零件图.dwg
零件图.dwg

可急回抽油机速度分析及机械系统设计

收藏

压缩包内文档预览:
预览图
编号:25541463    类型:共享资源    大小:886.48KB    格式:RAR    上传时间:2019-11-18 上传人:遗**** IP属地:湖北
19
积分
关 键 词:
可急回 抽油机 速度 分析 机械 系统 设计
资源描述:
可急回抽油机速度分析及机械系统设计,可急回,抽油机,速度,分析,机械,系统,设计
内容简介:
邵发学院毕业设计(论文)任务书专业班级2003级机制本科专业学生姓名陈艺学 号0340717149课题名称可急回抽油机速度分析及机械系统设计设计(论文)起止时间2007年 3月26日至200 7年6月8日课题类型工程设计课题性质真实一、课题研究的目的与主要内容研究目的:设计多功能液压抽油机的液压系统,驱动抽油机完成多功能作业。与山河智能机械股份有限公司校企合作。学生在生产现场做毕业设计,全面提高综合设计能力,工程实践能力。主要内容: 1、对抽油机进行结构分析。2、设计抽油机工作装置的液压系统。3、绘制抽油机的液压系统原理图。二、基本要求1、必须独立完成毕业设计工作。2、按制图标准设计多功能液压抽油机液压系统图和有关零件的零件图,图纸比例11,毕业设计图纸总工作量不少于2张零号图纸。3、按学院毕业设计的书写格式要求,撰写设计说明书,毕业设计说明书不少于20000字。4、每个学生应完成与毕业设计有关的3000-5000个文字的外文资料翻译, 译文要求准确,文字流畅。 注:1、此表由指导教师填写,经各系、教研室主任审批生效; 2、此表1式3份,学生、指导教师、教研室各1份。三、课题研究已具备的条件(包括实验室、主要仪器设备、参考资料)1、邵阳学院的实习工厂。2、机械与能源工程系机械设计实验室,数控加工中心实验室,主要仪器设备有:线切割加工机床,电火花成形加工机床,数控加工中心,类型较多的机械设计零件等。3、邵阳学院图书馆。3、主要参考资料:机械工程设计手册,期刊杂志工程机械。4、山河智能有限公司抽油机装配车间实习、技术部资料查阅。四、设计(论文)进度表1、2007.3.262007.3.28 确定课题。1、2007.3.292007.4.4 搜集资料,完成开题报告。2、2007.4.52007.5.6 抽油机结构的确定。 3、2007.4.262007.5.10 绘制多功能液压抽油机液压系统图。4、2007.5.112007.5.25 外文资料翻译,撰写设计说明书。5、2007.5.262007.6.8 毕业设计文件打印、撰写答辩提纲准备答辩。五、教研室审批意见教研室主任(签名) 年 月 日六、院(系)审批意见院(系)负责人(签名) 单位(公章) 年 月 日指导教师(签名) 学生(签名) 邵 发 学 院毕业设计(论文)课 题 名 称 可急回抽油机速度分析及机械系统设计 学 生 姓 名 陈 艺 学 号 0340717149 系 、专 业 机械与能源工程系 机械制造设计及其自动化指 导 教 师 陈 志 刚 职 称 副 教 授 目 录1 前言11.1 可急回抽油机简介11.2 国内外研究现状及发展动态21.3 本设计的研究内容5第二章 系统组成及控制要求62.1系统简介62.2系统组成62.3控制要求及技术指标62.4变频器的技术参数7第三章 控制系统设计83.1确定控制方案83.2主电路设计103.3PLC的接线图 113.4控制电路图113.5程序设计114 液压系统的设计214.1 液压系统方案及参数确定214.2 执行元件液压缸及系统压力的初选224.3 计算工作装置铲斗液压缸的主要尺寸234.4 液压系统原理图的制定265 液压元件的选择与专用件的设计315.1 液压泵的选择和泵的参数的计算315.2 柴油发动机的选择335.3 液压阀的选择335.4 其他液压元件的选择365.5 油箱容量的确定366 压系统性能验算376.1 液压系统压力损失376.2 液压系统的发热温升计算37小 结38参考文献39致 谢40前言可急回抽油机速度分析及机械系统设计是一种多功能机械,目前被广泛应用于水利工程,交通运输,电力工程和矿山采掘等机械施工中,它在减轻繁重的体力劳动,保证工程质量。加快建设速度以及提高劳动生产率方面起着十分重要的作用。由于液压抽油机具有多品种,多功能,高质量及高效率等特点,因此受到了广大施工作业单位的青睐。可急回抽油机速度分析及机械系统设计的生产制造业也日益蓬勃发展。可急回抽油机速度分析及机械系统设计紧密地联系在一起,其发展主要以液压技术的应用为基础。由于抽油机的工作条件恶劣,要求实现的动作很复杂,于是它对液压系统的设计提出了很高的要求,其液压系统也是工程机械液压系统中最为复杂的。因此,可急回抽油机速度分析及机械系统设计已经成为推动抽油机发展中的重要一环1。1.1可急回抽油机简介挖可急回抽油机速度分析及机械系统设计的发展历史久远,可以追溯到1840年。当时美国西部开发,进行铁路建设,产生了模仿人体构造,有大臂、小臂和手腕,能行走和扭腰类似机械手的抽油机,它采用蒸汽机作为动力在轨道上行走。但是此后的很长时间可急回抽油机速度分析及机械系统设计没有得到很大的发展,应用范围也只局限于矿山作业中。导致可急回抽油机速度分析及机械系统设计发展缓慢的主要原因是:其作业装置动作复杂,运动范围大,需要采用多自由度机构,古老的机械传动对它不太适合。而且当时的工程建设主要是国土开发,大规模的筑路和整修场地等,大多是大面积的水平作业,因此对抽油机的应用相对较少,在一定程度上也限制了抽油机的发展。由于液压技术的应用,二十世纪四十年代有了在拖拉机上配装液压反铲的悬挂式抽油机。随着液压传动技术迅速发展成为一种成熟的传动技术,抽油机有了适合它的传动装置,为抽油机的发展建立了强有力的技术支撑,是抽油机技术上的一个飞跃 。同时,工程建设和施工形式也发生了很大变化。在进行大规模国土开发的同时,也开始进行城市型土木施工,这样,具有较长的臂和杆,能装上各种各样的工作装置,能行走、回转,实现多自由动作,可以切削高的垂直壁面,挖掘深的基坑和沟槽的抽油机得到了广泛应用2。1950年在意大利北部生产了第一台液压抽油机。第一台液压抽油机采用定量齿轮泵,中位开式多路阀,工作压力为9Mpa,所有执行元件互相并联连结。由单泵向6个执行元件供油。由于早期液压抽油机主要采用了定量齿轮泵,不能按需改变供油流量,无法充分利用发动机的功率,因此其能量损失很大,不能满足抽油机复合动作的复杂要求,且可操纵性差。另外,早期试制的液压抽油机是采用飞机和机床的液压技术,缺少适用于抽油机各种工况的液压元件,配套件也不齐全,制造质量不够稳定。从二十世纪六十年代到八十年代中期,液压抽油机进入了推广和蓬勃发展的阶段,各国抽油机制造厂和品种增加很快,产量猛增。