资源目录
压缩包内文档预览:(预览前20页/共37页)
编号:24990420
类型:共享资源
大小:1.57MB
格式:ZIP
上传时间:2019-11-18
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
20
积分
- 关 键 词:
-
复合
设计
制造
- 资源描述:
-
轴盖复合模的设计与制造,复合,设计,制造
- 内容简介:
-
轴盖复合模的设计与制造 摘 要 本设计分析了轴盖零件的结构工艺性,提出了合理的成型工艺。确定合理的冲压工艺方案,零件冲压成形的方向和模具结构,并进行了工艺参数的计算,且对模具的设计、工作过程、装配、调试工艺作了阐述。 关键词 翻边模 模具结构 工艺 成形the design and manufacture of the shaftcup gang diesAbstract:The structural technique of shaftcup accessory is analyzed,and the proper forming technique is proposedThe stamping process scheme was determined , have carried on the calculation of the craft parameter ,ascertain its punching forming direction and die structure,die design, working process,and technique for assembly and adjustment are discussedKeywords:flanging die mold structure technological process shaping前言 在冲压生产中,常常将几个单工序冲压过程集中在一副模具中完成,这种在压力机的一次工作行程中,在一副模具的同一工位同时完成两种或两种以上基本工序的模具就称为复合模具。冷冲压是一种先进的金属加工方法,与其它加工方法(切削)比较,它有以下特点:1)它是无屑加工 被加工的金属在再结晶温度以下产生塑性变形不产生切屑,变形中金属产生加工硬化。 2)所用设备是冲床 冲床供给变形所需的力。3)所用的工具是各种形式的冲模 冲模对材料塑性变形加以约束,并直接使材料变成所需的零件。4)所用的原材料多为金属和非金属的板料。冷冲压与其它加工方法比较,在技术上、经济上有许多优点:1)在压床简单冲压下能得到形状复杂的零件而这些零件用其它的方法是不可能或者很难得到的。如汽车驾驶室的车门、顶盖和翼子板这些具有流线型零件。 2)制得的零件一般不进一步加工,可直接用来装配,而且有定精度,具有互换性。3)在耗料不大的情况下。能得到强度高、足够刚性而重量轻、外表光滑美观的零件。4)材料利用率高,一般为70一85。5)生产率高,冲床冲一次一般可得一个零件而冲床一分钟的行程少则几次,多则几百次。同时,毛坯相零件形状规则,便于实现机械化和自动化。 6)冲压零件的质量主要靠冲模保证所以操作方便,要求的工人技术等级不高,便于组织生产。7)在大量生产的条件下,产品的成本低。冷冲压的缺点是模具要求高、制造复杂、周期长、制造费昂贵因而在小批量生产中受到限制。另外冲压件的精度决定于模具精度如零件的精度要求过高、用冷冲压生产就难以达到。一、 冲压件的工艺分析有工件图看,该工件需要内外缘同时翻边,翻边高度为4mm,由计算可知最大翻边高度为Hmax=5.93mm,由此可知设计翻边时可一次翻边完成,无需拉深。由于产品批量较大,不宜采用单一工序生产,且不易保证内外缘的同心度。而用级进模结构复杂。采用复合模可一次完成落料、冲孔、内外缘翻边。 因为该工件是轴对称件,材料厚度仅为1.0mm,冲裁性能较好。为了减少工序数经对该工件进行详细分析,并查阅有关资料后,可采用复合模一次压制成形。该工艺特点是首先进行落料,再冲孔,最后翻边成形 。采用这种方法加工的工件外观乎整、毛刺小、产品质量较高,而且大大提高了生产效率。所以经分析,决定设计复合摸来完成此工件的加工。二、 工艺方案的确定计算翻边前是否需要进行拉深,这要核算翻边的变形程度,由模具设计手册查的极限翻边系数:Kmin=0.62,则可只允许的最大翻边高度Hmax为:式中 Hmax最大翻边高度D翻边直径r圆角半径t材料厚度则 =5.93mm零件竖直高度H=4mmHmax=5.93mm所以翻边时可一次翻边成型,无需进行拉深。根据以上分析计算,冲压零件需要的基本工序是落料、冲孔、内翻边、外翻边。根据以上基本工序,可拟定以下几个冲压工艺方案:方案一:落料、冲孔同步、内翻边与外翻边同步。方案特点是内翻边与外翻边同时进行使模具制造复杂,使冲孔凹模与内外翻边凸凹模做为一体,不但节省材料,也使模具结构紧凑,并提高制造精度。方案二:落料、冲孔、内翻边与外翻边同步。方案特点是:与第一方案相比因落料与冲孔分步进行可进小冲裁力,但降低了冲裁速度。方案三:落料、冲孔同步,内翻边、外翻边分步进行。方案特点是模具制造比较简单,模具使用寿命较高,但精度低。 分析比较以上三种方案,可以看到选用第一种方案比较合理。三、 工艺参数的计算 (一)毛坯的尺寸计算(1)毛坯翻便预制孔的直径d0d0=D-2(H-0.43r-0.72t)式中 D翻边直径(按中线计) (mm);H翻边高度(mm),H=4mm;r竖边与凸缘的圆角半径(mm),r=1.0mm;t料厚(mm),t=1.0mm.D=24mm+1.0mm=25mm则 d0=25-2(4-0.431.0-0.721.0)=19.3mm(2)毛坯的直径D0按等面积原则,用解析法求该工件的毛皮直径D0.可将工件分为圆柱、1/4球环、圆三个简单几何体,他们的面积分别计算如下:A1=d(H-r) =3.1437(4-1) =38.727mmA2=r(d-2r)+4r/2 =3.1413.14(37-21)+41/2 =178.823mmA3=/4(d-2r) =3.14(37-21)/4 =961.16mm 据等面积原则:A=A1+A2+A3=38.727+178.3823+961.16=1179.175mm毛坯的面积 A毛坯=D/4将A1、A2、A3代入上式得:D= =43.55mm (二)排样及材料利用率的计算排样时工件之间,以及工件与条料侧边之间留下的余料叫搭边。搭边的作用是补偿条料的定位误差,保证冲出合格的工件。搭边还可以保持条料有一定的刚度,便于送料。搭边是废料从节省材料出发,搭边值应愈小愈好。但过小的搭边容易挤进凹模,增加刃口磨损,降低模具寿命,并且也影响冲裁件的剪切表面质量。一般来说,搭边值是由经验确定的,下表列出了冲裁时常用的最小搭边值。考虑到操作方便及模具结构,故采用单排排样设计。由下表2-1查的搭边值a=1.5,a1=1.5. 表2-1冲裁金属材料条料宽度 b=D0+21.5=43.55+21.5=46.55mm条料送进步距 h=D0+1.5=43.55+1.5=45.05mm 材料利用率计算:(见右图)一个步距内的材料利用率为: 图2-1排样图式中: A一个步距内冲裁件面积(包括冲出的小孔在内)(mm) B条料宽度(mm) S步距(mm)则 =57%分析:由于轴盖冲裁时,产生的结构废料较多,因此轴盖的材料利用率较低。(三)、各部分工艺力的计算(1)冲孔力计算F冲=1.3Lt式中 : F冲冲孔力(N); L工件内轮廓周长(mm); t材料厚度(mm),t=1.0mm; 材料抗剪强度(Mpa)由手册查得=300Mpa.L=d0=3.1419.3=60.602mm则 F冲=Ltb=60.6021.0X300 =23.63KN(2)落料力的计算 F落=1.3Lt式中: F落落料力(N) L工件外轮廓周长mm,由于先落料,后翻边,因此落料尺寸为毛坯尺寸43.55,则L=3.1443.55=136.75;则 F落=1.3136.751.0300=53.33KN(3)翻边力的计算 内翻力:F内翻=1.1ts(D-d0)式中 s材料的屈服强度,查手册得s=200Mpa.D翻边直径(mm),D=25mm d0毛坯预制孔直径(mm) d0=19.3mm.