本文结合组合机床在梳棉机制造过程中的应用现状,用梳棉机箱体结合件的加工为例,介绍了工艺、工装、组合机床的设计过程及其与经济效益之间的关系。(2)梳棉机的研究状况及其发展前景由于国内梳棉机的科研力量比较薄弱,所以我国梳棉机的研制主要是在吸收国外先进技术的基础上进行,国外梳棉机出条速度叫高,国外各公司先后推出了梳棉机C50, C51, DK760, DK788, DK803, DK903, CX400, MK5等超高产梳棉机,这些梳棉机普遍具有国际先进水平,国外又于2004年推出了TC03, C60, MK6等超高产梳棉机,可达到约400m/min。在消化吸收并结合我国研究高产梳棉机的经验基础上,中国纺机集团清梳机械事业部于2004年推出了JFW1201, 202型高产梳棉机,可以被认为是我国的第四代梳棉机,主要满足国产清梳联的要求。在我国已有以下研发经历和记载: 50年代初期,利用测绘传统弹性针布梳棉机,制造成功国产第一代梳棉机,结束了我们梳棉机制造上的空白,进入我国纺织行业利用国产梳棉机的新时代。于1965年设计制造并批量生产的A186型梳棉机,是取代A181型弹性针布梳棉机,一种典型金属针布高产梳棉机。80年代: FA201装有分梳板和前后固定盖板; 90年代: FA203,FA231 , FA232 。1984年由山东纺织工程学会著作的高产梳棉机研制工作组三十周年纪念专刊着重分享了部分组员的一些研究方面的体会和经验方面的总结。以上都是针对早期梳棉机的一些情况进行编写的,而且主要介绍的是高产梳棉机试验工作组的研究情况,青岛纺机厂2003年编写的梳棉技术发展与创新文献汇编整理了有关近30篇有关梳理技术方面较有价值的文章。研究内容 梳棉机箱体结合件的加工工艺; 组合钻孔工序的夹具设计; 液压控制系统设计和液压元器件的选择; 组合机床设计对梳棉机箱体结合件的制造做了详细的阐述,简要说明了现代制造工艺和制造设备与梳棉机的关系。拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案 提出任务分析对梳棉机需求确定任务要求,完成设计任务书。方案设计阶段对梳棉机进行分析提出可能的方案,组合几种可能的方案进行评价决策,选定最优方案该阶段目标为提出原理性的设计方案。技术设计阶段明确设备要求完成硬件选型,写出使用说明书、标准明细表、其他技术文件等。(2)研究方法通过参阅借来的参考资料,网上的介绍以及对梳棉机进行实体观察,了解梳棉机的工作原理。然后根据工作原理定制其控制系统,再与指导老师交流来修改并完成对梳棉机箱体的毕业设计。研究计划及预期成果研究计划:2012年11月12日-2012年12月2日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年3月4日-2013年3月8日:初步构思专用机床总体方案设计。2013年3月11日-2013年3月15日:专用机床总体方案设计。2013年3月18日-2013年3月22日:绘制零件加工工序图。2013年3月25日-2013年3月29日:绘制零件加工示意图。2013年4月1日-2013年4月5日:绘制机床尺寸联系图。2013年4月8日-2013年4月12日:绘制机床尺寸联系图,填生产率计算卡。2013年4月15日-2013年3月19日:绘制夹具零件图。2013年4月22日-2013年4月26日:绘制夹具总图。2013年4月29日-2013年5月3日:多轴箱传动设计。2013年5月6日-2013年5月10日:绘制多轴箱总图。2013年5月13日-2013年5月17日:检查、修改、完善、撰写设计说明书。2013年5月20日-2013年5月25日:资料整理装订,准备答辩。预期成果:设计出一个相对满足生产需要的组合机床钻孔夹具和多轴箱部分设计。特色或创新之处 主题明确,有针对性,稳定, 易操作, 通用性强。 使用简易,功能完善。已具备的条件和尚需解决的问题 已经通过课程设计等的专业训练,经过毕业实习,前期调研,相关资料搜集,已做好进行技术设计的相关准备工作。设计思路及方案已基本明确。 该组合机床在应用在实践上的不足以及尚未考虑到可能引发的问题。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文原文节选自Journal of Materials Processing Technology 103 (2000) 318-323Optimal selection of parameters in multi-tool drilling原文:Optimal selection of parameters in multi-tool drillinga.Department of Mechanical Engineering, Indian Institute of Technology, Chennai 600 036, Indiab.Department of Humanities and Social Sciences, Indian Institute of Technology, Chennai 600 036,India Accepted 4 January 2000AbstractIn hole-making operation, the final size may be obtained by drilling with a single drill or pilot-drilling of one or more holes followed by enlargement to the final size. In this paper, a model based on production cost is presented and the optimal conditions are obtained considering technological and machine tool constraints. This approach is quite useful in arriving at the cutting parameters automatically in a computer-assisted process planning system.Keywords: Optimal selection; Multi-tool drilling; Computer-assisted process planning systemNomenclatureD drill diameter, mmd pilot-drill diameter, mmF thrust force in drilling, Nh1 tool return rate, min/mmh2 time for tool retract-advance, mink1 operating cost of drilling machine, $/minkt drill cost, $l depth of drilling, mmM torque in drilling, N ms feed, mm/revT drill-life, minTR preventive tool-lifet depth of cut, (D-d),mmte time for tool-exchange, mintm drilling time, mintp tool preparation time, minU cost of drilling, $V cutting speed, m/min1. IntroductionOne of the important steps in any computer-assisted process planning (CAPP) is to determine the cutting parameters automatically. Once the operation sequences and the appropriate tools have been determined, success of the machining process depends on the selection of cutting parameters. For example, in the case of turning, cutting parameters