




已阅读5页,还剩87页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第17章 分式一、概括:形如(A、B是整式,且B中含有字母,B0)的式子,叫做分式.其中A叫做分式的分子,B叫做分式的分母.整式和分式统称有理式, 即有理式整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1); (2); (3); (4).例2 当取什么值时,下列分式有意义?(1); (2).四、练习:P5习题17.1第3题(1)(3)1判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义? (1) (2) (3)3. 当x为何值时,分式的值为0?(1) (2) (3) 17.1.2 分式的基本性质1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是: ( 其中M是不等于零的整式)。与分数类似,根据分式的基本性质,可以对分式进行约分和通分.2、例3约分(1);(2)4、例4通分(1),;(2),; (3),17.2 分式的运算17.2.1 分式的乘除法一、复习与情境导入1、(1) :什么叫做分式的约分?约分的根据是什么?(2):下列各式是否正确?为什么?2、尝试探究:计算:(1);(2).二、例题:例1计算:(1);(2).例2计算:.四、思考怎样进行分式的乘方呢?试计算:17.2.2 分式的加减法一、实践与探索1、回忆:同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。2、试一试:计算:(1);(2)3、总结一下怎样进行分式的加减法?概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二、例题1、例3计算:2、例4 计算:.17.3 可化为一元一次方程的分式方程(1)一、问题情境导入轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.二、例题:1、例1解方程:.2、例2解方程:.17.3 可化为一元一次方程的分式方程(2)1、复习练习解下列方程:(1) (2)例3某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?17.4.1零指数幂与负整指数幂一、复习并问题导入问题1 在13.1中介绍同底数幂的除法公式时,有一个附加条件:mn,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m = n或mn时,情况怎样呢?这就是说:任何不等于零的数的零次幂都等于1.这就是说,任何不等于零的数的n (n为正整数)次幂,等于这个数的n次幂的倒数.四、例题:1、例1计算:(1)3-2; (2)2、例2 用小数表示下列各数:(1)10-4;(2)2.110-5.17.4.2科学记数法教学目标:1、使学生掌握不等于零的零次幂的意义。2、使学生掌握(a0,n是正整数)并会运用它进行计算。3、通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。教学重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数。教学难点:理解和应用整数指数幂的性质。教学过程:一、复习并问题导入 ;= ;= ,= 二、探索:科学记数法在2.12中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a10n的形式,其中n是正整数,1a10.例如,864000可以写成8.64105.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a10-n的形式,其中n是正整数,1a10.例如,上面例2(2)中的0.000021可以表示成2.110-5.例3 一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.分析在七年级上册第66页的阅读材料中,我们知道:1纳米米.由10-9可知,1纳米10-9米.所以35纳米3510-9米.而3510-9(3.510)10-9 35101(9)3.510-8,所以这个纳米粒子的直径为3.510-8米.第18章函数及其图象18、1变量与函数第一课时 变量与函数教学目标 使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义,能应用方程思想列出实例中的等量关系。教学过程一、由下列问题导入新课 问题l、右图(一)是某日的气温的变化图 看图回答:1这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗? 2这一天中,最高气温是多少?最低气温是多少? 3这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 从图中我们可以看出,随着时间t(时)的变化,相应的气温T()也随之变化。 问题2 一辆汽车以30千米时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢? 问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系问题4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的下面是一些对应的数:波长l(m)30050060010001500频率f(kHz)1000600500300200 同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课 1常量和变量 在上述两个问题中有几个量?分别指出两个问题中的各个量? 