则 F内翻=1.13.141200(25-19.3)=3.94KN外翻力: F外翻1.25LtbKF外翻外缘翻边所需的力(N);L弯曲线长度(mm) L=D;t料厚(mm);t=1.0mmb零件材料的抗拉强度(MPa);由手册查得b=380MpaK系数,取0.20.3。则 F外翻=1.253.14371.03800.25=13.79KN4)推件力的计算 F推nK推F冲式中 K推一推件力因数,其值由表22查得K推=0.03 n工件在凹模内的个数,取n=3则 F推3X0.0326.63=1.60KN5)卸料力计算 F卸K卸F落式中F卸卸料力因数,其值由表22查得K卸=0.02;则 F卸0.0253.33KN=1.07KN因此,总的冲裁力为: FF冲+F落+F推+F卸+F内翻+F外翻 23.63+1.60+53.33+1.07+3.94+13.79 87.36KN(四)计算压力中心确定压力中心的目的:冲裁模的压力中心就是合力的作用点,为了保证压力机和模具正常平衡工作,模具的压力中心必须通过模柄轴线而和压力机的滑块中心重合,否则会产生偏心,形成偏心载荷。轴盖是形状对称的工件,其压力中心位于轮廓图形的几何中心,即:圆心。对于复杂形状零件或多凸模冲模的压力中心可以用解析法和图解法求解。(五) 主要工作部分尺寸计算1 冲孔刃口尺寸计算 根据表23查得冲裁刃口双面间隙Zmin0.065mm,Zmax=0.095mm.零件尺寸极限偏差=0.13mm,磨损因数有表2-4查得,磨损因数x0.75. 表2-3 落料、冲孔摸刃口始用间隙材料名称45T8、T7、(退火)磷青铜(硬)铍青铜(硬)10、15、20、冷轧钢带、30钢板H62、H68(硬)LY12(硬铝)硅钢片Q215、Q235钢板08、10、15钢板H62、H68(半硬)纯铜(硬)磷青铜(软)铍青铜(软)H62、H68(软)纯铜(软)防锈铝LF21、LF2软铝L2L6LY12(退火)铜母线铝母线力学性能HBS190b600MPaHBS=140190b=400600MPaHBS=70140b=300400MPaHBS190b300MPa厚度t初始间隙ZZminZmaxZminZmaxZminZmaxZminZmax0.10.0150.0350.010.03*-*-0.20.0250.0450.0150.0350.010.03*-0.30.040.060.030.050.020.040.010.030.50.080.10.060.080.040.060.0250.0470.100.0450.0751.030.0650.0930.160.0750.1051.50.270.341.80.340.380.270.330.172.00.380.420.300.340.220.260.140.18注:有*号处均是无间隙。表2-4因数X冲孔凸凹模的制造公差由表2-5查得:凸=0.020,凹=0.025。校核:凸+凹=0.045Zmax-Zmin=0.03mm. 因此凸、凹模采用配作加工方法。 则凸模刃口尺寸 d凸(d+x)(19.3+0.750.13)=19.39mm圆整后为:19.4凹模刃口尺寸按凸模尺寸配制,保证其双间隙为0.0650.095mm。2落料刃口尺寸的计算 查表2-3冲裁模刃口双面间隙Zmin=0.065mm,Zmax=0.095mm.工件极限偏差=0.13mm.落料凸凹模的制造公差由表2-5查得凹=0.03mm,凸=0.02mm.磨损因数由表2-4查得 X=0.75校核:凸+凹=0.02+0.03Zmax-Zmin=0.03mm.D凸(D+x)(43.55+0.750.13)=43.45mm圆整后为:43.4则 落料凹凸模采用配合加工的方法。凸模尺寸按凹模尺寸配制,其双面间隙为0.0650.095mm.3.翻边的工作部分尺寸计算A:内翻孔尺寸为24,尺寸精度IT11级。凸模尺寸计算 d凸=(dmin+0.4) 将模具公差按IT10级选取,则凸=凹=() ,取凸=凹=0.06。图2-4翻边成型模把dmin=24.0mm,=0.13mm,代入上式 则 d凸=(24+0.40.13) =24.05 圆整后为:24.0由于工件要求内形尺寸,则以凸模为设计基准。间隙取在凹模上故凹模尺寸为:d凹=(dmin+Z)把 dmin=24mm,=0.13,Z=2.0MM,凹=0.06mm代入上式则凹模的尺寸为: d凹=(24+0.13+2.0)=26.13圆整后为:26.0B.外缘翻边尺寸381、 定间隙单边间隙为:Z/2=1.0t=1.0mm则翻边模的间隙Z=21.0=2.0mm2、凸凹模工作部分的尺寸和公差图2-5 凸凹模 由于工件要求外形尺寸,则以凹模为设计基准。 凹模尺寸为D凹=(Dmin-0.75) 将模具公差按IT10级选择则凹=0.1mm 把Dmax=38.13,=0.13,代入 则D凹=(38.13-0.750.13) =38.03圆整后为:38.0间隙取在凸模上,则凸模的尺寸为:D凸=(Dmax-0.75-Z)把 Dmax=38.13,=0.13,Z=2.0mm.凸=0.1mm代入则D凸=(38.13-0.750.13-2.0)=36.03圆整后为:36.0四、 冲压设备的选择由于复合模的特点,为防止设备超载,可按公称压力F压(1618)F总选择压力机。模具设计手册末附录B3选取公称压力为250kN的开式压力机。其与模具设计的有关参数为:公称压力:250KN滑块行程:65mm最大闭合高度:270mm封闭高度调节量:55mm工作台孔径:370mm560mm模柄孔尺寸:40mm 60mm五、 模具总体结构的设计(一)绘制模具总体结构草图模具的结构如图:(如图2-6)主要有上模座、下模座、冲孔凸模、落料凹模、冲孔落料翻边凸凹模、翻边成型模、卸料块等零件组成。 图2-6轴盖冲裁复合模1- 下模座 2-导柱 3-卸料板 4-上模固定板 5-导套 6冲孔凸模 7-上模座8-垫板 9-落料凹模 10-成型模 11-顶出器 12-推板 13-模柄 14-凸凹模 15-卸料板 16-顶杆 17-下模固定板(二)模具结构的设计,确定结构件的形式1、卸料零件计算上卸料采用刚性卸料装置。压力机滑块上的打料横梁通过打料棒、顶板、顶杆、卸料块将制件从上横中打出。下卸料是采用橡胶作为弹性元件的弹性装置。由式计算橡胶的自由高度。H自由=(3.54)S工作式中 S工作工作行程与模具修模量式调整量(46)I和再加1。S工作=(5.0+1+4)mm=10mm;则 H自由=(3.54)10=3540mm;取 H自由=35mm;橡胶的装配高度H2=(0.850.9)H=29.7531.5mm;取H2=30mm.卸料弹簧的设计计算:1)、根据模具结构初定6根弹簧,每根弹簧分担的卸料力为:F卸/n=1.07KN/6=178.33N2)、根据预压力F预(178.33)和模具结构尺寸,由模具设计手册附录既表2-6,初选出序号3438的弹簧,其最大工作负荷F1=330N178.33N 弹簧负荷(F)与行程(s)曲线3)、校验是否满足S1S总,查书附录既负荷行程曲线上图,并经过计算可得以下数据:由表中数据可见,序号37、38的弹簧均满足S1S总,但选序号37的弹簧最合适了,因为弹簧太长,会使模具高度增加,37号弹簧的规格:外径:D=20mm钢丝直径:d=3.0mm自由高度:H0=55mm装配高度:H2=H0-S预=55-9.5=45.5mm.2、定位零件的确定定位零件的作用,是使条料或毛坯在精冲在确定正确的位置,从而保证冲出合格的制件,根据毛坏和模具不同的特点,必须采用不同形式的定位装置,冲模中常见的定位零件有定位板、定位销、挡料销、导料销,侧压板等。