1968-1970年间,液压抽油机产量己经达到抽油机总产量的83%,其时对抽油机液压系统的研究也已经十分成熟,液压抽油机已经具有了同步控制系统和负载敏感系统L。自第一台手动可急回抽油机速度分析及机械系统设计诞生以来的160多年当中,抽油机一直在不断地飞跃发展,其技术已经发展到相对成熟稳定的阶段。目前国际上迅速发展全液压抽油机,对其控制方式不断改进和革新,使抽油机由简单的杠杆操纵发展到液压操纵、气压操纵、液压伺服操纵和电气控制、无线电遥控、电子计算机综合程序控制。在危险地区或水下作业采用无线电操纵,利用电子计算机控制接收器和激光导向相结合,实现了抽油机作业操纵的完全自动化。所有这一切,可急回抽油机速度分析及机械系统设计为其奠定了坚实的基础,创造了良好的前提3。据有关专家估算,全世界各种施工作业场约有65%至70%的土石方工程都是由抽油机完成的。抽油机是一种万能型工程机械,目前已经无可争议地成为工程机械的第一主力机种,在世界工程机械市场上己占据首位,并且仍在发展扩大。抽油机的发展主要以液压技术的应用为基础,其液压系统已成为工程机械液压系统的主流形式。随着科学技术的发展和建筑施工现代化生产的需要,液压抽油机需要大幅度的技术进步,技术创新是液压抽油机行业所面临的新挑战。在技术方面,抽油机产品的核心技术就是液压系统设计,所以对其液压系统的分析研究具有十分重要的现实意义。1.2国内外研究现状及发展动态1.2.1国外研究状况及发展动态从20世纪60年代液压传动技术开始应用在抽油机上至今,可急回抽油机速度分析及机械系统设计己经发展到了相当成熟的阶段。目前国际上先进的抽油机产品的额定压力大都在30MPa以上,并且随着材料科学技术的进步,有朝着更高的压力甚至采用超高压液压技术方向发展的趋势;流量通常在每分钟数百升;功率在数百千瓦以上。如德国Orensttein&Koppe制造的目前世界上首台最大的RH40。型全液压抽油机,铲斗容量达42m3,液压油源为18台变量轴向柱塞泵,总流量高达10200L/min,原动机为2台QSK60柴油发动机,总功率高达2014kW,由于可急回抽油机速度分析及机械系统设计经常在较恶劣环境下持续工作,其各个功能部件都会受到恶劣环境的影响.系统的可靠性日益受到重视。美、英、日等国家推广采用有限寿命设计理论,以替代传统的无限寿命设计理论和方法,并将疲劳损伤累积理论断裂力学、有限元法、优化设计、电子计算机控制的电液伺服疲劳试验技术、疲劳强度分析方法等先进技术应用于液压抽油机强度研究方面,不断提高设备的可靠性。美国提出了考核动强度的动态设计分析方法。日本制定了液压抽油机构件的强度评定程序,研制了可靠性信息处理系统使液压抽油机的运转率达到85%-95%,使用寿命超过1万小时。近几年来,随着液压抽油机产量的提高和使用范围的扩大,世界上著名的抽油机生产商纷纷采用各种高新技术,来提高自己抽油机在国际上的竞争力,主要表现在五个方面: (1)液压系统逐渐从开式系统的转变;(2)系统的节能技术成为研究的重点; (3)系统的高压化和高可靠性发展趋势日益凸显; (4)系统的操纵特性上升到很重要的地位;(5)液压系统与电子控制的结合成为潮流4。(1) 开式向闭式液压系统的转变采用三位六通阀,其特点是有两条供油路,其中一条是直通供油路,另一条是并联供油路。由于这种油路调速方式是进油节流调速和旁路节流调速同时起作用,其调速特性受负载压力和油泵流量的影响,因此这种系统的操纵性能、调速性能和微调性能差。另外,当液压作用元件一起复合动作时,相互干扰大,使得复合动作操纵非常困难。由于抽油机作业工程中要求对液压元件能很好地控制其运动速度和进行微调,而且在其工作的许多工况下要求多个执行元件完成复合动作,而长期以来使用的开式液压系统无法满足抽油机的调速和复合动作的要求。近年来在国外的抽油机液压系统中出现了闭式负载敏感系统(CLSS)。它可以采用一个油泵同时向所有液压作用元件供油,每一个液压作用元件的运动速度只与操纵阀的阀杆行程有关,与负载压力无关,泵的流量按需提供,而且多个液压作用元件同时动作时相互之间干扰小,因此操纵性好是闭式液压系统的主要特点。这种系统非常符合抽油机操作的要求,它操纵简单,对司机的操纵技巧要求低,在国际上己经获得较广泛的使用,是抽油机液压系统的发展趋势。目前日本小松公司已经把大量抽油机液压系统从开式系统改为闭式系统了。(2) 节能技术的应用目前液压可急回抽油机典型的节能技术基本上有两种。即负载敏感技术和负流量控制技术,目前液压抽油机都选用其中一种控制技术来实现节能要求。负载敏感技术是一种利用泵的出口压力与负载压力差值的变化而使系统流量随之相应变化的技术。德国曼内斯曼(Mannesmann)公司研制的一种负载传感系统,将其安装在液压系统中,可以控制一个或几个液压作用元件,而与对其施加的载荷无关。该系统不仅易于操纵,而且微动控制特性很好。其最大的特点就是可以根据负载大小和调速要求对油泵进行控制,从而实现在按需供流的同时,使调速节流损失P控制在很小的固定值,从而达到节能的目的lzs.e57负流量控制技术是通过位于主控制阀后面的节流阀建立的压力对主泵的排量进行调节的技术。日前以韩国现代(HYUNDAI)、日本小松(KOMATSU)和日本日立(HITACHI)为代表的许多国外著名品牌的抽油机生产商都在自己的抽油机液压系统中使用了负流量控制技术。这种控制技术具有稳定性好、响应快、可靠性和维修性好等特点,但在起始点为重负荷下作业时,因流量与负载有关,所以可控制性较差5。(3) 提高负载能力和可靠性为了提高可急回抽油机的负载能力,直接的方法是提高其液压系统工作压力、流量和功率。目前,国际上先进的抽油机产品的额定压力大都在30MPa以上,并且随着材料科学技术的进步,有朝着更高的压力甚至采用超高压液压技术方向发展的趋势;流量通常在每分钟数百升;功率在数百千瓦以上。如德国Orensttein&Koppe制造的型全液压抽油机,铲斗容量达42立方米液压油源为18台变量轴向柱塞泵,总流量高达100200L/min,原动机为2台QSK60柴油发动机,总功率高达2014kW,由于液压抽油机经常在较恶劣环境下持续工作,其各个功能部件都会受到恶劣环境的影响。系统的可靠性日益受到重视。美、英、日等国家推广采用有限寿命设计理论,以替代传统的无限寿命设计理论和方法,并将疲劳损伤累积理论、断裂力学、有限元法、优化设计、电子计算机控制的电液伺服疲劳试验技术、疲劳强度分析方法等先进技术应用于液压抽油机强度研究方面,不断提高设备的可靠性。美国提出了考核动强度的动态设计分析方法。日本制定了液压抽油机构件的强度评定程序,研制了可靠性信息处理系统,使液压抽油机的运转率达到85%-95%,使用寿命超过1万小时。(4) 重视操纵特性可急回抽油机的操纵特性越来越受到重视。日前国际上迅速发展全液压抽油机,不断改进和革新控制方式,使可急回抽油机由简单的杠杆操纵发展到液压操纵、气压操纵、液压伺服操作和电气控制,无线电遥控、电子计算机综合程序控制。