第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化 第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量路程随着时间的变化而变化。 第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化 第4个问题中的l与频率f是变量而它们的积等于300000,是常量 常量:在某一变化过程中始终保持不变的量,称为常量 变量:在某一变化过程中可以取不同数值的量叫做变量 2函数的概念 上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数) 在上述的2个问题中,s30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因变量(s是t的函数)。 在上述的第3个问题中,V2R2,给出变量R的一个值,就可以得到变量V惟一值与之对应,R是变量,V因变量(V是R的函数) 在上述的第4个问题中,lf300000,即l,给出一个f的值,就可以得到变量l惟一值与之对应,f是自变量,l因变量(l是f的函数)。函数的概念:如果在个变化过程中;有两个变量,假设X与Y,对于X的每一个值,Y都有惟一的值与它对应,那么就说X是自变量,Y是因变量,此时也称 Y是X的函数 要引导学生在以下几个方面加对于函数概念的理解 变化过程中有两个变量,不研究多个变量;对于X的每一个值,Y都有唯一的值与它对应,如果Y有两个值与它对应,那么Y就不是X的函数。例如y2x 3表示函数的方法 (1)解析法,如问题2、问题3、问题4中的s30t、V=2 R3、l,这些表达式称为函数的关系式, (2)列表法,如问题4中的波长与频率关系表;(3)图象法,如问题l中的气温与时间的曲线图三、例题讲解例1用总长60m的篱笆围成矩形场地,求矩形面积S(m2)与边l(m)之间的关系式,并指出式中的常量与变量,自变量与函数。例2下列关系式中,哪些式中的y是x的函数?为什么?(1)y3x2 (2)y2x (3)y3x2x5四、课堂练习课本第26页练习的第1、2,3题, 五、课堂小结关于函数的定义的理解应注意两个方面,其一是变化过程中有且只有两个变量,其二是对于其中一个变量的每一个值,另一个变量都有惟一的值与它对应对于实际问题,同学们应该能够根据题意写出两个变量的关系,即列出函数关系式。六、作业 课本第28页习题18.1第1、2题。七、教后记第二课时 变量与函数教学目标使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。教学过程 一、复习1填写如右图(一)所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y关于x的函数关系式。2如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式 3如图(三),等腰直角三角形ABC边长与正方形MNPQ的边长均为l0cm,AC与MN在同一直线上,开始时A点与M点重合,让ABC向右运动,最后A点与N点重合。试写出重叠部分面积y与长度x之间的函数关系式二、求函数自变量的取值范围 1实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。 从右边的分析可以看出,第n排的 排数 座位数 座位 l 18一方面可以用18(n1)表 21813182 示,另一方面可以用m表示,所以 m18(n1) n 18(n1)n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1n30的整数或0n0时,y随x的增大而增大,这时函数的图象从左到右上升; 2当k0?四、课堂练习 P45页练习l、2五、小结:一次函数ykxb有哪些性质?六、作业 P47页习题18.3 8、9(1)七、教后记:第二课时 一次函数的性质(二)教学目标 1使学生理解待定系数法。2.能用待定系数法术一次函数的解析式教学过程一、范例 已知弹簧的长度g(厘米)在一定的限度内是所挂重物质量x(千克)的一次函 数现己测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米求这个一次函数的关系式 分析:已知y与x的函数关系式是一次函数,则关系式必是ykxb的形式所以要求的就是系数k和b的值,而两个已知条件就是x和y的两组对应值,也就是当x6时,y6;当x4时,y7.2可以分别将它们代入函数式,进而求得k和b的值 提问: 1确定一次函数的表达式需要几个条件? 2确定正比例函数的表达式需要几个条件?举例说明。 待定系数法:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程式方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。二、做一做 已知一次函数ykxb的图象经过点(1,1)和点(1,5),求当x5时,函数y的值。 提问:1这里的已知条件是否给出了x和y的对应值? 2题意并没有要求写出函数关系式,解题中是否应该求出?该如何人手。 让学生认真思考以上问题并回答。三、课堂练习:P46页练习l、2,阅读P48页内容。四、小结:1什么叫做待定系数法? 2用待定系数法求正比例函数表达式需要几个条件?3用待定系数法确定一次函数表达式需要几个条件?五、作业 :P47页习题183 8、9、10。六、教后记:七、教学后记184 反比例函数1反比例函数教学目标 1经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。2理解反比例函数的概念,会列出实际问题的反比例函数关系式。教学过程一、复习 1什么是正比例函数? 2复习小学已学过的反比例关系,例如 (1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数) (2)当矩形面积一定时,长a和宽b成反比例,即abs(s是常数) 3创设问题情境 问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。 