对于带有弹压卸料板的冲模,若采用活动挡料销,在冲件时活动挡料销随凹模的下行而压入孔内,工作方便,但是要求弹压卸料板较厚,对于弹压卸料板较薄的板料,如果采用固定挡料销的形式,在凹模的相应位置留出空间,同时满足冲件要求,而且经济性好,因此选用固定挡料销,参照GB2866.1181固定挡料销A型, 材料:45钢, 基本尺寸:d4, 热处理硬度:HRC43 48。3、卸料装置的确定弹压卸料板兼有压料和卸料两大作用,它可在冲压开始时起压料作用,结束后起卸料作用,主要用于精冲薄料和要求制件平整的冲模中,其弹力可用弹簧或橡胶获得,也可以通过顶杆安装在下模座或压力机工作台下而的弹顶器或气垫获得。弹压卸料板上开孔大小,即卸料孔每侧与凸模保持间隙C=0.10.2t,t为材料厚度。为保证装配后卸料板的平行度,同一付模具各卸料螺钉的长度L及孔深H都必须保持一致,相差不超过0.02mm.弹压卸料板受弹簧,橡胶等零件的限制,卸料力小,主要用于料厚在1.5mm以下薄件的卸料工作。4、推件装置的设计把制件或废料从装于上模座的凹模中推出来的零件,称为推件装置。推件装置的推力,可以利用压力机上的打杆在打杆横梁作用下得到,或利用上模内安装弹簧或橡胶得到. 推件器要在能保证平稳推下制件的前提下,受力点尽量少些,为使推件力均匀分布,推件要均匀分布,长度一致。因此,在轴盖冲模中选用了三根长度一致的推件(即圆柱销)均匀分布在圆周上,推出制件。5、顶杆的确定顶杆的作用是在冲裁完毕后,将滞留在凸凹模的制件顶出的机构。在轴盖冲模中采用4的顶杆,因顶力很小,4的杆足够强度。6、模柄的确定:中、小型冲模通过横柄将上模固定在压力机的滑块上,模柄的结构形式较多,主要有:旋入式;压入式;凸缘式;浮动式。本模具采用凸缘式模柄。7、固定板的设计固定板用于中、小型凸模或凹模固定在模座上,按外形分为圆形和矩形两种,其平面轮廓尺寸除应保证凸、凹模安装孔外,还应考虑螺钉和销钉孔的定位,厚度一般取凹模厚度的60%80%。固定板孔与凸、凹模采用过渡配合(H7/m6)。压装后端面磨平,以保证冲模垂直度。8、垫板的设计与标准:垫板主要用于直接承受和扩散凸、凹模传来的压力,以降低模座所收的单位压力,防止模座被局部压陷,影响模具正常工作。模具是否用垫板,根据模座承受压力大来确定,凸(凹)模支承端面对模座的单位压力为: = PA 式中: P 冲裁力A 凸(凹模)支承端面面积小于等于模座许用应力则应在凸(凹)模与模座间加经淬硬磨平的垫板,垫板厚度一般取6 12mm,外形尺寸按固定板形状决定。(三)模架的选择根据主要零件的结构、外形尺寸及卸料装置的尺寸。模架选用适用中等精度,中小尺寸冲压件的后侧导柱模架从右向左送、操作方便。上模座:L/mm B/mmH/mm=12512535下模座:L/mmB/mmH/mm=12512540导柱:d/mmL/mm=22130导套:d/mmL/mmD/mm=226033垫板厚度取:8mm落料凹模的厚度已定为:40mm卸料板厚度取:8mm弹簧外露高度:(45.5-13.5)=32mm模具的闭合高度:35+40+8+8+40+32+1=164mm所以 H闭=164mm模具闭合高度满足Hmin+10H闭Hmax-5,故认为合适。六、模具的动作过程(如图2-6) 工作时,将毛皮条料放入弹性卸料板3上,有挡料销定位,上模下行,冲孔凸模6进行冲孔,同时落料凹模10完成落料动作,上模继续下行时,翻边成型模11与凸凹模14进行翻边。滑块运行到下死点,对工件进行整修。冲压工序完毕后开模,如工件滞留在下模,有橡胶将工件顶出,如工件滞留在下模,有顶出器顶出。七、模具主要零件结构设计的分析(一)、 冲孔凸模设计:根据冲压件的的形状和尺寸,冲孔凸模采用整体式的直通式(主要由于模具安装的空间限制而采用直通式),截面形状是圆形,刃口形状为平刃。凸模材料:Cr12MoV由于冲件形状已决定了横向尺寸和形状,所以在一般情况下,凸模的强度是足够的,但是,对于特制细长的凸模和板料厚度大的情况,才需要进行压应力和弯曲应力的校核,检查其危险面尺寸和自由长度是否满足强度要求。压应力校核公式:圆形凸模 4t/ 非圆形凸模 F/ 弯曲应力的校核:圆形凸模非圆形凸模无导向装置 95/ 425带导向装置 270/ 1200 式中:dmin 凸模最小直径 (mm)T 材料厚度 (mm)I 材料抗剪强度 (MPa)Amin 凸模最窄处的截面积 (mm2)F 冲裁力T 凸模材料许用压力 (MPa) D 凸圆最小直径 (mm)I 凸模最小截同的惯性矩 (mm4)冲孔凸模是直通式最小直径是19.3mm,进行冲裁的板料厚度为1mm 。既不属于细长杆,又不属于板料厚的零件,所以凸模的强度足够不需进行压应力和弯曲应力的校核。冲孔凸模的固定方式,采用螺钉吊装固定。直通式凸模为方便固定板型孔的加工,则采用M7/h6的基轴制过渡配合。(二)、落料凹模的设计 凹模是在冲压过程中,与凸模配合直接对冲制件进行分离或成型的工作零件。凹模的材料选取:Cr12MoVu 刃口形式 选用刃口,根据冲裁件的形状、厚度、尺寸精度以及模具的具体结构决定,采用刃口形式为直通式。u 凹模外形尺寸 凹模的外形尺寸是指其平面尺寸和厚度,凹模的外形一般为圆形和矩形两种。因冲裁件属于中小型工件,故采用圆形凹模。由于冲裁时凹模受力状态比较复杂,目前还不能用理论方法精确的计算,必须中和考虑各方面因素,在实际生产中首先采用经验公式确定.凹模的高度和厚度通过经验公式计算。凹模高度计算公式: h = kd= 0.3543.55= 15.24(mm)凹模厚度计算公式: c = (1.5 2)h= (1.5 2)15.24= 22.86 30.48 (mm)式中: h 凹模高度(mm)(15mm)k 系数d 最大直径(mm)c 凹模厚度(mm),( 30 40mm)由于结构需要选取凹模高度h = 40 mm,凹模厚度c = 37.5 mm。u 落料凹模的固定方法 采用上模固定板固定,与固定板采用H7/m6过渡配合,上端带台肩,以防拉下。(三)凸、凹模的设计复合模中同时具有落料凹模和冲孔凹模的作用的工件零件。凸凹模工作面的内外缘均为刃口,内外缘之间的壁厚取决于冲裁件的尺寸。因此从强度方法考虑,其壁厚应受最小值限制。凸、凹模壁厚于模具结构有关:当模具采用正状结构时,内孔不积存废料,胀力小,最小壁厚可以小些;当模具为倒装结构时,若内孔为直通形刃口形式,且采用下漏料方式,则内孔积存废料,胀力大,故最小壁厚应大些。不积聚废料的凸凹模的最小壁厚:1)、对黑色金属硬材料约为工件料厚的1.5倍,但不小于0.7 mm。2)、对有色金属和软材料的工件约等于工件料厚,但不小于0.5 mm。积聚废料凸凹模的最小壁厚:目前一般按经验数据确定,倒装复合模的凸凹模最小壁厚列于表2-7。表2-7 倒装复合模的冲裁凸凹模的最小壁厚料厚t(mm)0.7最小壁厚a(mm)2.0料厚t(mm)1.2最小壁厚a(mm)3.2轴盖冲模采用倒装复合模,冲裁凸凹模内孔有废料积聚,经查表,最小壁厚为2.7。由工件图可知,凸凹模的壁厚为10mm大于最小壁厚,满足要求。(如图2-5)上部的成型凸凹模属于不积聚废料的凸凹模。故最小壁厚约等于工件料厚。即:最小壁厚为1.0mm,凸凹模的壁厚为2.3mm大于最小壁厚,满足要求。(如图2-5)(四)翻边成型模的设计翻边成型模是凸凹模的一种,故设计与凸凹模相似。属于不积聚废料的凸凹模,故最小壁厚约等于1.0mm,成型模的壁厚为5.0mm大于最小壁厚,满足要求。(如图2-4)固定方法:采用与落料凹模H7/K6的过渡配合,在与上模固定板配合。