资源目录
压缩包内文档预览:
编号:24929711
类型:共享资源
大小:3.96MB
格式:RAR
上传时间:2019-11-18
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
19
积分
- 关 键 词:
-
散热器
分流
组合
设计
- 资源描述:
-
散热器型材分流组合模的设计,散热器,分流,组合,设计
- 内容简介:
-
机电学院毕业论文排版格式1A4纸双面打印,页边距采用默认设置,上下边距2.54厘米,左右边距3.17厘米。正文行间距设置为固定值20,段前、段后为0。1、2、3级标题的段前、段后都设置为0.5行。2页码分奇偶页,不设页眉、页脚。页码从正文(引言)开始编号。3正文全文(包括目录)用小4号仿宋字体,英文和数字用Times New Roman字体。正文中不要空行和空格。正文全文一般为820页(不包括附录),过多的内容需要删节。41、2、3级标题序号分别用1、1.1、1.1.1,1级标题为4号字,2、3级标题为小4号字。全部顶格加粗。序号和标题之间统一空1格,下面的小标题依次采用(1)、1)、,全部缩进2个字,不用字母或其他序号。序号和标题后不加任何标点。5目录、中文摘要和关键词、英文摘要和关键词各占1页,目录要求自动生成,列到3级标题,1、2、3级标题之间依次缩进2格。6图、表、公式一般都居中排,图号、表号和公式序号都从1开始编号,不按小节编号。图号、表号与图题、表题之间空1格,全部用5号字,居中。图、表中的文字全部用小5号字,其他软件画的图文字大小不能超过正文。公式编号靠右边排列。7图、表移、公式到下页时,后面的文字提前,不要空行。8中文关键词用分号隔开,英文关键词用分号加1个空格隔开,每个单词的首字母都大写。9正文中按编号顺序引用参考文献至少5篇,编号可以不连续,但必须从小到大以上标的形式引用,编号用方括号括起来。10电路中要标明器件的参数(电阻、电容、电感)或型号(其他器件)11英文摘要和关键词用英文标点,其他用中文标点,如正文中的句号用“。”而不用“”。12各级标题(包括参考文献)后都不加标点。13表格中不要两边的列线。14具体的参考文献用5号字,每条参考文献后都不要标点,教材不要书名号。15致谢和参考文献为1级标题,不要序号。16注释排在当页的下面,5号字。17致谢中不要出现指导老师的名字。18参考文献居左,序号加方括号,空1格,参考文献著录内容要求及示例如下。具体格式参考后面的模板。(1)专著著录格式序号著者.书名.版本(第一版不写).出版地:出版者,出版年例1孙家广,杨长青.计算机图形学.北京:清华大学出版社,1995Sun Jiaguang, Yang Changqing. Computer graphics.Beijing: Tsinghua University Press,1995 (in Chinese)2Skolink M I. Radar handbook. New York: McGraw-Hill, 1990(2)期刊著录格式序号作者.题名J.刊名,出版年份,卷号(期号):起止页码例3李旭东,宗光华,毕树生,等.生物工程微操作机器人视觉系统的研究.北京航空航天大学学报,2002,28(3):249252Li Xudong, Zong Guanghua, Bi Shusheng, et al. Research on global vision system for bioengineering-oriented micromanipulation robot systemJ. Journal of Beijing University of Aeronautics and Astronautics, 2002,28(3):249252(in Chinese)(3)论文集著录格式序号作者.题名A.见(英文用In):主编.论文集名C.出版地:出版者,出版年.起止页码例4张佐光,张晓宏,仲伟虹,等.多相混杂纤维复合材料拉伸行为分析见:张为民编.第九届全国复合材料学术会议论文集(下册)北京:世界图书出版公司,1996.4104165Odoni A R. The flow management problem in air traffic control. In: Odoni A R, Szego G,eds. Flow Control of Congested Networks. Berlin: Springer-Verlag,1987.269298(4)学位论文著录格式序号作者.题名D.保存地点:保存单位,年例6金 宏.导航系统的精度及容错性能的研究.北京:北京航空航天大学自动控制系,1998(5)科技报告著录格式序号作者.题名.报告题名及编号,出版年例7Kyungmoon Nho. Automatic landing system design using fuzzy logicR.AIAA-98-4484,1998(6)国际或国家标准著录格式序号标准编号,标准名称S例8GB/T 161591996,汉语拼音正词法基本规则S(7)专利著录格式序号专利所有者.专利题名.专利国别:专利号,出版日期例9姜锡洲.一种温热外敷药制备方案中国专利:881056073,1989-07-06(8)电子文献(网络文献)著录格式序号作者.题名电子文献/载体类型标识.电子文献的出处或可获得地址,发表或更新日期/引用日期例10王明亮.关于中国学术期刊标准化数据系统工程的进展EB/OL/pub/wm1.txt/980810-2.html,1998-08-16/1998-10-04河南科技学院2007届本科毕业论文(设计)论文题目:学生姓名: 所在院系: 机电学院所学专业: 导师姓名: 完成时间:200 年 月 日摘 要仿宋 4号字加粗 中间空2格 居中小4号仿宋 首行缩进2字 两端对齐,单独占1页空1行可编程控制器(PLC)被研制成大约在1968年。PLC是一种固态电子装置,它利用已存入的程序来控制机器的运行或工艺的工序。PLC 通过输入/输出(I/O)装置发出控制信号和接受输入信号。(200字左右)关键词:PLC,编程语言,温度检测小4号加粗3-5个关键词,小4号,逗号隔开The Exploration of the Remote Controller Based on the Telephone Network(英文题目)Abstract小4号Times New Roman字体,首行缩进2个字,用英文标点,两端对齐空1行Times New Roman字体,4号字加粗居中,单独占1页The programmable logic controller (PLC) was developed in 1968. PLC is a solid-state device used to control machine motion or process operation by means of a stored program. The PLC sends output control signals and receives input signals through input/out (I/O) devices. PLC design is for serious industrial environmental use.Keywords:PLC, Programming