装配图 零件图-夏美丽 2007.dwg
装配图 零件图-夏美丽 2007.dwg

糖果枕式包装机总体设计及竖封装置设计

收藏

资源目录
跳过导航链接。
糖果枕式包装机总体设计及竖封装置设计.rar
成果性材料
装配图 零件图-夏美丽 2007.dwg---(点击预览)
盐城工学院毕业设计(论文)指导教师评价意见及评分表.doc---(点击预览)
毕业设计(论文)情况简表-学生填写.doc---(点击预览)
毕业设计任务书-夏美丽 2007.doc---(点击预览)
开题报告-夏美丽 2007.doc---(点击预览)
三维图集-夏美丽 2007
横封三维电子图目录-夏美丽 2007.doc---(点击预览)
横封三维电子图-夏美丽 2007.doc---(点击预览)
dianban.prt.5
falanpan.prt.5
kuai.prt.7
luoshuang.prt.3
luoshuangluomu.prt.2
m12a.prt.2
m12luoding.prt.2
m20.prt.3
m5diaojieluomu.prt.2
m5luoding.prt.3
m8yuanluoding.prt.4
prt0001.prt.3
prt0002.prt.1
prt0003.prt.3
qiekuai.prt.1
qingban1.prt.8
refengban1.prt.6
refengban2.prt.6
refengdiankuai.prt.4
refengkuai.prt.2
tanghuang.prt.5
tangkuai.prt.1
tao1.prt.2
tongtao.prt.5
trail.txt.1
trail.txt.2
tulun.prt.1
xiaotanhuang.prt.2
xiaozhou.prt.7
xml.asm.9
yaban.prt.4
zhou.prt.5
zhouchen.prt.1
zhoutao.prt.4
英文翻译-夏美丽 2007
说明书-夏美丽 2007
简介糖果包装机
过程性材料
压缩包内文档预览:
预览图
编号:23837002    类型:共享资源    大小:12.48MB    格式:RAR    上传时间:2019-11-12 上传人:qq77****057 IP属地:江苏
36
积分
关 键 词:
糖果 枕式包 装机 总体 设计 装置
资源描述:
糖果枕式包装机总体设计及竖封装置设计,糖果,枕式包,装机,总体,设计,装置
内容简介:
毕 业 设 计 横封切断装置三维图集专 业 机械设计制造及其自动化 学生姓名 夏 美 丽 班 级 BD机制031 学 号 0320110121 指导教师 陈 树 祥 完成日期 2007年6月13日 1、装配图2、爆炸图3、垫板14、法兰盘5、推块6、M24螺栓7、M24螺母8、M5螺母9、M12小螺钉10、M12螺钉11、M20螺母12、M5螺钉13、M8圆头螺母14、切条15、墙板16、热封板117、热封板218、热封垫块19、热封块20、弹簧21、热封嵌块22、轴套23、铜套24、凸轮25、小弹簧26、销轴27、垫板228、拉杆29、轴承30、大轴套31、轴132、M8螺钉17目 录1、装配图12、爆炸图13、垫板124、法兰盘25、推块36、M24螺栓37、M24螺母48、M5螺母49、M12小螺钉510、M12螺钉511、M20螺母612、M5螺钉613、M8圆头螺母714、切条715、墙板816、热封板1817、热封板2918、热封垫块919、热封块1020、弹簧1021、热封嵌块1122、轴套1123、铜套1224、凸轮1225、小弹簧1326、销轴1327、垫板21428、拉杆1429、轴承1530、大轴套1531、轴11632、M8螺钉16外文资料名称:Movement Analysis and Synthesis (用外文写)(用外文写)外文资料出处:Robotics and Computer Integrated Manufacturing 附 件: 1.外文资料翻译译文 2.外文原文 指导教师评语: 签名: 年 月 日 外文翻译专 业 机械设计制造及其自动化 学 生 姓 名 夏 美 丽 班 级 BD机制031 学 号 0320110121 指 导 教 师 陈 树 祥 运动的分析与综合李灿,黄云耀夏美丽 译摘要: 最简单最有用的机构之一是四杆机构,四杆机构具有一个自由度,相同的四杆机构,具有不同的形式,机构各构件的加速度影响惯性力,继而影响机器零件的应力、轴承载荷、振动和噪音。运动学家把这种运动定义为“研究机构的运动和创建机构的方法”,已知定义的这个一个机构,其构成的运动特性是由运动学分析来确定。对于机构综合,通常应具有三个任务:函数生成,轨迹生成和运动生成。关键词:机构运动特征;运动分析;机构综合最简单最有用的机构之一是四杆机构,以下论述中的大部分内容集中讨论连杆机构,而该分析方法也适用于更复杂的连杆机构。我们已经知道四杆机构具有一个自由度。关于四杆机构,有没有要知道的更多的有用内容呢?的确是有的!这些包括格拉肖夫准则,变换的概念,死点的位置,分支机构,传动角,和它们的运动特征,包括位置、速度和加速度。四杆机构的形式可具有一种称作曲柄摇杆机构,一种双摇杆机构,一种双曲柄(拉杆)机构,至于称作哪一种形式的机构,取决于跟机架(固定构件)相连接的两杆的运动范围。曲柄摇杆机构的输入构件,曲柄可旋转360度并连续转动,而输出构件仅仅作摇动(即摇摆的杆件)。作为一个特例,在平行四杆机构中,输入杆的长度等于输出杆的长度,连接杆的长度和固定杆(机架)的长度也是相等的。其输入和输出都可以作整周转动或者转换成称作反平行四边形机构的交叉机构。格拉肖夫准则(定理)表明:如果四杆机构中,任意两杆之间能作连续相对转动,那么,其最长杆长度与最短杆长度之和就小于或等于其余两杆长度之和。应该注意:相同的四杆机构,可有不同的形式,这取决于哪一根杆被规定为机架(即作固定杆)。运动变换的过程就是固定机构传动链中的不同的杆件以产生不同的机构运动过程。除了具备关于构件回转范围的知识之外,还要具备如何使机构在制造前就能“运转”的良好效果,那是非常有必要的。哈登伯格(Harden berg)说到:“运转”是一个术语,其意义是传给输出构件的运动的有效性。它意味着运转平稳,其中能在输出构件中产生一个力或扭矩的最大分力是有效的。最终的输出力或扭矩不仅是连杆几何图形的函数,而且一般也是动力或惯性力的结果,那常常是大到如静态力的几倍。为了分析低速运转或为了易于获得如何能使任一机构“运转”的指数,传动角的概念是非常有用的。在机构运动期间,传动角的值在改变。传动角的特殊位置发生在0度位置上。在此特殊位置上输出杆将不运动而与施加到输入杆上的传动角多大无关。事实上,由于运动副摩擦力的影响,一般根据实际经验,用比规定值大的传动角去设计机构。衡量连杆机构传递运动能力的定义已经研究出来。一个决定性因素的值(它含有对于某个给定机构图形,位置的输出运动变量对输入变量的导数)是该连杆机构在具体位置中的可动性的一个尺度。如果机构具有一个自由度(例如四杆机构),则规定的一个位置参数,如输入角,就将完全确定该机构休止的位置(忽视分支机构的可能性)。我们可从研究一个关于四杆机构的构件在绝对位置的分析表达式。当分析若干位置和(或)若干不同机构的时候,这将是比几何图形分析程序要有用的多,因为该表达式将使自动化计算易于编程。实现机构速度分析的相对速度法是几种有效的方法之一,即速度多边形。这端(顶)点代表着机构上所有的点,具有零速度。从该点到速度多边形上的各点划的线代表着该机构上相应各点的绝对速度。