八、模具图样设计(一)、绘制模具总图(见附图)(二)、绘制非标零件图(见附图)1、 备料清单标准件序号零件名称实际尺寸数量材料1上模座1251251HT2002下模座1251251HT2003 圆柱头内 六角螺钉M1022345M8504M84044卸料螺钉8506455圆柱销870345835361836挡料销43457导柱221302208导套2260332209模柄40601Q23510弹簧D2055665Mn11硬橡胶圈4018.51硬橡胶非标准件序号零件名称实际尺寸数量材料硬度(淬火)1弹压卸料板581452冲孔凸模25451Cr12MoVHRC58-603垫板13013013145HRC43-484上模固定板135135281Q2355打杆2095145 HRC43-486落料凹模70451Cr12MoVHRC60-627成型模55451Cr12MoVHRC58-628顶出器3530145HRC43-489推板408145 HRC43-4810凸凹模60501Cr12MoVHRC58-6211压料器2010145HRC43-4812卸料板458145HRC43-4813顶杆10504Cr6WVHRC50-5614下模固定板90201Q235工艺过程卡轴盖毛坯尺寸13513528mm数量1零件名称上模固定板序号4材料Q235 工序号工序名称工序内容设备1备料按尺寸13513528mm 锯床2铣削铣削六面达到12512523mm互为直角铣床3磨削六面上下两平面留0.02的磨削量,其余达到设计要求。磨床4钳工划线划出各孔位置线,型孔轮廓线。5加工型孔钻孔30后再扩孔,进行镗孔后铣台阶孔,达到设计要求。铣床6钻削加工螺纹底孔 ,销孔2-8与垫板、上模座销孔配钻,并进行较孔和攻丝钻床7磨削磨削上下平面,保证尺寸22及其平行度0.01的要求。磨床8检验工艺过程卡轴盖毛坯尺寸标准件数量1零件名称下模座序号1材料HT200工序号工序名称工序内容设备1备料标准件2钳工划线划出各孔位置,型孔轮廓线。3钻削按位置加工螺钉孔8、销孔8与下模固定板配钻,以保证其精度达到设计要求。钻床4铣削铣削台阶孔及内型腔,达到设计要求铣床5钳工精修全面达到设计要求。6检验工艺过程卡轴盖毛坯尺寸25*95mm数量1零件名称弹性卸料板序号3材料45 工序号工序名称工序内容设备1备料13013013 mm2铣削铣削六面达到1251259mm,互为直角铣床3磨削六面上下平面留0.1的精磨量,其余达设计要求磨床4钳工划线划出个孔位置,型孔轮廓线5钻削加工螺纹底孔进行配钻,定位销孔3-4,并进行攻丝,达到设计要求。钻床6加工中间型孔用30的钻头进行钻削,在进行镗孔,保证其设计精度。铣床7磨削磨削上下平面,保证尺寸8mm及平行度0.01。磨床8钳工精修9检验工艺过程卡轴盖毛坯尺寸2545mm数量1零件名称冲孔凸模序号6材料Cr12MoV工序号工序名称工序内容设备1下料按尺寸2545mm切断锯床2车内外圆按图纸车削全形,单边留0.2mm的精加工余量车床3钳工划线加工安装孔划出各孔位置线4加工螺钉孔,销钉孔按图纸位置加工螺钉孔和销钉孔钻床5热处理按热处理工艺进行,硬度HRC 58-626磨外圆磨外圆、两端面,留研磨量0.01mm 磨床7研磨研磨外圆达到要求,保证其外圆同轴度0.028钳工精修全面达到设计要求工艺过程卡轴盖毛坯尺寸标准件数量1零件名称上模座序号7材料HT200工序号工序名称工序内容设备1备料标准件2钳工划线划出各孔位置线,及型腔轮廓线3钻削加工钻削M10螺纹底孔和孔4-9、3-3.5。并进行铰孔和攻丝,达到设计要求。钻床4铣削铣削内型腔85、40及台阶孔14达到设计要求。铣床5钻削钻削销孔2-8,使之与垫板、上模固定板的销孔进行配钻,保证其设计精度。钻床6检验工艺过程卡轴盖毛坯尺寸130*130*13mm数量1零件名称垫板序号8材料45工序号工序名称工序内容设备1备料按尺寸130*130*13mm备料2铣削铣外轮廓,留磨削量0.20mm,保证上下平面的平行度铣床3钳工划线划出各孔位置线4钻削按位置进行钻削4-M6螺纹底孔和2-8的孔,达到要求;销孔2-8与上模固定板、上模座的销孔进行配钻,以保证其精度。销孔2-4与冲孔凸模得销孔进行配钻,以保证其精度。钻床5热处理按热处理工艺进行,硬度HBC43-486磨削磨外轮廓,满足上下平面的平行度0.01的要求,以达到设计要求磨床7检验工艺过程卡轴盖毛坯尺寸7045数量1零件名称落料凹模序号10材料Cr12MoV工序号工序名称工序内容设备1备料按尺寸7045备料2热处理按热处理工艺进行, HBC60-623车削车削外形,钻20的孔后用40的钻头进行扩孔,再进行镗孔。内外形均留0.5mm的磨削量车床4铣削铣削圆槽至图上尺寸51.5铣床5磨削磨内、外轮廓及两端面达到设计要求,保证其同轴度0.02磨床6钳工全面达到设计要求7检验工艺过程卡轴盖毛坯尺寸165*130*20mm数量1零件名称成型模序号11材料Cr12MoV工序号工序名称工序内容设备1备料按尺寸5545mm备料2车削车削全形,刃口部分留0.5的磨削量,其余达到设计要求。车床3热处理按热处理工艺进行,HRC62-644磨削进行磨削刃口,保证其设计要求磨床5钳工精修全面达到设计要求6检验工艺过程卡轴盖毛坯尺寸3530mm数量1零件名称顶出器序号12材料45工序号工序名称工序内容设备1备料按尺寸3530mm备料2车削车削外形,并钻孔15再进行镗孔,留磨削量0.20mm.车床3热处理按热处理工艺进行,淬火硬度HRC58-624磨削磨削达到设计尺寸,保证其同轴度0.02。磨床5钳工精修全面达到设计要求6检验工艺过程卡轴盖毛坯尺寸408mm数量1零件名称推板序号13材料45工序号工序名称工序内容设备1备料按尺寸408mm备料2车削车削外圆达到尺寸要求。车床3铣削铣削上下平面,留磨削量0.30mm.铣床4热处理按热处理工艺进行,淬火硬度HRC43-485磨削磨上下面达到尺寸3mm保证上下面的平行度0.02磨床6钳工精修全面达到设计要求7检验工艺过程卡轴盖毛坯尺寸2095mm数量1零件名称打杆序号14材料45工序号工序名称工序内容设备1备料按尺寸2095mm备料2车削车削外形,并倒角245,留磨削量0.20mm。车床3热处理按热处理工艺进行,淬火硬度HRC58-624磨削磨削外形,保证设计要求。磨床5钳工精修全面达到设计要求6检验工艺过程卡轴盖毛坯尺寸6050mm数量1零件名称凸凹模序号24材料Cr12MoV工序号工序名称工序内容设备1备料按尺寸6050mm备料2车削车削外形,钻10mm的孔后进行镗孔加工,按图上设计尺寸均留0.3mm的磨削量车床3钻削钻孔4-4的孔钻床4铣削按图纸铣削上型腔,留磨削量0.2mm. 铣床5热处理按热处理工艺进行,淬火硬度HRC62-64。磨床6磨削磨削内外形,及端面。保证上下面的平行度的要求钻床7钳工精修全面达到设计要求8检验工艺过程卡轴盖毛坯尺寸4010mm数量1零件名称压料器序号25材料45工序号工序名称工序内容设备1下料按尺寸4010mm切断锯床2车削车外圆37 mm,达到要求;钻孔15,再进行镗孔达设计要求。车床3钳工划线按图上位置进行划线 4钻削M4的加工钻削M4的底孔,并进行攻丝钻床5铣削铣上下平面,保证平面平行度.,留磨削量0.2mm,达到设计要求。铣床6热处理按热处理工艺进行,淬火后HRC58-627磨削磨削上下平面,保证平行度0.02mm.磨床8检验工艺过程卡轴盖毛坯尺寸458mm数量1零件名称卸料板序号26材料45工序号工序名称工序内容设备1下料按尺寸458mm切断锯床2车削车削外形,在车床上钻孔15,再进行镗孔,达到设计要求。车床3铣削铣削上下平面,保证其平行度,留磨削量0.20mm.铣床4磨削磨削上下平面,保证其平行度0.02mm.达到设计要求。磨床5检验工艺过程卡轴盖毛坯尺寸9020mm数量1零件名称下模固定板序号30材料Q235工序号工序名称工序内容设备1备料按尺寸9020mm备料2车削车削外形达到尺寸在车床上钻孔20,在进行镗孔,内型尺寸达设计要求。车床3钳工划线划出各孔的位置4孔的加工钻孔M8的底孔,进行攻丝;销孔2-8与下模座的销孔进行配钻。达到设计要求。钻床5钳工精修6检验工艺过程卡轴盖毛坯尺寸1050mm数量4零件名称顶杆序号27材料Cr6WV工序号工序名称工序内容设备1备料按尺寸1050mm备料2车削车削外形达到尺寸,并进行外螺纹加工达设计要求。