include depths of cut, feeds and cutting speeds.The cutting parameters are selected to achieve the desirable performance such as good surface finish, dimensional accuracy of the component, easy chip removal and so on. In addition, they must also satisfy an economic criterion like minimum production cost or maximum production rate. Thus machining economics involves the optimal selection of machining parameters such as cutting speed, feed and depth of cut subject to certain technological constraints such as tool wear, dimensional accuracy, surface finish and machine tool capabilities. A human process planner selects the proper machining parameters using his/her experience or from handbooks based on the part geometry, technological requirements, the machine tool, cutting tool selected and the part material. Analogously, in a CAPP system, to select proper cutting parameters, all the information regarding the part and the machining resources should be available to the system in computer interpretable format. There are several ways this could be achieved. Existing computerized machining parameter selection systems can be classified into four major categories: Data storage and retrieval systems, empirical equations, expert systems and mathematical models. Of these four, the mathematical approach has received much attention, as it eliminates the need for a large amount of data storage required by the retrieval procedure and can be used to arrive at optimal machining parameters. Optimization of single-and-multiple-pass machining process, especially turning has been investigated extensively 1,2. However, the drilling process has not received the same attention though as much as 40% of the machining time is devoted to hole-making as revealed by a survey of the medium-sizedindustry 3. When the total stock to be removed to achieve the final hole size exceeds the maximum allowable depth of cut due to various constraints on available machine power, tool force, etc. it is imperative that multi-tool machining is employed. For example, if a hole of big size is to be drilled, this may be preceded by drilling of one or two pilot holes. Thus, the sub-division of depths of cut is an important consideration in multi-tool drilling also. In this paper, multi-tool drilling process is considered and the minimum production cost is taken as the objective with the constraints of the speed and feed ranges, strength of the drill, maximum axial thrust allowed by the feed mechanism and power of the machine tool. This model also includes the preventive tool replacement strategy practised in many industries. For a typical case, the results are presented in this paper.2. Multi-tool drilling modelIn manufactured components, more holes are produced than any other shape and a large proportion of those are made by drilling. The basic motions required for drilling are relative rotation between the workpiece and the tool with relative longitudinal feeding. Being an important production process, the geometry of the drill, the cutting mechanics and the life aspects have been extensively studied 4-8. However, the optimal conditions in drilling, particularly in multi-tool machining, have not been studied. In drilling, multi-tool machining is used, when the total stock to achieve the final size exceeds the maximum allowable depth of cut (i.e. the drill size) due to various technological constraints and the machine capabilities. In multi-tool machining, drills of different sizes are used to arrive at the final dimension. When the required size can be machined with one drill