Language, Temperature DetectionTimes New Roman字体,小4号字,逗号加1个空格隔开,每词首字母大写Times New Roman字体,小4号字加粗目 录仿宋,4号字加粗,中间空2格,居中空1行缩进2个字符,序号后空1格1 绪论12 设计要求13 系的结构23.1 PLC类型的选择23.2 温度传感器2缩进2个字符3.2.1 温度传感器的类型23.2.2 类型的选择23.2.3 工作原理33.2.4主要技术指标33.3 A/D模块及其温度控制编程33.3.1 A/D模块的介绍33.3.2数据转换33.3.3软件编程的思路43.4 显示电路43.4.1 PS7219简介43.4.2 PS7219的主要特点43.4.3 通讯时序图53.4.4 PS7219数字与控制寄存器54 软件编程65 报警电路66 程序的结构框图77 结束语7致谢7参考文献7附录1 电路总图页码目录全部为小4号字附录2 程序清单页码首行缩进2个汉字,建议不要用空格正文中段前、段后设置为01级标题,序号和标题之间空1格,4号字仿宋加粗,顶格,段前、段后设置为0.5行1 绪论在生产过程,科学研究和其他产业领域中,电气控制技术应用十分广泛。在机械设备的控制中,电气控制也比其他的控制方法使用的更为普遍。本系统的控制是采用PLC的编程语言梯形语言,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。2 设计要求序号首行缩进2个汉字,回行顶格系统的具体设计要求为:(1)PLC系统能够监控反应器的温度。(2)开始工作时全速加热,到设定值时保温40分钟停止加热。(3)通过串行方式在LED上显示3位温度值。中文括号( ),不用英文括号( )(4)保温过程中温度过高/低时能发出声光报警,声报警能用按钮手动解除,光报警在正常时自动解除。(5)通过通信方式传送给监控电脑,监控电脑能检测对象的参数、状态。文献至少引用5篇基于以上的要求,所设计的系统必须有以下结构模块:温度传感器单元、参数的LED串行显示单元、PLC模拟量转换单元、电脑监测单元2 。3 系统结构温度监控系统是将温度通过温度传感器传送到A/D模块,A/D模块将温度转换为数字量,再传送到PLC。PLC与外部设备的连接主要是通过I/O口,其功能是接收输入信号,传出输出信号。整个系统包括PLC、A/D模块、显示电路。系统原理框图如图1所示。图居中5号字居中温度传感器加热单元显示电路FP0A21电脑 空1格5号字居中,不加粗 图1 系统原理框图用半角的点“3.2”,不用全角的点“32”2、3级标题,序号和标题之间空1格,小4号字仿宋加粗,顶格,段前、段后设置为0.5行3.2 温度传感器3.2.1 温度传感器的类型温度传感器有热电偶和热电阻两种类型,热电阻的温度特性为:(1)编号居右公式居中3.2.2 类型的选择表居中5号居中表题居中空1格在选择温度传感器时根据不同的场合选择类型,本设计由于需要选用PT100温度传感器,铂热电阻PT100是国际温标ITS-90标准中的工业温度测量元件之一,所以利用PT100温度传感器具有一定的典型性,有利于系统的稳定。 表1 串行数据D15 D14 D13 D12D11 D10 D9 D8D7 D6 D5 D4 D3 D2 D1 D0无关位地址数据不要两边列线 PS7219数字与控制寄存器4级标题(尽量避免用),序号和标题之间空1格,小4号字仿宋,顶格,段前、段后设置为0.5行PS7219内部共有统一编址的8位寄存器15个,分8个数字寄存器和7个控制寄存器,它们均可单独直接寻址,这样就可对单个数据或控制字进行更新。 数字寄存器地址0108,对应LED1LED8不译码时,D6D0分别对应标准7段显示器的AG,正逻辑显示译码时,D3D0为显示数据的BCD码无论译码与否,D7为1,则该位小数点显示7 结束语本设计既充分利用PLC的特点,又对PLC的控制功能进行扩充,使其具有显示直观,运行可靠。序号用中文方括号,不空格,5号字仿宋,顶格不要序号致谢期刊标识年,卷(期):起止页码本文是在指导老师的悉心指导下完成的。指导老师具有严谨的治学态度,丰富的实践经验,在治学及做人方面使我受益匪浅。衷心感谢老师对我的关心指导和帮助。参考文献分隔符用的点为仿宋,不加空格1凌云.PS7219显示驱动器及其在PLC中的应用J.湖南冶金职业技术学院报,2002,28(3):249252著作、教材标识2张桂香.电气控制与PLC应用M.化学工业出版社,2003学位论文标识3金宏.导航系统的精度及容错性能的研究D.北京:北京航空航天大学自动控制系,1998电子文献标识4王明亮.关于中国学术期刊标准化数据系统工程的进展EB/OL./pub/wm1.txt/980810-2.html,1998-08-16/1998-10-043个以上作者用等5李旭东,宗光华,毕树生等.生物工程微操作机器人视觉系统的研究J.北京航空航天大学学报,2002(3)年(期)学生姓名赵周鹏班级机教043指导教师陈锡渠 杨辉论文(设计)题目散热器型材分流组合模的设计目前已完成任务1.查询了散热器的部分相关资料。2.查询了模具设计的部分相关资料。3.熟悉了平面分流组合模的整体结构和工作原理。4.绘制了模具的总装配图和部分零件图(CAD草图)。是否符合任务书要求进度:符合尚需完成的任务1.在草图基础上进行修改优化,形成正式的设计图纸。2.分析设计中的模具的可用性,完成模具设计的说明。3.进行设计论文的系统撰写。能否按期完成论文(设计):能按期完成存在问题和解决办法存在问题1.在草图设计中一些模具的关键尺寸的计算。2.设计图纸完成后,能否进行实际的加工,更加适于工业现场的使用。拟采取的办法1.结合前有的相关资料,按1:1的比例进行测绘。2.去工厂实际加工生产,从生产的产品中寻找模具的不足之处。指导教师签 字日期 年 月 日教学院长(系主任)意 见 签字: 年 月 日河南科技学院本科毕业论文(设计)中期进展情况检查表河南科技学院本科生毕业论文(设计)任务书题目名称:散热器型材分流组合模的设计学生姓名赵周鹏所学专业机电技术教育学号20040315028指导教师姓名陈锡渠 杨辉所学专业机械设计制造及其自动化职称副教授 助教完成期限 2008年12月22日 至 2009年5月31日一、论文(设计)主要内容及主要技术指标1.主要内容(1)平面分流组合模的基本结构;(2)分析分流组合模的各个要素;(3)分析各个要素对挤压产品的影响;(4)对所给图纸的铝型材模具进行设计;(5)对加工结果进行分析并得出结论; 2.技术指标(1)根据所给图纸断面,分析平面分流组合模的各个要素,对该型材对应的模具进行设计;(2)分析模具挤压产品的缺陷;(3)挤压机吨位;二、毕业论文(设计)的基本要求1.毕业论文(设计)一份:有400字左右的中英文摘要,正文后有15篇左右的参考文献,正文中要引用5篇以上文献,并注明文献出处。2.不少于2000汉字的与本课题有关的外文翻译资料;3.毕业设计总数在10000字以上;三、毕业论文(设计)进度安排1.2008年12月22日-2009年1月9日,下达毕业设计任务书;寒假期间完成英文资料翻译和开题报告。2. 2009年2月16-3月6日(第1-3周),指导教师审核开题报告、设计方案和英文资料翻译。3. 2009年4月7日-4月24日(第7-11周),毕业设计单元部分设计。4. 