车床3热处理按热处理工艺进行,淬火后HRC56-604磨削磨削其外形达到设计要求。磨床5钳工精修6检验七、模具装配与调试(一)、对于导柱复合模装配,应以凸凹模作为装配基准件。先将装有凸凹模的固定板用螺栓和销钉安装、固定在指定的模座的相应位置上;再按凸凹模的内形装配、调整冲孔凸模固定板的相对位置,使冲孔凸、凹模间的间隙趋于均匀,用螺钉固定;然后再以凸凹模的外形为基准,装配、调整落料凹模相对凸凹模的位置,调整间隙,用螺钉固定。再安装其它的零件。安装顺序:1、组件装配模架的组装,模柄的装入,凸模及凸凹模在固定板上的组装2、总装配先装上模,再以上模为基准装下模3、调整凸凹模的间隙4、安装其它辅助零件5、检查、试件(二)、模具装配过程见下页表装配过程:序号工序工艺说明1、检查零件及组件检查冲模各零件及组件是否符合图样要求,并检查凸凹模间隙的均匀程度,各辅助零件是否配齐2、装配上模1、先将模架组装好,即推板13放入上模座7内型腔,打杆14与模柄15的组合体放入上模座里并用螺钉16固定。2、把落料凹模10、成型模11装入上模固定板4中,再将其磨平。将顶出器12装入与成型模11相配。冲孔凸模6有螺钉18固定在垫板上,使其与顶出器12配合间隙均匀,并保证其垂直度,打入销钉17。3、垫板8、上模固定板4和上模座7用内六角螺钉20固定连接,用凸凹模24对冲孔凸模6和落料凹模10、成型模11初找正其位置,进行调整,紧固螺钉20。4、按上模固定板4上的螺纹孔配作上模各零件的螺纹过孔。5、拆开后分别进行扩孔、铰孔,然后再用螺钉连接起来,用压板压紧,钻销孔,打入销钉。3、装配下模1、在下模座1的内型腔放入橡胶28和卸料板26,凸凹模24装入下模固定板30,保证其同轴度。压料器25、顶杆27装在凸凹模24上。2、将其凸凹模24、下模固定板30、压料器25、顶杆27的组合体与下模座1、橡胶28、卸料板26的组合体安装,用螺钉29固定。3、合上冲模,使凸凹模24的间隙均匀,进行调整。紧固螺钉,用压板压紧,钻销孔,打入销钉23。4、安装弹压卸料板3,卸料螺钉22,弹簧21,进行调整使弹性卸料板与下模座平行。5、安装其它零件。 4、试冲与调整1、切纸试冲2、装机试冲参 考 文 献1、模具实用技术丛书编委会 编 机械工业出版社99.52、周开华幺廷先齐翔宪 编 国防工业出版社93.23、郑可锽主编 宇航出版社90.54、许发樾 主编 机械工业出版社03.2 5、张先虎 主编 机械工业出版社99.96、机械工业出版社编写组 机械工业出版社2000.77、徐生陈再枝 编 机械工业出版社01.108、机械电子工业部技术工人教育研究中心编 机械工业出版社 96.19、中国机械工业教育协会 组编 机械工业出版社 03.110、李云程 主编 机械工业出版社 04.6致谢词通过这次的模具设计,深刻感受到理论与实践相结合的重要性,使我对模具有了更深的了解,尤其是对冷冲模的发展、分类、结构组成及工作原理。实际制作模具更是一项艰难的工作,很多工作都是靠经验的,也学到了书本上是学不到的。这段日子里,我觉得自己过的很充实。学到了很多知识,不仅掌握了许多新的知识,并且对专业知识加深了巩固,这一切都离不开老师们的指导,经常询问我们毕业设计的进展情况,以及有何困难,不断指导,在此我向老师致以最真诚的感谢!通过毕业设计虽然使我得到了很大的收获,但是对于我初学者来说,经过查阅了大部分的资料,对于真正的模具设计来说是有限的,是欠缺的。因此,在我们的设计图纸和说明书中,存在着很多不足之处,希望老师在审阅时,给予指证,帮助我们更好的进步在此次毕业设计的过程中,张铁城教授、刘介臣技师、胡文泉老师给了我很大的帮助,提出了许多中肯的意见和帮助,在此表示衷心的感谢!英文资料.SawingSawing is the parting of material by using metal disks, blades, bands, or abrasive disks as the cutting tools. Sawing a piece from stock for further machining is called cutoff sawing, while shaping of forming a piece is referred to as contour sawing.Machine sawing of metal is performed by five types of saws or processes: hacksawing, babd sawing, cold sawing, friction sawing, and abrasive sawing.Hacksaws are used principally as cutoff tools. The toothed blade, held in tension, is reciprocated across the workpiece. A vise holds the stock in position. The blade is fed into the work by gravity or spring. Sometimes a mechanical or hydraulic feed is used. Automatic machines, handling bar-length stock, are used for continuous production.Band saws cut rapidly and are suited for either cutoff or contour sawing. The plane in which the blade operates classifies the machine as being either vertical or horizontal. Band saws are basically a flexible endless band of steel running over pulleys or wheels. The band has teeth on one side and is operated under tension. Guides keep it running true. The frame of the horizontal type is pivoted to allow positioning of the workpiece in the vise. Horizontal machines are used for either straight or angular cuts. A table that supports the workpiece and the wide throat between the upright portions of the blade makes the vertical band saw ideal for contour work. Band saws operating at high speed are frequently used as friction saws.Cold sawing is principally a cutoff operation. The blade is a circular disk with cutting teeth on its periphery. Blades range in size from a few inches to several feet in diameter. The cutting teeth may be cut into the periphery of the disk or they may be inserts of a harder material. The blade moves into the stock with a