itself(i.e. without a pilot-hole drilling), it is referred to as single stage drilling. If the hole size to be drilled is large, one or more pilot holes have to be drilled before enlarging the hole with a final size drill (Fig. 1). The first hole is drilled in solid work material and hence it is referred to as direct drilling. The selection of pilot-drills, which decides the sub-division of depths of cut, can be done on the basis of total production cost model. Total production cost model for the multi-tool drilling with the constraints of the speed and feed ranges, strength of the drill, maximum axial thrust allowed by the feed mechanism and power of the machine tool is given below. The model makes use of tool life equation and preventive tool replacement strategy practised industrially. Tool life equation in drilling is expressed in terms of cutting speed (V), feed (s) and drill size (D) as where Cv, xv, yv, zv and m are tool-life constant and exponents, whose values depend on the tool and work material combination. Kv is a general correction factor for other machining conditions 9.t in the above expression refers to depth of cut in enlarging a hole and its value is given by where d is the pilot-hole size. Total cost (Ut): The total cost of drilling a hole is given by where Ud is the cost of direct drilling, Uei the cost of enlarging the ith hole and n refers to the number of enlarging operations. In a single-stage drilling, the second term is absent. A4 represents the cost of tool preparation given by where tp is the tool preparation time and k1 the overhead cost. Cost of direct drilling/enlarging is given by The first term represents the machining cost where the time required for drilling is given by where l is the length of drilling, s the drill feed and N the rpm of the drill. The second term denotes the tool cost and the third term represents the tool-exchange cost. The fourth term gives the cost corresponding to idle tool motions, where h1 refers to the rate at which the tool return is done after the completion of drilling and h2 denotes the time taken for retracting and advancing the drill to start the drilling cycle. The minimization of cost function (Eq. (5) is done for each stage considering the following aspects. Tool life (T): The tool-life in drilling is given by Eq. (1). For the preventive tool replacement strategy, the tool life is specified on the basis of shop floor practice. The chosen parameters have to satisfy this requirement. Using the minimum and maximum speed limits the following constraint is obtained: Thrust force (F): The drill can withstand only a limited axial force. The allowable axial load on the drill to avoid buckling is given bywhere L is the drill length (excluding the shank) of the drill, Dav the average diameter (Dav.0.7D) and the factor of safety, fs1.2.0 1. Also, the feed mechanism of the drilling machine is designed to withstand a specified force. The maximum allowable force, Fsp is therefore specified by the machine tool manufacturers. Considering the above forces, the maximum allowable thrust force is taken asThe thrust force in drilling is given by where Cf, zf, yf and xf are the coefficient and exponents of force equation and Kf a thrust correction factor 9. The drilling parameters are chosen such that the Fmax given by Eq. (9) is not reached. Torque (M): The torque (M) that the drill can withstand is given by 1 where t is the shear strength of drill-material and fs2 the factor of safety. The torque in drilling is given by where Cm, zm, ym and xm are constant and exponents of the