一根线连接速度多边形上的任意两点就代表着该机构上的两个对应点的相对速度。另外的方法就是瞬时中心法,即瞬心法,该方法是非常有用的而且常常是分析复杂连杆机构较快的方法。瞬心是一个点,该点在那一瞬间,机构上的两个构件之间不存在相对运动。为了找出已知机构某些瞬心的位置,肯尼迪(Kennedy)三中心理论就非常有用。它是说:彼此相对运动的三个物体的三个瞬心必定是在一直线上。机构各构件的加速度是令人感兴趣的,因为它影响惯性力,继而影响机器零件的应力、轴承载荷、振动和噪音。由于最终的目的是机器和机构惯性力的分析,所有加速度的各分量都应一次性地画在同一坐标系中在机构固定构件的惯性坐标系中表示出来。应注意的是,相对于固定回转副的回转刚体上的一点加速度分量通常有两个。一个切于该点分力方向的轨迹,其指向与该物体的角加速度方向相同,并被称为切向加速度。它的存在完全是由于角加速度的变化率引起的。另一个分量,总指向物体的回转中心,被称为标准的向心加速度,这个分量随着速度矢量的方向发生改变而存在。机构是形成许多机械装置的基本几何结构单元,这些机械装置包括自动包装机、打印机、机械玩具、纺织机械和其他机械等。典型的机构要能够设计成使刚性构件相对基准构件产生准确的运动。机构的运动设计即运动的综合,第一步常常是先设计整部机器。当考虑受力时,要提出动力学方面的问题,轴承的载荷、应力、润滑等类似的问题,而较大的问题是机器结构问题。运动学家把运动定义为“研究机构的运动和创建机构的方法”。这个定义的第一部分就涉及运动学分析。已知一个机构,其构成的运动特性将由运动学分析来确定。叙述运动分析的任务包含机构的主要尺寸、构件间的相互连接和输入运动的技术特性或驱动方法。目的是要找出位移、速度、加速度、冲击或跳动(二阶加速度),和可能发生的各构件的高阶加速度以及所描述轨迹与由某些构件来实现的运动。定义的第二部分可用以下两方面来解释:1. 借助机构来研究产生给定运动的方法。2. 研究通过建造能产生给定运动机构的方法,在两个方案中,运动是给定的而机构是创建的。这就是运动综合的本质。这样运动综合涉及到为给定性能的机构的系统设计。运动综合方面又可归结为以下两类:1. 类型综合。规定所要求的性能,哪一种类型的机构才是合适的?(齿轮系,连杆机构?还是凸轮机构?)而机构应有多少构件?需要多少自由度?怎样的轮廓结构才是满意的?等等。关于考虑连杆数目和自由度通常被认为是该类型中称为数量综合的一个分支领域。2. 尺寸综合。运动综合的第二个主要类型是通过目标法来确定的最佳方法。尺寸综合试图是确定机构的重要尺寸和启动位置,该机构是为了实现规定的任务和预期的性能而事先设置的。所谓重要的尺寸意思是指关于两杆、三杆等的长度或杆间距离,构件数和轴间的角度,凸轮的轮廓尺寸,凸轮随动件的直径,偏心距,齿轮配合尺寸等等。预想机构类型可能是曲柄滑块机构、四杆机构,从动件为带盘型的凸轮机构,或者是以拓扑学方法而非因次分析法所确定的具有某种结构形状更为复杂的连杆机构。对于运动综合,惯例上有三个任务:函数生成,轨迹生成和运动生成。在函数生成机构中输入和输出构件的转动或移动必须是相互关联的。对于一个任意函数y=f(x),一个运动综合的任务可能是设计一个连杆机构使输入和输出建立起关系以便使输入得在x0xxn+1的范围内按x运动,而输出按y=f(x)运动。在输入和输出件回转运动的情况下,转角和分别是x和y的先行模拟。当输入件回转到一个独立x值时,在一个“黑箱”的机构中,使输出构件转到相对应的由函数y=f(x)决定的数值上。这可被认为机械模拟计算机的最简单的情形。各种不同的机构都可以包含在这个“黑箱”中,然而对于任意函数的无误差生成,四杆机构是无能为力的,仅仅可能在有限精度内与之相匹配。它广泛用于工业上,因为四杆机构在构件和维修都是简单的。在轨迹生成机构中,在“浮动杆”上一个点要描绘一条相对于一个固定坐标系确定的轨迹。如果该轨迹点既要与时间相关又要与位置相关,该任务被称之为预定周期的轨迹生成。轨迹生成机构的一个例子就是设计投掷棒球或网球的四杆机构。在这种情况下,点P的轨迹将是这样:在预定的位置捡起一个球,并在预定的时间周期内沿着预定的径迹把球传出去,能达到合适的速度和方向。机械装置设计中有着许多情形,在这些情形中既要导引刚体通过一系列规定的、受限制的独立位置,又要在减少受限制和独立的位置的数目时,对运动体的速度和(或)加速度加以约束,那是必要的。运动生成或减少刚体导引机构要求:一个完整的物体要被导引通过一预定的运动序列。作为被导引的物体通常是“浮动构件”的一部分,那不仅是预定点P的轨迹,也是通过该点嵌入该物体内线的转动。例如,该线可能代表自动化机械中的一个载体,该载体上的一个点具有一个预定的轨迹并且又具有一个预定的角度方位。预定方式装料机的吊斗的运动是运动生成机构的另一个例子。吊斗端的轨迹是有极限的。因为其端口必须实现挖掘的运动轨迹,紧跟着要实现提升和倾泻的轨迹。吊斗的角度方位对保证斗中物料从正确的位置倾泻(倒)同样是重要的。Movement Analysis and SynthesisLI can, HUANG Yun-yaoAbstract: One of the simplest and most useful mechanisms is the four-bar linkage. A four-bar linkage has one degree of freedom. The same four-bar linkage can be a different type. The acceleration of links of a mechanism is of interest because of its effort on inertia force, which in turn influences the stress in the parts of a machine, bearing loads, vibration, and noise. A kinematician defined kinematics as “the study of the motion of mechanisms and methods of creating them.” Given a certain mechanism, the motion characteristics of its components will be determined by kinematic analysis. There are three customary tasks for kinematic synthesis: function generation, path generation and motion generation.Key words: Linkage motion feature; Movement Analysis; Dimensional synthesisOne of the simplest and most useful mechanisms is the four-bar linkage. Most of the following description will concentrate on this linking, but the procedures are also applicable to more complex linking.We already know that a four-bar linkage has one degree of freedom. Are there any