2009年4月26日-5月1日(第11周),毕业设计中期检查、到辉龙铝厂实地观摩设计。5. 2009年5月4日-5月22日(第12-14周),整理、撰写毕业设计报告。6. 2009年5月25日-5月31日(第15-16周)上交毕业设计报告,指导教师、评阅教师审查评阅设计报告,毕业设计答辩资格审查。毕业设计答辩,学生修改整理设计报告。河南科技学院2009届本科毕业论文(设计)外 文 翻 译学生姓名:赵周鹏 所在院系: 机电学院所学专业: 机电技术教育导师姓名: 陈锡渠 杨辉完成时间:2009 年5 月31日Stress Analysis and Optimum Design of Hot Extrusion DiesAbstract: A three-dimensional model of a hot extrusion die was developed by using ANSYS software and its second development languageANSYS parametric design language. A finite element analysis and optimum design were carried out. The three-dimensional stress diagram shows that the stress concentration is rather severe in the bridge of the hot extrusion die, and that the stress distribution is very uneven. The optimum dimensions are obtained. The results show that the optimum height of the extrusion die is 89.596 mm.The optimum radii of diffluence holes are 65.048 mm and 80.065 mm. The stress concentration is reduced by 27%.Key words: three-dimensional method; modeling; hot extrusion die; optimum designIntroduction With the continuous improvement of living standards, better thermal conductivity of aluminum alloy profiles. Aluminum components widely used in every aspect of life. Therefore, the aluminum alloy extrusion profiles, profiles of various types of radiators have been widely used in electrical appliances, machinery, and other industries. Variable products and the growing diversity and complexity of high-precision, the extrusion process is the basis for extrusion die. It not only determines the shape, size, accuracy and surface state, but also affect the performance of the product. So extrusion die extrusion technology is the key. Studies to improve extrusion die quality and prolong its life span usually attempt to simplify 3-D finite element model to 2-D, but it is only right for simple structural shapes. Without a 3-D finite element analysis, the results cannot give practical manufacturing help and offer useful information3-5. In this paper, aluminium profile extrusion die was modeled to get in optimum design6-8.1 Solid Modeling Figure 1 shows the male die of a hot extrusion planar combined die. Its external diameter is 227.000 mm, its height is 80.000 mm. Other parameters are shown in Fig. 1. The modeling method is as follows.1.1 Coordinates of P1 and P5 The coordinates of the point of intersection between the beeline L (y = kx + b) and the circular arc (x2 + y2 =R2) are 1.2 Coordinates of P2 and P6 The coordinates of the intersection point (P2) between beeline L1 (y = kx+b) and beeline L2 (y =S1) are The coordinates of the intersection point (P6) between beeline L3 (y = kx+b) and beeline L4 (y =S1) are 1.3 Coordinates of P3, P4, P7, and P8 P3 and P1 are symmetric about the y-axis. P4 and P2 are also symmetric about the y-axis. P7 and P5 are symmetric about the x-axis. P8 and P6 are also symmetricabout the x-axis.1.4 Variables in the equations In Eqs. (1)-(6), for points P1 and P2, and R = R1. For points P5 and P6, and R = R2. R1, R2, T1, T2, S1, and S2 are the change rule along the height (H) of the die expressed as the functions R1=f1 (z), R2=f2 (z), T1=f3 (z), T2=f4 (z), S1=f5 (z), andS2=f6 (z), z 0, H.1.5 Section shape at some height With lines linking P1-P4, P5-P8, with circular arc filleting at the point of intersection (P1-P8), the section shape at some height is obtained.1.6 Section shape at every height H is divided to interfacial number (INUM) equal parts (INUM is decided by the precision, if the INUM is higher, the precision is better). The section shape is drawn at every height as shown in Fig. 2. 