torque equation and Km the correction factor. The drilling parameters are chosen such that the torque value given by Eq. (12) is not exceeded,i.e.Power (P): The power requirement in drilling is expressed by the following equation:where Cp, zp, yp and xp, are constants and exponents of the power equation and Kp the correction factor 10. The drilling machine must be capable of delivering the above power at its spindle. Since the power constraint contains the velocity term, substituting for V from Eq. (1), the following equation is obtained, Speed (V) and feed (s): The allowable speeds and feeds in drilling are given in the handbooks, taking into account the practical difficulties including the chip-disposal problem. 3. Proposed methodology In drilling, one of the important issues is to decide whether a given hole can be drilled with a single drill or using multiple drills, subject to constraints such as machine tool and cutting tool capabilities and other requirements. In the present work, the minimization of the product cost is done in two phases. In the first phase, the costs of individual stages of direct drilling/enlarging are determined with the optimal speed and feed values. In the next phase, the combinations of different drilling/enlarging stages are worked out such that a final hole of specified diameter is obtained. The combinations which leads to minimum total production cost, gives the drill sizes as well as the optimum speed and feed values for the respective drills. The methodology followed for obtaining the optimal values at each stage of drilling/enlarging is explained below.Based on the constraints given in Eqs.(7), (11), (14), (17) and (18), the maximum values of the feed are obtained as s1, s2, s3, s4 and s5, respectively. Here Eq. (17) giving the power constraint in terms of tool-life (T) is used, as the aim is to have the tool life as planned. Optimum value of feed (s0) is selected such thatUsing this optimum feed, optimum speed is obtained from the tool-life equation (Eq. (1). The cost is calculated from (Eq. (5), using the optimal values of speed and feed.中文译文原文节选自 材料加工Technology103杂志(2000)318-323多功能工具钻参数的优化选择原文多工具钻参数的优化选择A.机械工程系,印度技术学院,036奈600,印度B.人文社会科学部,印度技术学院,036奈600,印度 接受4一月2000摘要在钻孔制作中,最后的大小可以由一个单一的钻或一个或多个孔决定,其次是扩大试点钻并获得最终尺寸。在本文中,基于生产成本并考虑技术和机床约束条件得到优化条件模型。这种方法在到达切削参数自动在计算机辅助工艺规划系统是非常有用的。关键词:最优选择;多工具钻;计算机辅助工艺规划系统命名钻孔直径,毫米D导钻直径,毫米在钻井F推力,NH1工具的收益率,最小/毫米H2时间提前退刀,分钟钻井机K1的运营成本,美元/分钟KT的钻探成本,美元钻进给的深度,毫米在钻井米的最大扭矩,N M进给量,毫米/转T钻头寿命,分钟TR预防工具寿命换刀时间,分钟TM钻井时间,分钟TP工具的准备时间,分钟u钻井成本,美元V切割速度,米/分钟1.简介 一个计算机辅助工艺规划(CAPP)是重要的步骤,以确定切削参数自动。一旦操作序列和相应的工具已被确定,对加工过程的成功取决于切削参数的选择。例如,在车削时,切削参数包括切削深度,进给量和切削速度。切削参数的选择,以达到理想的性能,如良好的表面光洁度,组件的尺寸精度,排屑容易等。此外,他们还必须满足最小的生产成本或最高生产速率的经济标准。因此,经济学涉及加工切削参数的最优选择,如切削速度,进给量和切削深度受到一定的技术限制,如刀具磨损,表面光洁度和尺寸精度,机床的能力 一个工艺人员选择适当的加工参数,他/她的经验或零件的几何形状的基础上,使用手册的技术要求,机床,刀具的选择、零件材料。类似地,在CAPP系统,选择合适的切削参数,所有有关的信息部分和加工资源应在计算机可解释的格式可用于系统。有几个可以实现方法。现有的数控加工工艺参数的选择系统可分为四大类:数据存储和检索的系统,经验方程,专家系统和数学模型。这四人中,数学的方法备受关注,因为它消除了数据的存储检索过程中需要大量的数据,可以使用到最佳加工参数。单和多孔型加工工艺的优化,特别是将已被广泛研究 1,2 。然而,钻井过程中没有受到同样的重视,但高达40%的加工时间是专门制作的孔中的一项调查显示工业 3 。当总库存将达到最终的孔的大小超过所允许的最大切削深度由于对机器的可用功率,各种约束条件下的切削力,等。这是必要的,多用工具加工。例如,如果大尺寸的孔被钻,这可能是由一个或两个导孔钻。因此,对切削深度细分是一个重要的考虑也多工具钻。 在本文中,多工具钻井过程被认为是与生产成本最低为目标与约束的速度和进给范围,钻头的强度,最大轴向推力的机床的进给机构和权力允许。该模型还包括预防工具更换策略在很多行业实行。一个典型的情况下,本文提出的结果。2。多功能工具钻模 在制造的部件,更是比其他任何形状的孔产生的很大一部分是由钻井。钻井所需的基本运动和工件的相对纵向进给工具之间的相对旋转的。作为一种重要的生产过程中,钻头的几何形状,切削力学和生活方面得到了广泛的研究 8 。 然而,在
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:梳棉机箱体结合件钻孔专机设计
链接地址:https://www.renrendoc.com/p-23665485.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!