more that are useful to know about four-bar linkage? Indeed there are! These include the Grashof criteria, the concept of inversion, dead-center position (branch points), branching, transmission angle and their motion feature; include positions, velocities and accelerations.The four-bar linkage may take form of a so-called crank-rocker or a double-rocker or a double-crank (drag-link) linkage, depending on the range of motion of the two links connected to the ground link. The input crank of a crank-rocker type can rotate continuously through 360, while the output link just “rocks” (or oscillates). As a particular case , ina parallelogram linkage, where the length of the input link equals that of the output link and the lengths of the coupler and the ground link are also the same, both the input and output link may rotate entirely around or switch into a crossed configuration called an antiparallelogram link. Grashofs criteria that the sum of the remaining two links if there is to be continuous relative rotation between may any two links.Notice that the same four-bar linkage can be a different type, depending on which link is specified as the frame (or ground). Kinematics inversion is the process of fixing different links of a chain to create different mechanisms. Note that the relative motion between links of a mechanism does not change in different inversion.Besides having knowledge of the extent of the rotations of the links, it would be to have a measure of how well a mechanism might “run” before actually building it. Hartenberg mentions that “run” is a term effectiveness with which motion is imparted to the output link; it implies smooth operation, in which a maximum force component is available to produce a force or torque in an output member. Although the resulting output force or torque is not only a function of the geometry of the linkage, but is generally the result of dynamic or inertia force, which are often several times as large as the static force. For the analysis of low-speed operations or for an easily obtainable index of how any mechanism might run, the transmission angle change in value. A transmission angle of 0 degree may occur at a specific position, on which the output link will not move regardless of how large a force is applied to the input link. In fact, due to friction in the joints, the general rule of thumb is to design mechanisms with transmission angle of large than a specified value. Matrix-based definitions have been developed which measure the ability of a link to transmit motion. The value of a determinant (which contains derivatives of output motion variables to an input motion variable for a given linkage geometry) is a measure of the movability of the linkage in a particular position.If a mechanism has one degree of freedom (e.g. a four-bar linkage), then prescribing one position parameter, such as the angle of the input link, will completely specify the position of the rest of the mechanism (discounting the branching possibility). We can develop an analytical expression relating the absolute angular positions of a four-bar linkage. This will be much useful than a graphical analysis procedure when analyzing a number of position