各种高新技术的应用,使得抽油机液压系统操纵特性大大提高。(5) 电子一液压集成控制成为当前主要研究目标电子控制技术与液压控制技术相结合的电子一液压集成控制技术近年来获得了巨大发展,特别是传感器、计算机和检测仪表的应用,使液压技术和电子控制有机结合,开发和研制出了许多新型电液自动控制系统,提高了抽油机的自动化程度,推动着抽油机的迅猛发展。目前国外先进品牌的抽油机在电液联合控制方面的研究己趋成熟。美国林肯一贝尔特公司新C系列LS-5800型液压抽油机安装了全自动控制液压系统,可自动调节流量,避免了驱动功率的浪费。日本住友公司生产的FJ系列五中新型号抽油机配有与液压回路连接的计算机辅助的功率控制系统,利用精控模式选择系统,减少燃油、发动机功率和液压功率的消耗,并延长了零部件的使用寿命。1.2.2国内研究情况及发展动态从国内情况来看,我国可急回抽油机行业整体发展水平较国外缓慢,在可急回抽油机液压系统方面的理论还比较薄弱。国内大部分可急回抽油机企业在可急回抽油机液压系统传统技术方面的研究具有一定基础,但由于采用传统液压系统的抽油机产品在性能、质量、作业效率、可靠性等方面均较差,因此采用传统液压系统的抽油机在国内市场上基本失去了竞争力,取而代之的是采用各种高新技术的国外抽油机产品。先进的抽油机液压系统都被国际上一流的生产企业垄断,国内企业在该领域的研究几乎是空白,这样国内的抽油机生产厂家就无法独立制造出性能优异的抽油机,绝大部分的市场份额都被国外各种品牌的抽油机所占据。以20t级的中型液压抽油机为例,国产20t级抽油机大多数是欧洲80年代初的技术,同90年代初以来在国内形成批量的日本小松、日立、神钢以及韩国大宇、现代等机型相比,其主要差距柴油机功率偏低,液压系统流量偏小,液压系统特性差,导致平台回转速度低,行走速度低,各种性能参数均偏小,整机性能和作业效率较国外偏低6。1.3本设计的研究内容可急回抽油机系统方面的技术多种多样,本文主要通过国外几种知名品牌的抽油机液压系统为参考对象,对其现有的关键技术和控制方式进行比较和研究,为抽油机的液压系统设计提供一定的参考信息。(1) 可急回抽油机液压系统技术发展动态的分析研究大量搜集国内外抽油机液压系统方面的相关技术资料,系统了解可急回抽油机液压系统的发展历史。分析总结抽油机液压系统方面的研究现状和技术发展动态。(2) 可急回抽油机液压系统设计要求对液压抽油机一个工作循环中的四种工况一挖掘工况、满斗举升回转工况、卸载工况和卸载返回工况进行了详细的分析,总结了每个工况下各执行机构的主要复合动作。根据液压抽油机的主要工作特点,系统地总结了抽油机液压系统设计要求:动力性要求和操纵性要求。(3) 可急回抽油机液压系统的设计分析了传统可急回抽油机液压系统中的单泵定量系统、双泵定量系统和双变量泵液压系统,详细分析了其主要优点和存在的问题。本文在分析研究了抽油机液压系统的基础上,根据抽油机液压系统的设计要求,设计了一套适合我国生产制造的单斗抽油机液压系统。本设计旨在采用通用的多路阀系统,配以专用控制阀和简单的伺服控制系统7。第二章 系统组成及控制要求2.1系统简介为改善生产环境,某公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。鉴于以上特点,从技术可靠和经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递较经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的2.2系统组成系统主要由电动机,变频器,PLC控制器,软起动器,电机保护器数据采集及其辅助设备组成。2.3控制要求及技术指标1:供水压力要求恒定,波动一定要小,尤其在换泵时。2:三台泵根据压力的设定,采用“先开先停”的原则。3:为了防止一台泵长时间运行,需设定运行时间。当时间到时,自动切换到下一抬泵,以防止泵长时间不用而锈死。4:要有完善的保护和报警功能。5:为了检修和应急要设有手动功能。6:需要有水池防抽空功能。技术指标 供水扬程: 4120 m 供水流量: 22000 m3/h 水泵功率: 0.5575 KW 平均节电率: 3060% 压力调节精度:0.01Mpa 预定压力设定数:第1、2压力。其中第2压力设定值为消防用水压力。 水泵数量及功率可根据用户实际情况来选定。2.4变频器的技术参数ABB ACS400是具有多种功能的变频器,在本例中由于已选PID调节器,因此就不用变频器的内部PID调节,而只用变频器的工厂宏FACTORY(0)就可以了。压力传感器将压力信号传给PID调节器,PID调节器根据压力设定,输出420MA给变频器以调节电机的速度,变频器的运行要根据可编程序控制器输出Q1.0(DCOM1-DI2)是否闭合来确定,变频器的停止要根据 编程序控制器输出Q0.7(DCOM1-DI1)是否闭合来确定。将变频器内部可编程继电器RO1,RO2设定成频率到达。相关参数设定如下: 代码 功能 设定值 代码 功能 设定值 9902 APPLIC MACRO 0 2102 STOP FUNCTION 1 1001 EXICOMMANDS 3 3201 SUPERV1 PARAM 0103 1003 DIRECTION 1 3202 SUPERV1 LIMLO 15HZ 1102 EXT1/EXT2 6 3203 SUPERV1 LIMHI 50HZ 1103 EXT REF1 SEL 0 3204 SUPERV1V2PARAM0103第三章 控制系统设计3.1确定控制方案1) 工频手动方式系统设计了手动工频的操作方式,将转换开关打到“工频”档位,操作人员可以根据需要自己决定起动或停止任意一台泵的运行。由于在该操作方式下,PLC、PID、变频器等均不参加控制,因此,从技术角度上来说,该方式无法保障出水管网压力值的恒定,所以必须有人监守。该方式主要供PLC、变频器、PID仪表、压力变送器等设备故障检修时使用。 2) 变频自动方式将转换开关打到“变频”档位,按下变频起动按钮,系统将自动判断并选择起始变频运行泵入口,进入自动运行。3) 工作原理(1) 当某台电机故障或需要检修某台电机水泵时,控制系统将退减到3泵循环方式自动工作;(2) 当变频器出现故障时,控制系统将采用工频驱动方式控制泵的运行与停止,来保证供水的压力在一定的范围内,但系统无法达到压力值的恒定,同时发出报警蜂鸣声响,通知操作人员进行处理;(3) 当无水接点信号来临时,PLC将关断所有变频和工频输出,直到无水接点信号消失,PLC将自动恢复控制输出;(4) 当消防信号到来时,PLC控制将转入子程序段执行,关断生活用水,打开消防供水阀,实现对消防管道补充供水目的,系统将根据在PLC程序中设置的消防供水压力设定值自动地完成恒定稳压消防供水。