positive feed. Stock is positioned manually in some cold-sawing machines, while other models are equipped for automatic cycle sawing.Friction sawing is a rapid process used to cut steel as well as certain plastics. This process is not satisfactory for cast iron and nonferrous metals. Cutting is done as the high-speed blade wipes the metal from the kerf after softening it with frictional heat. Circular alloy-steel blades perform cutoff work, thile frictional band saws do both cutoff and contour sawing. Circular blades are frequently cooled by water or air. Circular blades are adcanced into the work, thile thick work-pieces require power-table feed then friction-cut on a band saw.Abrasive sawing is a cutoff process using thin rubber or bakelite bonded abrasive disks. In addition to steel, other materials such as nonferrous metals, ceramics, glass, certain plastics, and hard rubber are cut by this method. Cutting is done by the abrasive action of the grit in the disk.Abrasive disks are operated either wet or dry. For heavy cutting a cooling agent is generally used. The workpiece is firmly held while the wheel traverses through it. Machines are made in manually operated and automatic models.DrillingHoles are one of the most common features in products manufactured today. There-fore, drilling and other related processes and tools are extremely important. Holes as small as 0.005in.may be drilled using special techniques. On the other hand , holes larger than 2 to 2in. in diameter are seldom drilled, because other processes and techniques are less expensive.The twist drill (shown in Fig.12-3) is the most common type of drill. The shank of the drill is held by the machine tool, which in turn imparts an rotary motion. This shank of the drill is held by the machine tool. Which in turn imparts a rotary motion. This shank may be straight or tapered. The body of the drill is typically made up of two spiral grooves known as flutes, which are defined by a helix angle that is generally about 30but can vary depending on the material properties of the workpiece. The point of the drill (see Fig.12-3) generally form a 118angle and includes a 10 clearance angle and chisel edge. The chisel edge is flat with a web thickness of approximately 0.015 * drill diameter. This edge can cause problems in hole location owing to its ability to “walk” on a surface before engaging the workpiece. In the case of brittle materials, drill point angles of less than 118 are used, while ductile materials use larger points angles and smaller clearance angles.Complex hole configurations may often be called for; these include multiple diameters, chamfers, countersinks, and combinations of these, as illustrated in Fig.12-4. In each of these cases in is possible to make special combination drills that can produce the configurations shown in a single operation. Although expensive, they can be economically justified for sufficient volume.The flat chisel edge, which can “walk” on the surface of the workpiece, and the long , slender shaft and body of the twist drill, which can deflect, make it difficult to machine holes to tight tolerances. A combination center drill and countersink can be used to accurately start a hole, owing to its small web thickness and its tendency to deflect only very small amounts (because of a relatively large diameter-to-length ratio) . Truing of the hole to make it straight is accomplished by boring. Reaming the hole provides a better finish as well as more accurate sizing.The feed rate of a drill is normally proportional to its diameter, because it depends on the volume of chips the flutes can handle. However the feed is independent of the cutting speed, which is a function of the tool-work combination. A rule of thumb would give a feed rate as approximately d/65,so that a 3/4-in.