and/or a number of different mechanisms, because the expression will be easily programmed for automatic computation.The relative velocity or velocity polygon method of performing a velocity analysis of a mechanism is one of several methods available. The pole represents all points on the mechanism having zero velocity. Lines drawn from the pole to points on the velocity polygon represent the absolute velocities of the corresponding points on the mechanism. A line connecting any two points on the velocity polygon represents the relative velocity for the two corresponding points on the mechanism.Another method is the instantaneous center or instant center method, which is a very useful and often quicker in complex linkage analysis. An instantaneous center or instant center is a points at which is no relative velocity between two links of a mechanism at the instant. In order to locate the locations of some instant centers of a given mechanism, the Kennedys theorem of three centers is very useful. It states that the three instantaneous centers of three bodies moving relative to one another must lie along a straight ling.The acceleration of links of a mechanism is of interest because of its effort on inertia force, which in turn influences the stress in the parts of a machine, bearing loads, vibration, and noise. Since the ultimate objective is inertia-force analysis of mechanisms and machines, all acceleration components should be expressed in one and the same coordinate system: the inertia frame of reference of the fixed of the mechanism.Notice that in general there are two components of acceleration of a point on a rigid body rotating about a ground pivot. One component has the direction tangent to the path of this point, pointed in the same sense of the angular acceleration of the body, and is called the tangential acceleration. Its presence is due solely to the angular velocity. The other component, which always points toward the center of rotation of the body, is called the normal or centripetal acceleration. This component is present due to the changing direction of the velocity vector.Mechanisms form the basic geometrical elements of many mechanical device including automatic packing machinery, typewriters, mechanical toys, and others. A mechanism typically is designed to create a desired motion of a rigid body relative to a reference member. Kinematics design, or Kinematics syntheses, of mechanism often is the first step in the design of a complete machine. When force are considered, the additional problem of dynamics, bearing loads, stresses, lubrication, and the like are introduced, and the larger problem becomes one of machine design.A kinematical defined kinematics as “the study of the motion of mechanisms and methods of creating them.” The first part of this definition deals with kinematics analysis. Given a certain mechanism, the motion characteristics of its components will be determined by kinematics analysis. The statement of the tasks of analysis contains all principal dimensions of mechanism, the interconnections of its links, and the specifications, of the input motion or method of actuation. The objective is to find the displacements, velocities, shock