当消防信号解除后,系统自动恢复到变频恒压供水工作状态;(5) 仅单台泵变频运行,且处于最低输出频率状态和较长时间无压力上下限出现时(可以认为此时的系统供水需求量接近为零),控制系统将以变频50Hz运行30s或使管网压力达到设定值的1.2倍左右后,立即停止运行,进入休眠状态,直到管网实际压力为压力设定值的80%左右,控制系统重新自动恢复变频运行,即休眠唤醒。当然,管网中若有气压罐,系统应以气压罐的压力控制器的上下限接点作为休眠与唤醒的条件进行控制3.1.1抽水泵系统整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。系统为每台电机配备电机保护器,是因为电机功率较大,在变频器的控制下稳定运行;当用水量大到变频器全速运行也在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压和稳定时,控制器的压力下限信号与变频器的高速信号同时被 PLC检测到,PLC自动将原工作在变频状态下泵投入到工频运行,以保持压力的连续性,同时将一台备用的泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。当用水量减少时,首先表现为变频器已工作在最低速信号有效,这时压力上限信号如仍出现,PLC首先将工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到最后一台泵用主频器恒压供水。另外,控制系统设计六台泵为两组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。3.1.2半自动运行当PLC系统出现问题时,自动控制系统失灵,这时候系统工作处于半自动状态,即一台泵具有变频自动恒压控制功能,当用水量不够时,可手动投入另外一台或几台工频泵运行。3.1.3手动当压力传感器故障或变频器故障时,为确保用水,六台泵可分别以手动工频方式运行。实施效果实际运行证明本控制系统构成了多台深井泵的自动控制的最经济结构,在软件设计中充分考虎变频与工频在切换时的瞬间压力与电流冲击,每台泵均采用软起动是解决该问题关键。变频器工作的上下限频率及数字PID控制的上下限控制点的设定对系统的误差范围也有不可忽视的作用。采用变频恒压供水,消除了主管网压力波动,保证了供水质量,而且节能效果明显,并延长了主管网及其阀门的使用寿命。另外:采用变频恒压供水,消除了主管网压力波动,保证了供水质量,而且节能效果明显,并延长了主管网及其阀门的使用寿命。用稳压减压阀经济地解决了不同用水压力的问题。拓宽运用变频恒压控制原理,较好地解决了加压泵房与抽水泵房的远程通讯总是并达到异地连锁控制的目的。在抽水泵房设置连续液位显示,并将信号传与PLC,防止泵缺水烧坏电机,设定的取水位置,确保水的质量。 过载、欠压、过压、过流、相序不平衡、缺相、电机空转等情况下为确保电机的良好使用条件,达到延长电机的使用寿命的目的。系统配备水位显示仪表,可进行高低位报警,同时通过PLC可确保取水在合理水位的水质监控,同时也保护电机制正常运转工况。系统配备流量计,既能显示一段时间的累积流量,又能显示瞬时流量,可进行出水量的统计和每台泵的出水流量监控。系统配备流量计,既能显示一段时间的累积流量,又能显示瞬时流量,可进行出水量的统计和每台泵的出水流量监控。3.1.4加压泵系统由于抽水泵房距离高位水池较远,直接供水到高位水池抽水泵的扬程不足,为此在距离高位水池落差为36米处设计有一加压泵房,配备立式离心泵两台(一用一备)电机功率为75KW,扬程36米。该加压泵的控制系统需考虑以下条件:(1)若高位水池水位低和主管有水,则打开进水电动蝶阀和起动加压泵向高位水池供水;(2)若高位水池水位满且主管有水,则给出报警信号并关闭加压泵和进水电动蝶阀;(3)若主管无水表明用水量增大或抽水泵房停止供水,必须开启出水电动蝶阀由高位水池向主管补充不。像抽水泵一样,我们为加压泵配备了软起动器和电机保护器,确保加压泵长期可靠地运转,同时配备了高位水池的水位传感器和数显仪和缺水传感器。为保证整个主水管网的恒压供不,当高位水池满且主水管有水时,加压泵停止,此时主管压力将“憋压”,最终导致主管压力上升,并将此压力传递到抽水泵房,抽水泵的控制系统检测到此压力进行恒压变频控制,进而达到整个主管网的恒压供水,这是整个控制系统设计的关键。3.1.5系统实现功能自动平稳切换,恒压控制主水管网压力传感器的压力信号420mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。电机既有电机保护器,又有软起动器,克服了起动时的大电流冲击,相对延长了电机制使用寿命。由于采用PLC控制的压力自动控制,可以实现无人远程操作,系统的PLC预留有RS485接口,可与总调度室计算机网络。3.2主电路设计主电路主要由M1、M2、M3三台电机、交流接触器KM1KM6控制三台电机的运行,KM1、KM2、KM3为电机M1、M2、M3过载保护用的热继电器,QF1,QF2,QF3,QF4,QF5分别为主电路、变频器和三台泵的工频运行空气开关。KM1、KM3、KM5实现自动功能,KM2、KM4、KM6实现手动功能。3.3PLC的接线图CPU224的传感器电源24V(DC)可以输出600MA电流,通过核算在本例中容易满足要求,CPU224的输出继电器触点容量为2A,电压范围为530V(DC)或5250V(AC),如果用在较大容量的系统中,一定要注意PLC的输出保护。I01I06接控制电路图中虚线筐内相对应的控制线,201接变频器的DCOM1,202203接变频器的DI1DI2,变频器的RO1的常开点接到PLC的I0.0,R02的常开触点接到PLC的I0.1。3.4控制电路图本系统的电气控制线路的电路图中,SA为手动/自动转换开关,KA为手动/自动中间继电器,打开1位置为手动状态,打开2位置为自动状态,同时KA吸合。在手动状态,可以按动SB1SB6控制三台泵的起停。在自动状态时,系统根据PLC的程序运行,自动控制泵的起停。HL1HL8为各种运行指示灯。中间继电器KA的常开触点接I03,控制自动状态时的起动。中间继电器的KA的三个常闭触点接在三台泵的手动控制电路上,控制三台泵的手动运行。在自动状态时,三台泵在PLC的控制下能够有序而平稳地切换、运行。KH1,KH2,KH3为三台泵的热继电器的常闭触点,可对电机进行过流保护。3.5程序设计在主程序中,T56,T57为变频器频率上、下限到达滤波时间继电器,主要用于稳定系统,VB200为变频泵的泵号,VB201为工频运行泵的总台数,VD260为倒泵时间存储器。4 液压系统的设计WY200液压履带式抽油机采用全功率变量系统,先导液压操纵,整体式多路阀等先进结构。该机具有结构紧凑,操作轻便,使用维护安全可靠,发动机功率利用率高、生产效率高等优点。