-diameter drill would have a feed rate of about 0.012 in. /rev. Although the hole wall tends to support the drill when the hole depth exceeds three times the drill diameter, there is a tendency for buckling to occur and the feed rate should be reduced.Most drills are made from high speed steel because of its relatively low cost and ease of manufacture. Some types of carbide drills are now available commercially. The demands of numerically controlled machine tools have led to the development of drills that will produce pore precise holes and that will originate a hole in line with the centerline of the drill-press spindle. Drills that have heavier webs, less stickout, double margins, and are ground with a spiral point help meet these new demands.ReamingReaming is a machining process for enlarging, smoothing and/ or accurately sizing existing holes by means of means of multiedge fluted cutting tools (reamers) . As the reamers and / or workpiece is rotated and advanced relative to each other, chips are produced to remove relatively small amounts of material from the hole wall. Reaming may be performed on the same type of machines used for drilling.Accuracy of the hole and quality of finish produced by reaming depends primarily upon the condition of the starting bole, rigidity of the machine and fixture, correct speeds and feeds, a suitable and properly applied cutting fluid, and precise resharpening of dull tools.Since stock removal is small and must be uniform in reaming , the starting holes (drilled or otherwise produced) must have relatively good roundness, straightness, and finish. Reamers tend to follow the existing centerline of the hole being reamed, and in limited instances it may be necessary to bore the holes prior to reaming to maintain required tolerances. With the proper conditions and operating parameters, reaming can produce close tolerances and smooth finishes.ReamersAreamer is a rotary cutting tool, generally of cylindrical or conical shape, intended for enlarging and finishing holes to accurate dimensions. It is usually equipped with two or more peripheral channels or flutes, either parallel to its axis or in a right or left-hand helix as required. Those with helical flutes provide smooth shear cutting, are less subject to chatter, and produce a better finish. The flutes form cutting teeth and provide channels for removing the chips.Kinds of ReamersReamers are made in many different forms, including solid and inserted-blade types, adjustable and nonadjustable; they are available for either manual operation (hand reamers) or for machine use (chucking reamers). Materials from which cutting elements of most production reamers are made include high-speed steeland cemented carbides. of most production reamers are made include high-speed steel and cemented carbides.Carbide reamers These tools are being used increasingly because of their