or jerk (second acceleration), and perhaps higher accelerations of the various members, as well as the paths described and motions performed by certain elements. In short, in kinematics analysis we determine the perforce of a given mechanism. The second par of definition may be paraphrased in two ways:1. The study of methods of creating a given motion by means of mechanisms.2. The study of methods of creating mechanisms has a given motion.In either version, the motion is given and the mechanism is to be found. This is the essence of kinematics analysis. Thus kinematics synthesis deals with the systematic design of mechanisms for a given performance. The area of synthesis may be grouped into two categories.1. Type synthesis. Given the required performance, what type of mechanism will be suitable? (Gear trains? Linkages? Cam mechanism?)Also, how many links should the mechanism have? How many degrees of freedom are required? What configuration is desirable? And so on. Deliberations involving the number of links and degrees of freedom are often referred to as province of a subcategory of type synthesis called number synthesis.2. Dimensional synthesis. The second major category of kinematics analysis is best defined by way of its objective: Dimensional synthesis seeks to determine the significant dimensions and the starting position of a mechanism of preconceived type for a specified task and prescribed performance.Significant dimensions mean link lengths or distance on binary, ternary, and so on, links, angles between axis, cam-contour dimensions and cam-follower diameters, eccentricities, gear rations, and so on. A mechanism of preconceived type may be a slider-crank linkage, a four-bar linkage, a cam with flat follower, or a more complex linkage of a certain configuration defined topologically but not dimensionally. There are three customary tasks for kinematics synthesis: function generation, path generation and motion generation.In function generation mechanisms rotation or sliding motions of input and output links must be correlated. For an arbitrary rotation y=f(x), a kinematics synthesis task may be to design a linkage to correlate input and output such that the input moves by x, the output moves by y=f(x) for the range x0xxn+1. In the case of rotary input and output, the angles of rotation and are the linear analogs of x and y respectively. When the input link is rotated to a value of the independent x, the mechanism in a “black box” causes the output link to turn to the corresponding value of the dependent variable y=f(x). This may be regarded as a simple case of a mechanism analog computer. A variety of different mechanisms could be contained within the “black box”. However, the four-bar linkage is not capable of error-free generation of an arbitrary function and can match the function at only a limited number of precision points. It is widely used in industry because the four-bar linkage simple to construct and maintain.In path generation mechanism a point on a “floating link” is to trace
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:糖果枕式包装机总体设计及竖封装置设计
链接地址:https://www.renrendoc.com/p-23837002.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!