根据作业需要可配备0.5-1.25立方米四种反铲斗及斗容为1.0和1.25立米方的两种正铲斗。广泛用于建筑施工、市政工程、水电、国防工程和一般矿山采掘,挖掘I-VI级土壤23。4.1 液压系统方案及参数确定表4.1WY200C液压履带式抽油机主要技术参数项目名称单位数 值标准斗容量m31发动机型号6135K-16发动机标定输出功率kW/r/min106/2100最大挖掘半径m10.4最大挖掘高度m3/h7.78最大挖掘深度m6.46最大卸载高度m5.7回转速度r/min0-13.2行走速度km/h*0-5.5爬坡能力%70作业循环时间S18-22主机长/宽度MPa0.077履带平均接地比压MPa0.048发动机额定转数r/min2100整机质量t20.8理论生产率m3/h200最大挖掘力kN142系统工作压力MPa36履带板宽度m0.6主机运输尺寸(长X宽X高)mm9850x3000x3100执行元件是液压系统的输出部分,必须满足机器设备的运动功能、性能要求和结构、安装上的限制。根据所要求的负载运动形态,选用不同的执行元件配置,如下表4.2所示表 4.2执行元件配置运 动 方 式执 行 元 件左行走右行走直性行走左液压马达右液压马达左液压马达+右液压马达工作装置外摆内收动臂液压缸斗杆液压缸铲斗液压缸回转摆动液压马达4.2执行元件液压缸及系统压力的初选由于铲斗的内收是为了铲料,而外摆是为了卸料,工作装置采用了两根动臂液压缸、一根斗杆、一根铲斗油缸。要使机构正常工作且具有平稳性,两动臂液压缸必须同步运动,这就要求任何时刻进出油路的压力油,必须保持一定的压力平衡。为此,采用平衡阀控制油路中液压油的压力值24。根据抽油机主要用于建筑施工、矿山的特点,本设计选择双作用单活塞杆式液压缸。(1) 液压缸参数的选择每斗料的重量 M = 1.21.65 = 1980 (Kg) (4.1) G = mg = 19809.8 = 19404 (KN) (4.2)由卸料斗的尺寸图按极限情况计算得所挖斗料自重G与铲斗液压缸产生的推力F在卸料斗底板轴承铰接处转距平衡即 F拉L1 = GL2 (4.3)F拉374.5 = 194041206得 (KN)工作压力的选定关系到设计出和系统是否经济合理;工作压力低,则要求执行元件的容量大,即尺寸大、重量重,系统所需流量也大;压力过高,则对元件的制造精度和系统的使用维护要求提高,并使容积效率降低。一般是根据机械的类型来选择工作压力。执行元件工作压力可以根据总负载值或者主机设备类型选取,如表2.3与表2.4所示。表4.3负载和工作压力之间的关系负载F/KN10102070140140250250工作压力P/MPa0.8-1.21.5-2.51014182132表4.4各类机械常用的系统工作压力设备类型精加工机床组合机床拉床农业机械、小型工程机械、工程机械辅助机构液压机、重型机械、大中型抽油机、起重运输机械工作压力P/Mpa0.8-23-55-101-1616-32由负载值大小查上表,参考同类型抽油机,取液压缸工作压力为25MPa安装方式选择缸头耳环带衬套,活塞杆端连接方式选择杆端外螺纹杆头耳环带衬套。又因其伸缩速度缓慢但压力大,故选择带缓冲,油口连接方式选择外螺纹25。4.3计算工作装置铲斗液压缸的主要尺寸活塞杆直径d与缸筒内径D的计算 受拉时: d=(0.3-0.5)D受压时: d=(0.5-0.55)D (p15mpa) d=(0.6-0.7)D(5mpa p17mpa)(1) 液压油缸的缸径、杆径和工作压力确定根据技术条件:确定液压缸径和杆径及行程为:缸径D=125mm,杆径d=0.7D=85mm 由此计算出液压系统工作压力为:P= (4.4)=(2847103)/(1252-852)=32MPa式中F为锁紧力,F=284KN(2) 缸筒壁厚计算根据机械设计手册,在此液压系统中,3.2D/16,故缸筒壁厚应用中等壁厚计算公式,此时:= +C (4.5) :强度系数,对无缝钢管, =1C:用来圆整壁厚数 Py:液压缸内最高工作压力。Py=10Mpa D:缸筒内径= s/2.5=175/2.5=70MPa=10220/(2.360-310)+C=25mm故油缸缸筒外圆取D1=125mm.(3) 缸筒强度校核根据SL41-93,缸体合成应力按下式计算:zh1= (4.6)式中:=60MPaz1:纵向应力: z1=22MPa (4.7)h1:环向应力: h1=75 MPa (4.8)P:工作压力,P=32MPaD:油缸缸径,D=125mmd:油缸杆径,d=85mm:缸筒壁厚,=13.5mm终计算, zh1=53.2 MPa 70 MPa即: zh1 ,符合要求.(4) 活塞杆长度和缸筒长度计算根据设计要求的行程,来设计活塞杆的长度;本油缸的行程为1020mm,故油缸的活塞杆的长度为1265mm,缸筒的长度为1500mm。(5) 活塞杆强度计算活塞杆受拉力最危险截面是两端连接螺纹的退刀槽横截面,(取截面直径较少值)其应力计算如下 :n= (4.9)式中为拉应力: = (4.10) 为剪应力: = (4.11) 上面两公式中,K:螺纹拧紧系数,此处取K=1.25K1:螺纹内摩擦系数,一般取K1=0.12d1:活塞杆危险截面处直径,d1=80mmd0:螺纹外径,d0=82mm:70MPa则:=38.4Mpa =25.9Mpa 得: n=64.3MPa所以: n ,符合工况要求26。(6) 下盖联接螺钉强度校核计算螺钉联接采用高强度螺钉M2080(GB/T70.1-2000)联接,两端数量均为24件,螺钉精度等级为10.9级,其强度校核,按照公式(4.10)、(4.11)。拉应力: =184.8 MPa剪应力: =83.92 MPaK:螺纹拧紧系数,此处取K=1.25K1: 螺纹摩擦系数,一般取K1=0.12d1:螺纹内径,d1=16.752mm d0:螺纹外径,d0=20mmZ:24s螺钉材料屈服强度,s900Mpa(10.9级)= s/2=450Mpa得:n=235.12MPa 符合工况要求(7) 活塞杆柔度校核计算活塞杆细比计算如下: = (4.12)此处:L为折算长度,导向套中心至吊头尺寸,约1500mm活塞杆直径d=85mm,活塞杆许用细长比,按规定拉力杆此处100。计算得=41265/85=59.5,故满足要求。4.4液压系统原理图的制定4.4.1 制定基本方案(1) 制定调速方案液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。方向控制用换向阀或逻辑控制单元来实现。对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。相应的调整方式有节流调速、容积调速以及二者的结合容积节流调速。节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。