



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
*21.2.4 一元二次方程的根与系数的关系教学目标【知识与技能】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察发现猜想验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊一般特殊”的数学思想方法,培养学生勇于探索的精神.教学重点一元二次方程根与系数的关系及其应用.教学难点探索一元二次方程根与系数的关系.教学过程一、情境导入,初步认识问题 请完成下面的表格观察表格中的结果,你有什么发现?【教学说明】通过对具体问题的思考,可以找出x1+x2和x1x2与方程的系数之间的关系,引入新课.二、思考探究,获取新知通过对问题情境的讨论,可以发现方程的两根之和和两根之积与它们的系数之间存在一定的联系,请运用你发现的规律填空:(1)已知方程x2-4x-7=0的根为x1,x2,则x1+x2= , x1x2= ;(2)已知方程x2+3x-5=0的两根为x1,x2,则x1+x2= , x1x2= .答案:(1)4,-7;(2)-3,-5.思考1(1)如果方程x2+mx+n=0的两根为x1,x2,你能说说x1+x2和x1x2的值吗?(2)如果方程ax2+bx+c=0的两根为x1,x2,你知道x1+x2和x1x2与方程系数之间的关系吗?说说你的理由.【教学说明】设置上述思考的两个问题,目的在于引导学生在感性认识的基础上进行理性思考,从而理解并掌握一元二次方程的根与系数的关系.教学时,应给予充足的思考交流时间,让学生自主探究结论.最后师生共同进行探究,完善认知.具体推导过程可参见教材.【归纳结论】根与系数的关系(韦达定理):若一元二次方程ax2+bx+c=0(a0)有两实数根x1,x2,则x1+x2=- ,x1x2= .这表明两根之和为一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.思考2 在运用根与系数的关系解决具体问题时,是否需要考虑根的判别式=b2-4ac0呢?为什么?【教学说明】设置思考2的目的在于让学生明白用根与系数关系解题的前提条件是0,否则方程就没有实数根,自然不存在x1,x2,防止学生片面理解而导致失误.教学时可结合具体问题引起学生注意.三、典例精析,掌握新知例1见教材16页例4.分析:对于方程(3),应化为一般形式后,再利用根与系数的关系来求解.【试一试】教材第16页练习.例2 已知方程x2-x+c=0的一根为3,求方程的另一根及c的值.分析:设方程的另一根为x1,可通过求两根之和求出x1的值;再用两根之积求c,也可将x=3代入方程求出c值.再利用根与系数关系求x1值.解:设方程另一根为x1,由x1+3=1,x1=-2.又x13=-23=c,c=-6.例3已知方程x2-5x-7=0的两根分别为x1,x2,求下列式子的值:(1)x12+x22; (2) .分析:将所求代数式分别化为只含有x1+x2和x1x2的式子后,用根与系数的关系,可求其值.解:方程x2-5x-7=0的两根为x1,x2,x1+x2=5,x1x2=-7.(1)x12+x22=(x1+x2)2-2x1x2=52-2(-7)=25+14=39;(2) = 【教学说明】例1是根与系数关系的直接应用问题,学生能够自主完成,对于课本的练习老师可让学生稍作思考后解答;例2侧重于逆用根与系数关系,应注意引导学生进行正确思考;而例3侧重于利用根与系数的关系,进行代数式求值,这里将代数式转化为只含有x1+x2及x1x2的式子是解决问题的关键,应引导学生关注这类变形方法.教学过程中仍应让学生先自主探究,独立完成,最后教师再予以评讲,让学生理解并掌握根与系数的关系;对于学生在探索过程中的成绩和问题也给予评析,进行反思.例4已知x1,x2是方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115,(1)求k的取值;(2)求x12+x22-8的值.分析:将x1+x2=6,x1x2=k,代入x12x22-x1-x2=115可求出k值.此时需用=b2-4ac来判断k的取值,这是本例的关键.解:(1)由题意有x1+x2=6,x1x2=k.x12x22-x1-x2=(x1x2)2-(x1+x2)=k2-6=115,k=11或k=-11.又方程x2-6x+k=0有实数解,=(-6)2-4k0,k9.k=11不合题意应舍去,故k的值为-11;(2)由(1)知,x1+x2=6,x1x2=-11,x12+x22-8=(x1+x2)2-2x1x2-8=36+22-8=50.【教学说明】设置本例的目的在于引导学生正确认识根与系数的关系和根的判别式之间的不可分割的特征.教学时应予以强调.四、运用新知,深化理解1.若x1,x2是方程x2+x-1=0的两个实数根,则x1+x2= ,x1x2= ;2.已知x=1是方程x2+mx-3=0的一个根,则另一个根为,m= ;3.若方程x2+ax+b=0的两根分别为2和-3,则a= ,b=; 4.已知a,b是方程x2-3x-1=0的两根,求ba+ab的值.【教学说明】设计这4个小题的目的在于让学生尽快掌握一元二次方程的根与系数的关系,前3个题,较为简单,可让学生自主完成,最后一个稍微有一点难度,只需将 + 化简即可.五、师生互动,课堂小结通过这节课的学习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省永济市第三高级中学高中信息技术 1.2信息技术及其发展说课稿
- 我上学了说课稿-2025-2026学年小学语文一年级上册人教版生活语文(特殊教育)
- 2025年二手房交易合同范本
- 2025租房合同(承租)
- 2025商务合同翻译实战案例库
- 2025标准版企业购销合同书
- Unit 1 Hello教学设计-2025-2026学年小学英语一年级上册牛津上海版(深圳用)
- 7.2心中有数上职场教学设计 -2024-2025学年高中政治统编版选择性必修二法律与生活
- 印刷厂网络监控维护规章
- 《2025年关于终止合同解除的条件》
- 智能悬架系统集成开发关键技术与实践-2024-12-技术资料
- 应用PDCA降低药占比
- 分包商安全管理规定(4篇)
- 超重与失重+说课高一上学期物理人教版(2019)必修第一册
- 公司收取管理费协议书范本
- JTS-165-6-2008滚装码头设计规范-PDF解密
- 设备维修与保养(课件)
- 《电力行业数字化审计平台功能构件与技术要求》
- 医院培训课件:《和谐医患关系的建构与医疗纠纷的应对》
- 《肺癌基础知识课件》
- 会计继续教育《政府会计准则制度》专题题库及答案
评论
0/150
提交评论