分析:和其他实际问题一样,要探索两个变量之间的关系,应先选用适当的符 号表示变量,再根据题意列出相应的函数关系式。 设小华乘坐交通工具的速度是v千米时,从家里到镇上的时间是t小时,因为在匀速运动中,时间路程速度,所以t_(1) 问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系。 根据矩形面积可知xy24即y_(2) 提问: 1.以上(1)和(2)这两个函数有什么共同点? 让学生观察、分析后回答:这两个函数都具有y= (k是常数)的形式)。2.自变量的取值范围有什么限制?二、反比例函数的意义 1.反比例函数定义:形如y(k是常数,k0)的函数叫做反比例函数。 说明:反比例函数与正比例函数定义相比较,本质上,正比例函数y=kx,即k,k是常数,且k0;反比例函数y,则xyk,k是常数,且k0。可利用定义判断两个量x和y满足哪一种比例关系,2,下列函数中,哪些是反比例函数(x为自变量)?说出反比例函数的比例系数:y xyx5y分析:函数y (k是常数,k0)叫做反比例函数。若一个函数可写成y (k是常数,k0)的形式,则它是反比例函数;若y与x成反比例,则y可以写成y(k0,k是常数),一个函数是否是反函数反比例函数,可以据此确定。三、课堂练习 1P50页练习1。 2补充:当m为何值时,函数y是反比例函数,并求出其函数的解析式。四、小结:形如y(k是常数,k0)的函数叫做反比例函数。在实际问题中,要探求两个变量之间的关系,应先选用适当的符号表示变量,再根据题意列出相应的函数关系式对反比例函数概念的理解,可与正比例函数进行比较,从本质上加以区别。五、作业 P52页习题18、41六、教后记:2、反比例函数的图象和性质教学目标 1、使学生会画出反比例函数的图象。 2、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。教学过程一、复习1什么是反比例函数? 2反比例函数定义要注意什么?(1)常数k称为比例系数,k是非零常数;(2)自变量x次数是-1;x与y之积为一非零常数;(3)不含其他项。二、提出问题,解决问题问题1:对于一次函数ykxb(b0),我们是如何研究的?问题2:对于反比例函数的研究,能否象一次函数那样进行研究呢?问题3:上节课我们已经学习了反比例函数的定义,接下去将要研究什么问题?问题4::对于般的反比例函数y= (k0,k是常数)的图象的研究,采取什么方法为好? 例:画出函数y=的图象。 分析:画出函数图象一般分为列表,描点、连线三个步骤,在反比例函数中自变量x0。解:1列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值; 2描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各个点。3连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一分支。这两个分支合起来,就是反比例函数的图象,如图所示。这种图象通常称为双曲线。 提问:这两条曲线会与x轴、y轴相交吗?为什么? 画出函数y的图象。 让学生动手画反比例的函数图象,进一步掌握画函数图象的步骤;教师注意指导画函数图象有困难的学生,并评析。 让学生讨论、交流以下问题; 1、这个函数的图象在哪两个象限?和函数y的图象有什么不同? 2、反比例函数y图象在哪两个象限?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中,随着自变量x的增加,函数y将怎样变化?有什么规律? 在充分讨论、交流后达成共识: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象跟内y随x的增加而减小; (2)当k2时,函数值y始终大于零。 小结:在x轴上方的函数图象,任意一点的纵坐标都大于0,反映在函数解析式上,就是函数值大于0,在x轴下方的函数图象,任意一点的纵坐标都小于0,反映在函数解析上,就是函数值小于0。提问:当x取什么值时,函数值y始终小于零?当x取什么值时,函数值y小于3?当x取何值时,0y3?二、想一想由上例,想想看,一元一次方程 x+30的解,不等式x+30的解集与函数yx+3的图象有什么关系?说说你的想法,并和同学讨论交流在学生讨论、交流和发表意见后,教师加以引导,最后归纳.三、课堂练习:P55页练习l、2四、小结:本节课,通过作函数图象、观察函数图象,并从中初步体会一元一次不等式、一元一次方程与一次函数的内在联系,使我们感受到不等式、方程、函数是紧密联系着的一个整体,今后,我们还要继续学习并研究它们之间的内在联系。五、作业 P57页习题18、53、4六、教后记:第三课时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新gre阅读解析题目译文及答案
- 销售合同审核流程表风险控制要点版
- 写景作文冬日滇池400字(13篇)
- 我家的端午节作文350字15篇范文
- 重游故地高三作文600字14篇
- 业务谈判策略模板与场景应对方案
- 红楼梦之黛玉之死:文学名著深度解读教案
- 状物作文美丽的桂花400字(7篇)
- 第3课 太平天国运动 课件 统编版历史八年级上册
- 商务活动策划与执行服务协议条款书
- 浙江省湖州市2024-2025学年高一下学期期末考试数学试卷
- 2025至2030中国酒店用品行业产业运行态势及投资规划深度研究报告
- 2025年中国热敏标签市场调查研究报告
- 仓库不良品管理制度
- 高纯气体不锈钢管道施工方案
- 干部出国境管理课件
- VR模拟器飞行员训练评估-洞察及研究
- 生产班组考核方案
- 超声引导下动静脉内瘘穿刺技术培训课件
- DBJ04-T306-2025 建筑基坑工程技术标准
- 鸡肉购销合同协议书
评论
0/150
提交评论