容积调速是靠改变液压泵或液压马达的排量来达到调速的目的。其优点是没有溢流损失和节流损失,效率较高。但为了散热和补充泄漏,需要有辅助泵。此种调速方式适用于功率大、运动速度高的液压系统。容积节流调速一般是用变量泵供油,用流量控制阀调节输入或输出液压执行元件的流量,并使其供油量与需油量相适应。此种调速回路效率也较高,速度稳定性较好,但其结构比较复杂。节流调速又分别有进油节流、回油节流和旁路节流三种形式。进油节流起动冲击较小,回油节流常用于有负载荷的场合,旁路节流多用于高速。调速回路一经确定,回路的循环形式也就随之确定了。节流调速一般采用开式循环形式。在开式系统中,液压泵从油箱吸油,压力油流经系统释放能量后,再排回油箱。开式回路结构简单,散热性好,但油箱体积大,容易混入空气。容积调速大多采用闭式循环形式。闭式系统中,液压泵的吸油口直接与执行元件的排油口相通,形成一个封闭的循环回路。其结构紧凑,但散热条件差27。经过上述分析此方案选用容积节流调速。(2) 制定压里控制方案控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 液压抽油机控制系统是对发动机、液压泵、多路换向阀和执行元件(液压缸、液压马达)等所构成的动力系统进行控制的系统。按控制功能,可分为位置控制系统、速度控制系统和力(或压力)控制系统;按控制元件,可分为发动机控制系统、液压泵控制系统、多路换向阀控制系统、执行元件控制系统和整机控制系统。液压控制阀控制系统:先导型控制系统 换向控制阀的控制形式有直动型(用手柄直接操纵换向阀主阀芯,目前少用)和先导型两种。后者是用先导阀控制先导油液,再用先导油液控制换向阀的主阀芯,它又分为机液先导型和电液先导型两类。负荷传感控制系统 它包括负荷传感控制阀和负荷传感控制泵(或定量泵)。阀控系统实质上是节流式系统。在液压抽油机上,目前常用的是一般的三位六通多路阀,其滑阀的微调性能和复合操作性能差。20世纪90年代以来,在液压抽油机上开始采用负荷传感控制系统,其控制闪不论是中位开式方式还是中位闭式方式,都附带有压力补偿阀。采用电子控制压力补偿的液压抽油机液压系统与传统的液压系统比较,负荷传感控制系统的主要优点是:节省能源消耗。普通三位六通换向阀无论采用定量泵还是变量泵,总要有一部分油液经溢流阀溢掉,浪费了能量。而使用负荷传感变量系统,泵的流量全部用于负载上,泵的压力仅比负荷压力大1-3Mpa;流量控制精度高,不受负荷压力变化的影响;几个执行元件可以同步运动或以某种速比运动,且互不干扰。普通三位六通阀系统用的是并联油路,当几个执行元件同时动作时,泵输出的油液首先流向压力低的执行元件,不能同步。 上述的负荷传感控制阀只解决了滑阀的微调性能和复合操作性能,而没有解决节省能源问题。定量泵和负荷传感控制阀的系统也没有节省能源消耗,因为泵所输出的流量超过执行元件(液压缸和液压马达)所需要的流量时,多余的油液经压力补偿阀流回油箱(为保持压差恒定)变为热能。只有完全负荷传感控制系统才能解决节省能源问题。完全负荷传感控制系统 完全负荷传感控制系统由负荷传感控制阀和负荷传感控制变量泵组成带次级压力补偿阀的负荷传感系统德国力士乐公司等)在其生产的液压抽油机上设置了负荷传感分流器LUOV(Last Unabhangige Durchfluss Vereilung)系统,其主要作用是:当多个执行元件同时工作、所需的流量大于液压泵的流量时,产生供油不足的现象,这不能使正在工作台的执行元件与负载压力无关的控制得到保证。LUDV系统能保证在供油不足时所有执行元件的工作速度按正比例下降,以获得与负载压力无关的控制28。制定压力控制方案:液压执行元件工作时,要求系统保持一定的工作压力或在一定压力范围内工作,也有的需要多级或无级连续地调节压力,一般在节流调速系统中,通常由定量泵供油,用溢流阀调节所需压力,并保持恒定。在容积调速系统中,用变量泵供油,用安全阀起安全保护作用。在液压系统中,需要流量不大的高压油时可考虑用增压回路得到高压,而不用单设高压泵。液压执行元件在工作循环中,某段时间不需要供油,而又不便停泵的情况下,需考虑选择卸荷回路。在系统的某个局部,工作压力需低于主油源压力时,要考虑采用减压回路来获得所需的工作压力。基于以上控制系统方案分析本次设计选用负荷传感控制系统;采用的是双泵双回路恒功率控制液压系统,带四种功率控制模式、中位负流量控制,两液压主泵按全功率变量。(3) 指定顺序动作方案主机各执行机构的顺序动作,根据设备类型不同,有的按固定程序运行,有的则是随机的或人为的。工程机械的操纵机构多为手动,一般用手动的多路换向阀控制。加工机械的各执行机构的顺序动作多采用行程控制,当工作部件移动到一定位置时,通过电气行程开关发出电信号给电磁铁推动电磁阀或直接压下行程阀来控制接续的动作。行程开关安装比较方便,而用行程阀需连接相应的油路,因此只适用于管路联接比较方便的场合。另外还有时间控制、压力控制等。例如液压泵无载启动,经过一段时间,当泵正常运转后,延时继电器发出电信号使卸荷阀关闭,建立起正常的工作压力。压力控制多用在带有液压夹具的机床、挤压机压力机等场合。当某一执行元件完成预定动作时,回路中的压力达到一定的数值,通过压力继电器发出电信号或打开顺序阀使压力油通过,来启动下一个动作。(4) 选择液压动力源液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。容积调速系统多数是用变量泵供油,用安全阀限定系统的最高压力。为节省能源提高效率,液压泵的供油量要尽量与系统所需流量相匹配。对在工作循环各阶段中系统所需油量相差较大的情况,一般采用多泵供油或变量泵供油。对长时间所需流量较小的情况,可增设蓄能器做辅助油源。油液的净化装置是液压源中不可缺少的。一般泵的入口要装有粗过滤器,进入系统的油液根据被保护元件的要求,通过相应的精过滤器再次过滤。为防止系统中杂质流回油箱,可在回油路上设置磁性过滤器或其他型式的过滤器。根据液压设备所处环境及对温升的要求,还要考虑加热、冷却等措施29。4.4.2绘制液压系统图整机的液压系统图由拟定好的控制回路及液压源组合而成。各回路相互组合时要去掉重复多余的元件,力求系统结构简单。注意各元件间的联锁关系,避免误动作发生。要尽量减少能量损失环节。提高系统的工作效率。为便于液压系统的维护和监测,在系统中的主要路段要装设必要的检测元件(如压力表、温度计等)。大型设备的关键部位,要附设备用件,以便意外事件发生时能迅速更换,保证主要连续工作。各液压元件尽量采用国产标准件,在图中要按国家标准规定的液压元件职能符号的常态位置绘制。对于自行设计的非标准元件可用结构原理图绘制。系统图中应注明各液压执行元件的名称和动作,注明各液压元件的序号以及各电磁铁的代号,并附有电磁铁、行程阀。如图.