1.7 Smooth curved surface Using SKIN command in ANSYS, smooth curved surfaces were built along the lines. They are the surfaces of the influence hole. Using the VA (it generates a volume bounded by existing area) command, a solid was created from those surfaces.1.8 Symmetry of the die The main body and kernel of the die were drawn using the Boolean operations of add, subtract, etc. (Fig. 3).The symmetry of the die was used to accelerate the computations using a 1/4-solid model for the finite element analysis (Fig. 4).2 Computing Model A planar die that extrudes the aluminium alloy (6063Al-Mg-Si) was used as an example. The liquidoid of Al is 6579, and the melt temperature of Al+Mg2Si is 558. Taking the extrusion pressure and the products quality into account, the working temperature was determined to be 450. The die material is 4Cr5MoSiV1(H13). Below the 450, its Young modulus and Possion ratio are 210 GPa and 0.25, respectively. Its yield strength is 1200MPa.The friction coefficient is 0.3. The Solid92 3-D solid element was used to carry through the free mesh. In order to load the frictional force while extruding, the surface effect element Surf154 was used to produce the regular quadrangles (Fig. 5). For the 1600 t extruder, the extrusion intensity was computed using Eq. (7)10. The values are shown in Table 1. The bridge collapse often takes place in the die. And its strength is determined by the height and the distribution of the diffluence holes. In this paper, the height (H) and the radii (R1 and R2) of the diffluence holes were used as design variables and the maximum equivalent pressure (smax) was used as the goal function.The design variable ranges are listed in Table 2. 3 Computed Results Figure 6 is the equivalent stress diagram. From Fig. 6 we can see that the stress is largest at the bridge, as expected 24 maximum equivalent stress values are listed in Table 3 from large to small. The data shows that the nodal maximum equivalent stress is 1066.5 MPa, which is 14.5% higher than the second one (912.0 MPa), and that the stress convergence is very severe in the bridge, this part is apt to produce crack. The initial value of the design variables R1, R2, H, q1, and q2 were 75.000 mm, 88.000 mm, 80.000 mm, 30.000, and 30.000, respectively, and the maximum equivalent stress smax= 1066.5 MPa. In the 21 iterations, the optimum iteration was the eighteenth. The design variable values were R1=65.048 mm, R2=80.065 mm, H = 89.596 mm, q1=30.642, q2=20.045. The maximum equivalent stress smax= 723.1 MPa, which is 27% less. The optimum results are shown in Table 4.4 Conclusions 1) Based on ANSYS software, its second development language APDL was used to develop a 3-D model of the hot extrusion die that extrudes aluminium profile has been obtained. 