linger life, improved accuracy, and resistance.Bore reamers These tools combine boring and reaming in a single operation to minimize problems with respect to hole size, straightness, and finish. Single-point bore reamers, for use in applications for which guide bushings can be used, have a single-point cutting edge on the end of the tool, followed by a reaming section. Multipoint bore reamers are available for applications for applications for which bushings cannot be used.Coolant-fed reamers These tools, having means (usually internal passages) for directing coolant to the cutting edges, offer advantages for some applications, particularly when reaming blind holes. In such applications, reduced friction and temperatures at the reamer /workpiece interface decrease wear and lengthen tool life. In some cases, feeds and speeds can be increased and improved accuracies and smoother finishes obtained. The initial cost of coolant-fed reamers is higher , but increased productivity and improved quality often make them economically desirable.Reamer Holders/ DriversReamers are commonly held and driven by three-jaw chucks, straight sleeves and setscrews, and, for taper shanks, sleeves or sockets. Reamers with adapters for quick-change chucks are used for production applications.When reamers must guide themselves into previously made holes, they require gloating holders to maintain alignment. There are several types of floating holders. Some permit angular float, others permit a parallel (axial) float, and still others permit both angular and parallel float.Floating holders have some limitations. If the reamer axis is vertical, floating reamer drives often do a good job of correcting for small amounts of misalignment. When the workpieces rotate, however, as is the case on screw machines, lathes, and some other machine tools, floating holders are sometimes inadequate. This is because relatively large amounts of misalignment are often found on these machines and because the weight of the reamer and holder tend to push the tool into an off-center position.Some full floating holders, which compensate for both angular and parallel misalignment, are equipped with springs or other components to counterbalance the mass of the holder. A floating holder cannot generally operate both vertically and horizontally and still correct for both angular and parallel misalignment. Application details (vertical or horizontal operation and rotating or stationary tool) should be specified when a floating holder is ordered.Workholding for ReamingJig design and the use of bushings for reaming are essentially the same as for drilling. Major functions of the jigs and bushings are accurate locating, supporting, and securing of the workpieces, and precise guiding of the tools. A difference for reaming is that closer tolerances are generally required on both the jigs and bushings.Operating Parameters for ReamingFactors that must be established for efficient and economical reaming include the proper cutting speed, feed rate, and cutting fluid to be used Other important considerations are resharpening the reamers and troubleshooting the operations. 译文如下 锯削锯削是利用金属圆锯、锯条、带锯或砂轮作为切削工具将材料分开。从原料上锯下一块供进一步加工称为切断锯,而将这块毛坯成形或成型称为仿形锯。机械金属锯削有5种类型的锯或工艺完成;弓锯、带锯、冷锯、摩擦聚合砂轮锯。弓锯条主要用作切割工具。带齿的锯条被拉紧,来回穿过工件。一只台钳
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。