所示30图4.1 液压原理图液压元件的选择与专用件的设计动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵,它们的性能比较如图5.1所示表5.1各种液压泵性能比较项目齿轮泵(外啮合)叶片泵斜轴式柱塞泵斜盘式柱塞泵排量(cm3/r)1-500平衡式1-350不平衡式10-230100-10004-500最高压力(MPa)1-25平衡式3.5-40不平衡式3.5-1421-4021-40最高转速(r/min)900-4000平衡式1200-3000不平衡式1200-1800750-3600750-3600最高效率(%)70-85平衡式70-90不平衡式60-7088-9585-92对污染敏感性不易受污染影响,随着齿轮的磨损,效率有所降低对污染较敏感,叶片磨损时,效率降低到很小对污染最敏感,配流盘受损伤时效率降低对污染的斜轴式高,配流盘滑靴磨损时效率降低吸油性能转速为1800r/min时,允许吸入真空度为-26664.4-54328.8Pa(-20-40cmHg)转速为1800r/min时,允许吸入真空度为-13332.2-26664.4Pa(-10-20cmHg)转速为1800r/min时,允许吸入真空度为-3.9997-0Pa(-3-0cmHg)同轴斜式柱塞泵噪声(dB)额定转速300r/min时,噪声83dB额定转速1450-2400r/min时,噪声76dB额定转速1450-2400r/min时,噪声87dB额定转速1450-2400r/min时,噪声77dB对过滤精度要求30-50m20-30m15-25m15-25m易出故障的部位内部摩擦副;支承轴套端面、齿轮及轴颈磨损,引起橡胶密封损坏、泵体内孔及两侧板磨损配油盘三角槽极易堵塞,污染物侵入摩擦副,发生异常磨损或卡殆,油液清洁和吸油通畅,易出现突发性故障连杆组件磨损,连杆球头从驱动轴球窝中脱出,功率调节弹簧失效,两对摩擦副磨损所有变量泵的变量机构,三对摩擦副磨损5.1液压泵的选择和泵的参数的计算5.1.1液压泵的工作压力的确定+ (5.1)-是执行元件的最高工作压力,对于本系统的最高工作压力是销锁油缸的入口压力-是从液压泵出口液压缸之间的管路损失。管路复杂,进口有调速阀,则取=1Mpa。5.1.2确定液压泵的流量多液压缸同时工作时,而且系统使用蓄能器铺助动力源时,则液压泵输出流量公式应为 (5.2)其中 K-系统泄露系数,取K=1.2Tt-液压系统工作周期Vi-每个液压缸的工作周期中的总耗油 z-液压缸的个数销锁油缸的最大流量 (5.3)=60.101=60加料门油缸的最大流量=60.140.0031=26根据以上可知: =60大泵流量=80%=48小泵流量=20%=12大泵排量=37小泵排量=8.1 =0.9L/s按照泵的排量 和、的值来选择液压泵5.1.3 选择液压泵的规格根据以上求的泵的排量、和、的值,按系统中给定的液压泵的形式,从机械设计手册第四卷得双联柱塞泵:主泵: K3V112DT柱塞式串联变量双泵。最大排量112ml/r,该泵按总功率恒定进行变量、总功率按4段进行控制、高压切断、中位负流量控制额定压力35MPa,系统设定压力小流量齿轮4Mpa,大流量油泵为32Mpa。如图5.1所示31325.2 柴油发动机的选择液压缸在整个循环运动中,系统的压力和流量都是变化的。所需功率变化较大,为满足整个工作循环的需要,需按大功率段来确定发动机的功率。从液压原理图可以看出,快速运动时系统的压力和流量都较大,这时,大小泵同时参加工作,小泵排油压力和流量均较大。此时,大小泵同时参与工作小泵排油除保证锁紧力外,还通过顺序阀将压力油供给加料门油缸。前面的计算已知,小泵供油压力为=4 MPa,考虑大泵到销锁油缸路损失,大泵供油压力应为=4Mpa 取泵的总效率=0.8,泵的总驱动功率为: P= (5.4) =89KW 考虑安全系数,故取90KW;查机械设计手册发动机参数表得:发动机机型号 6135K16功率-106KW 转速-2100r/min 5.3液压阀的选择选择液压阀主要根据阀的工作压力和通过阀的流量。本系统工作压力在9Mpa左右,所以液压阀都选用中、高压阀。液压阀的作用是控制液压系统的油流方向、压力和流量,从而控制整个液压系统。系统的工作压力,执行机构的动作顺序,工作部件的运动速度、方向,以及变换频率,输出力和力矩等。主泵原理图如图5.1所示在液压系统中,液压阀的选择是非常重要的。可以使系统的设计合理,性能优良,安装简便,维修容易,并保证系正常工作的重要条件。不但要按系统功需要选择各种类型的液压控制阀,还需要考虑额定压力,通过流量,安装形式,动作方式,性能特点因素33。5.3.1 根据液压阀额定压力来选择选择的液压阀应使系统压力适当低于产品标明的额定值。对液压阀流量的选择,可以按照产品标明的公称流量为依据,根据产品有关流量曲线来确定。5.3.2 液压阀的安装方式的选择是指液压阀与系统的管路或其他阀的进出油口的连接方式,一般有三种,螺纹连接方式,板式连接方式,法兰连接方式。安装方式的选择要根据液压阀的规格大小,以及系统的简繁及布置特点来确定。5.3.3 液压阀的控制方式的选择液压阀的控制方式一般有四种,有手动控制,机械控制,液压控制,电气控制。根据系统的操纵需要和电气系统的配置能力进行选择。5.3.4 液压阀的结构形式的选择液压阀的结构方式分为:管式结构,板式结构。一般按照系统的工作需要来确定液压阀的结构形式 根据以上的要求来选择液压控制阀,所选的液压阀能满足工作的需要。所以本液压系统所选的液压阀有中、高压阀。具体规格型号和名称见表5.2表5.2液压控制阀序号代 号名称及规格材料数量1Q11F-16P-25不锈钢截止阀成品22DBDW10B-1-50X/10UG24NZ5L电磁溢流阀成品13S20P1.0S型单向阀成品14S10P1.0S型单向阀成品15XJF-32/10蓄能器截止阀成品16DRV16-1-10/2单向节流阀成品19S6A1.0/2S型单向阀成品110ZDR6DP2-30/7.5YM叠加式减压阀成品111Z1S6P-1-30/叠加式单向阀成品1124WE10J3X/CG24NZ5L电磁换向阀成品113ZDR10DP2-30/7.5YM叠加式减压阀成品114Z2FS16-30/S2叠加式双单向节流阀成品2154WEH16Y50/OF6AG24NETS2Z5L/B08电液换向阀成品116Z2FS16-30/S2叠加式双单向节流阀成品217DR20-5-5X/10YM先导式减压阀成品218DR20-5-5X/10Y先导式减压阀成品1194WEH16E50/6AG24NETS2Z5L/B08电液换向阀成品1204WE10E3X/CG24NZ5L电磁换向阀成品121DB20-2-5X/315溢流阀成品222S20P1.0/单向阀成品123Z2FS10-20/叠加式双单向节流阀成品124溢流阀成品125QJH6WL高压球阀DN6成品3选用主操作阀采用川崎KMX15R/B450,最大流量270L/min,能实现动臂提升合流、斗杆大小腔合流、斗杆再生回路、行走直线、动臂提升优先、回转优先、斗杆闭锁等功能。