2) The 3-D stress distribution was very uneven, with severe stress concentrations in the bridge of the hot extrusion die. The optimal geometric design had 27% lower maximum stress, A better die will not only reduce die number but also reduce time lost changing dies, which will greatly heighten productivity. 3)Die cantilever design of large-scale streaming into false structure Not only is effective to reduce the pressure on the mold to take greater positive die as a result of dangerous sections of the fracture. greatly extend the life of the die, but this can not bring streaming bridge structure also more effective to reduce the thickness of the bottom die velocity, the velocity Extruded ensure a balanced, stable. Meanwhile, the structural design of the extrusion die for the wide disparity in thickness solid Profile Die Design, opened up a new way of thinking and approach. References1 Karacs G. Computer aided methods for die design. Proceedings of the Conference on Mechanical Engineering, 1998, 2: 463-466.2Mueller G. Design optimization with the finite element program ANSYS. International Journal of Computer Applications in Technology, 1994, 7: 271-277.作者: 帅词俊; 肖刚; 倪正顺;英文作者: SHUAI Cijun *; XIAO Gang; NI Zhengshun College of Mechanical and Electronic Engineering; Central South University; Changsha; China;刊名:Tsinghua Science and Technology , 清华大学学报(英文版), 编辑部邮箱 2004年 03期查询来源: 中国学术期刊全文数据库查询网址:/kns50/scdbsearch/scdetail.aspx?QueryID=14&CurRec=1 5 / 6河南科技学院2009届本科毕业论文(设计)外 文 资 料学生姓名:赵周鹏 所在院系: 机电学院所学专业: 机电技术教育导师姓名: 陈锡渠 杨辉完成时间:2009 年5 月31日Stress Analysis and Optimum Design of Hot Extrusion DiesAbstract: A three-dimensional model of a hot extrusion die was developed by using ANSYS software and its second development languageANSYS parametric design language. A finite element analysis and optimum design were carried out. The three-dimensional stress diagram shows that the stress concentration is rather severe in the bridge of the hot extrusion die, and that the stress distribution is very uneven. The optimum dimensions are obtained. The results show that the optimum height of the extrusion die is 89.596 mm.The optimum radii of diffluence holes are 65.048 mm and 80.065 mm. The stress concentration is reduced by 27%.Key words: three-dimensional method; modeling; hot extrusion die; optimum designIntroduction With the continuous improvement of living standards, better thermal conductivity of aluminum alloy profiles. Aluminum components widely used in every aspect of life. Therefore, the aluminum alloy extrusion profiles, profiles of various types of radiators have been widely used in electrical appliances, machinery, and other industries. Variable products and the growing diversity and complexity of high-precision, the extrusion process is the basis for extrusion die. It not only determines the shape, size, accuracy and surface state, but also affect the performance of the product. So extrusion die extrusion technology is the key. Studies to improve extrusion die quality and prolong its