原理图如图5.2所示图5.2 主操作阀原理图5.4 其他液压元件的选择5.4.1 压力继电器的选择能够自动感到压力变化,但压力达到预定压力时,可以自动将电路进行通断的仪表。压力预定值是根据压力控制要求,预先在压力校验台还是调定的点触点动作的压力值。根据要求查机械设计手册得:HED10A20/35L24/2 压力继电器5.4.2 压力表由液压系统的压力来选择压力表,查机械设计手册得:YN100-0-16Mpa 压力表YN100-0-25Mpa 压力表5.4.3 测压软管和测压排气接头根据系统的压力来选择测压软管和测压排气接头,查机械设计手册得:HF测压软管的有关参数:公称通经3.0mm,最大动态压力40Mpa,适用温度2。软管通径2.9 mm,最大静大压力64Mpa,化学性能,耐酸性溶剂。HFH2-P2-3-P-1.000 测压软管 公称通径3.0mm, 最大压力40Mpa PT-3 测压排气接头5.4.4 液位液温计,空气滤清器和直回式回油过滤器的选择依据液压系统的压力和流量,系统的发热量来选择,由机械设计手册得:直回式回油过滤器 RFA-250*20FY液位液温计 YWZ-200TA液位液温计 WSSX-411,-4080C空气滤清器 QUQ2-20*1.05.4.5蓄能器的选择根据蓄能器在液压系统中的功用,确定类型和主要参数。在本液压系统中,液压缸在短时间内快速运动,由蓄能器来补充供油,则计算公式为: V=K- (5.5)A-液压缸有效作用面积L液压缸的行程K油液损失系数,一般取K=1.2-液压泵流量V=15.32Lt-动作时间由以上公式得V=15.32L考虑安全系数和其他方面V取20L,查机械设计手册得:NXQ1-L40/31.5 蓄能器2195.4.6管道尺寸的确定非橡胶管道的选择(1) 管道内径的计算本系统管路很复杂,取其中主要的几条来计算,按照公式:d1130 -液体流量-流速,对于吸油管v=12m/s,一般取1m/s以下,对于压油管v36m/s,对于回油管v1.52.5m/s。再按照公式 d= 算出管道内径:-液体流量-流速计算数值如表5.3所示表5.3 计算数值管路名称 通过流量/(L/s)允许流速/(m/s)管道内径/m实际取值/m大泵吸油管2.50.80.06210.065小泵吸油胳0.6350.90.03020.034大泵排油管2.5640.0270.034小泵排油管0.62540.0130.018查机械设计手册得:182、343、6545.4.7 胶管的选择根据工作压力和按公式得管子的内径选择胶管的尺寸规格。高压胶管的工作压力对不正常使用的情况下可提高20%;对于使用频繁,经常扭变的要降低40%。胶管在使用及设计中应主要下列事项:(1)胶管的弯曲半径不宜过小,一般不应小于320,胶管与管接头联接处应留有一段直的部分,此段长不应小于管外径的两倍。(2)胶管的长度应考虑到胶管在通入压力油后,长度方向将发生收缩变形,一般收缩是取3%4%,胶管安装时避免处于拉紧状态。(3)胶管安装是应保证不发生扭转变形,为便于安装,可沿管长涂以色纹,以便检查。(4)胶管的接头轴线,应尽量放置在运动的平面内,避免两端互相运动时胶管受力。(5)胶管应避免与机械上的尖角部分想接触和摩擦,以免管子损坏。5.5油箱容量的确定初步确定油箱的有效容积,跟据经验公式来确定油箱的容量34,V= (5.6) 式中-液压泵每分钟排出的压力油的容积 -经验系数已知所选泵的总流量为207L/min,这样,液压泵每分钟排出的压力油体积为207L,查表5.4表5.4油箱经验系数表系统类型行走机械低压系统中压系统锻压系统冶金系统12245761210得=8故V=60.207=1.2426液压系统性能验算6.1液压系统压力损失本系统较为复杂,有多个液压缸执行元件动作回路,其中环节较多,管路损失较大的要算快速运动回路,故主要验算由泵到液压缸这段管路的损失。6.1.1 沿程压力损失沿程压力损失,主要是液压缸快速运动时进油管路的损失。此管路长为5m,管内径0.034速运动时通过的流量为2.7L/s,正常运转后的粘度为= 27 ,油的密度为=918Kg/油在管路的实际流速=2.93m/sRe=37022300油在管路中呈紊流流动状态,其沿程阻力系数为:= (6.1)根据公式=求得沿程压力损失为:=0.023MPa6.1.2 局部压力损失局部压力损失包括通过管路中折管和管接头等处的管路局部压力损失,以及通过控制阀的局部压力损失。其中管路局部压力损失相对来说小得多,故主要考虑通过控制阀的局部压力损失35。 从系统图中可以看出,从大泵的出口到油缸的进油口,要经过单向阀、电磁换向阀、单向调速阀、溢流阀。单向阀的额定流量为50L/min,额定压力损失0.3MPa, 电磁换向阀的额定流量为150L/min,额定压力损失为0.2MPa, 单向调速阀的额定流量为160L/min,额定压力损失为0.3MPa。溢流阀的额定流量为120L/min,额定压力损失为0.2MPa。通过各阀的局部压力损失之和: =0.65 MPa从小泵出油口到油缸进油口也要经过单向阀、电磁换向阀、单向调速阀、溢流阀。向阀的额定流量为50L/min,额定压力损失0.3MPa, 电磁换向阀的额定流量150L/min,额定压力损失为0.2MPa, 单向调速阀的额定流量为160L/min,额定压力损0.3MPa。溢流阀的额定流量为120L/min,额定压力损失为0.2MPa通过各阀的损失之和为:通过各阀的损失之和为: =0.76Mpa以上计算结果是大小是同时工作的,所经过的管道都是一样的。则大小泵是同时工作的,所以大小泵到油缸之间总的压力损失为=0.023+0.76=0.783MP6.2液压系统的发热温升计算6.2.1 计算液压系统的发热功率液压系统工作时,除执行元件驱动外载荷输出有效功率外,其余功率损失全部转化为热量,使油温升高。液压系统的功率损失主要有以下几种形式36:(1)液压泵的功率损失 (6.2)式中-工作循环周期(s); z投入工作液压泵的台数;-液压泵的输入功率(W);-各台液压泵的总效率;-第I台泵工作时间(s);(2)压执行元件的功率损失 (6.3)式中 M液压执行元件的数量;-液压执行元件的
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:可急回抽油机速度分析及机械系统设计
链接地址:https://www.renrendoc.com/p-25541463.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!