life span usually attempt to simplify 3-D finite element model to 2-D, but it is only right for simple structural shapes. Without a 3-D finite element analysis, the results cannot give practical manufacturing help and offer useful information3-5. In this paper, aluminium profile extrusion die was modeled to get in optimum design6-8.1 Solid Modeling Figure 1 shows the male die of a hot extrusion planar combined die. Its external diameter is 227.000 mm, its height is 80.000 mm. Other parameters are shown in Fig. 1. The modeling method is as follows.1.1 Coordinates of P1 and P5 The coordinates of the point of intersection between the beeline L (y = kx + b) and the circular arc (x2 + y2 =R2) are 1.2 Coordinates of P2 and P6 The coordinates of the intersection point (P2) between beeline L1 (y = kx+b) and beeline L2 (y =S1) are The coordinates of the intersection point (P6) between beeline L3 (y = kx+b) and beeline L4 (y =S1) are 1.3 Coordinates of P3, P4, P7, and P8 P3 and P1 are symmetric about the y-axis. P4 and P2 are also symmetric about the y-axis. P7 and P5 are symmetric about the x-axis. P8 and P6 are also symmetricabout the x-axis.1.4 Variables in the equations In Eqs. (1)-(6), for points P1 and P2, and R = R1. For points P5 and P6, and R = R2. R1, R2, T1, T2, S1, and S2 are the change rule along the height (H) of the die expressed as the functions R1=f1 (z), R2=f2 (z), T1=f3 (z), T2=f4 (z), S1=f5 (z), andS2=f6 (z), z 0, H.1.5 Section shape at some height With lines linking P1-P4, P5-P8, with circular arc filleting at the point of intersection (P1-P8), the section shape at some height is obtained.1.6 Section shape at every height H is divided to interfacial number (INUM) equal parts (INUM is decided by the precision, if the INUM is higher, the precision is better). The section shape is drawn at every height as shown in Fig. 2. 1.7 Smooth curved surface Using SKIN command in ANSYS, smooth curved surfaces were built along the lines. They are the surfaces of the influence hole. Using the VA (it generates a volume bounded by existing area) command, a solid was created from those surfaces.1.8 Symmetry of the die The main body and kernel of the die were drawn using the Boolean operations of add, subtract, etc. (Fig. 3).The symmetry of the die was used to accelerate the computations using a 1/4-solid model for the finite element analysis (Fig. 4).2 Computing Model A planar die that extrudes the aluminium alloy (6063Al-Mg-Si) was used as an example. The liquidoid of Al is 6579, and the melt temperature of Al+Mg2Si is 558. Taking the extrusion pressure and the products quality into account, the working temperature was determined to be 450. The die material is 4Cr5MoSiV1(H13). Below the 450, its Young modulus and Possion ratio are 210 GPa and 0.25, respectively. Its yield strength is 1200MPa.The friction coefficient is 0.3. The Solid92 3-D solid element was used to carry through the free mesh. In order to load the frictional force while extruding, the surface effect element Surf154 was used to produce the regular quadrangles (Fig. 5). For the 1600 t extruder, the extrusion intensity was computed using Eq. (7)10. The values are shown in Table 1. The bridge collapse often takes place in the die. And its strength is determined by the height and the distribution of the diffluence holes. In this paper, the height (H) and the radii (R1 and R2) of the diffluence holes were used as design variables and the maximum equivalent pressure (smax) was used as the goal function.The design variable ranges are listed in Table 2. 3 Computed Results Figure 6 is the equivalent stress diagram. From Fig. 6 we can see that the stress is largest at the bridge, as expected 24 maximum equivalent stress values are listed in Table 3 from large to small. The data shows that the nodal maximum equivalent stress is 1066.5 MPa, which is 14.5% higher than the second one (912.0 MPa), and that the stress convergence is very severe in the bridge, this part is apt to produce crack. The initial value of the design variables R1, R2, H, q1, and q2 were 75.000 mm, 88.000 mm, 80.000 mm, 30.000, and 30.000, respectively, and the maximum equivalent stress smax= 1066.5 MPa. In the 21 iterations, the optimum iteration was the eighteenth. The design variable values were R1=65.048 mm, R2=80.065 mm, H = 89.596 mm, q1=30.642, q2=20.045. The maximum equivalent stress smax= 723.1 MPa, which is 27% less. The optimum results are shown in Table 4.4 Conclusions 1) Based on ANSYS software, its second development language APDL was used to develop a 3-D model of the hot extrusion die that extrudes aluminium profile has been obtained. 2) The 3-D stress distribution was very uneven, with severe stress concentrations in the bridge of the hot extrusion die. The optimal geometric design had 27% lower maximum stress, A better die will not only reduce die number but also reduce time lost changing dies, which will greatly heighten productivity. 3)Die cantilever design of large-scale streaming into false structure Not only is effective to reduce the pressure on the mold to take greater positive die as a result of dangerous sections of the fracture. greatly extend the life of the die, but this can not bring streaming bridge structure also more effective to reduce the thickness of the bottom die velocity, the velocity Extruded ensure a balanced, stable. Meanwhile, the structural design of the extrusion die for the wide disparity in thickness solid Profile Die Design, opened up a new way of thinking and approach. References1 Karacs G. Computer aided methods for die design. Proceedings of the Conference on Mechanical Engineering, 1998, 2: 463-466.2Mueller G. Design optimization with the finite element program ANSYS. International Journal of Computer Applications in Technology, 1994, 7: 271-277.作者: 帅词俊; 肖刚; 倪正顺;英文作者: SHUAI Cijun *; XIAO Gang; NI Zhengshun College of Mechanical and Electronic Engineering; Central South University; Changsha; China;刊名:Tsinghua Science and Technology , 清华大学学报(英文版), 编辑部邮箱 2004年 03期查询来源: 中国学术期刊全文数据库查询网址:/kns50/scdbsearch/scdetail.aspx?QueryID=14&CurRec=1热挤压模具的优化设计摘要:热挤压模具立体模型开发利用ANSYS软件及其二次开发语言ANSYS的参数设计,进行有限元分析和优化设计。热挤压模具的三维应力分布很不均匀,悬臂梁有严重的应力集中。获得
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。