597 HKD640微型客车设计(后驱动桥与后悬设计)(有exb图)
收藏
资源目录
压缩包内文档预览:
编号:25571589
类型:共享资源
大小:1.06MB
格式:ZIP
上传时间:2019-11-20
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
15
积分
- 关 键 词:
-
597
HKD640微型客车设计(后驱动桥与后悬设计)(有exb图)
HKD640
微型
客车
设计
驱动
exb
- 资源描述:
-
597 HKD640微型客车设计(后驱动桥与后悬设计)(有exb图),597,HKD640微型客车设计(后驱动桥与后悬设计)(有exb图),HKD640,微型,客车,设计,驱动,exb
- 内容简介:
-
HKD640微型客车设计(后驱动桥与后悬设计)摘 要本次设计为微型客车后驱动桥、后悬架总成设计。驱动桥是汽车传动系主要总成之一,具有承载车身和驱动汽车的功用。后悬架也是汽车重要的总成之一,悬架的结构形式和性能参数直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。根据整车布置的特点和现有的生产水平,为降低成本,使该车具有良好的燃油经济性,操纵性和舒适性的特点,决定采用以下形式:主减速器为双曲面齿轮传动的单级主减速器;差速器为普通对称式圆锥齿轮差速器;半轴的形式为半浮式半轴;驱动桥壳为焊接整体式桥壳。作为非断开式驱动桥,其后悬架应为非独立悬架与之匹配,选择弹性元件为对称式钢板弹簧,减振器为液力筒双向作用式该设计的整体特点是:结构简单紧凑,制造工艺性好,调整维修方便,成本低廉。在说明书的计算部分,说明了主要参数选择的依据,对主减速器,差速器,半轴,驱动桥壳和钢板弹簧进行了尺寸和强度计算。此外,还计算了主减速器支撑轴承的寿命。本文提供了关于以上计算的详细计算依据、步骤和计算数据。关键词:驱动桥,悬架,主减速器,差速器,钢板弹簧,双曲面齿轮HKD640 MINIBUS DESIGN (AFTER THE REAR DRIVEAXLE ANDSUSPENSION DESIGN)ABSTRACTThe design for the minibus after the drive axle, rear suspension assembly design. Vehicle arrangement according to the characteristics and current production levels, to ensure needs, determine the following form: the main reducer for the two-surface single-stage main gear reducer; differential bevel gear for the general symmetric differential; axle in the form of semi-floating axle; drive axle shell for welding the whole bridge. As a non-disconnect type drive axle, then suspension should be non-independent suspension with matching elastic element selected for the symmetric leaf spring, shock absorber for the hydraulic cylinder type two-way effect. The overall features of the design: simple and compact structure, good manufacturing process, adjustment and easy maintenance, low cost. Description of the calculation in part, explain the basis for the main parameters on the final drive, differential, axle, drive axle and leaf springs for the size and strength calculation. In addition, main gear box support calculate the bearing life. This article provides detailed calculations on the basis of the above calculation, steps and calculated data. KEYWORDS: drive axle, suspension, final drive, differential, leaf springs, double-curved gear 目 录前言.1第一章 驱动桥的设计与计算.21.1驱动桥的结构方案分析.21.2 主减速器的设计与计算.4 1.2.1主减速器的结构形式.4 1.2.2 主减速器主动锥齿轮的支撑形式及安置方法.6 1.2.3主减速比的确定.61.2.4主减速器齿轮计算载荷的确定.61.2.5主减速器齿轮基本参数的选择.81.3 双曲面齿轮的强度计算.191.4 主减速器轴承的计算.221.5差速器的设计与计算.26 1.5.1参数选择.261.5.2差速器齿轮的几何尺寸的计算和强度计算.271.6 半轴的设计与计算.291.7 驱动桥壳设计.33第二章 悬架的设计与计算.352.1弹性元件的设计.352.2减振器的设计.38结论.40参考文献.41致 谢.42外文及译文.43前 言随着我国人民生活水平的改善和提高以及汽车工业技术的发展和进步,汽车作为多功能的交通工具逐渐走进广大百姓家庭。而微型车是汽车应用中发展最快的一种车型。由于我国城乡经济的差距和人民收入的提高,以及受燃油税费的影响,微型车因为有以下众多优点而备受人们的青睐。首先,微型车价位最低,且维修方便,很适合一般的用户;其次微型车的排量小,对环境的污染较小,税费负担轻;微型车的体积小,行驶、停靠都非常方便,在一定程度上缓解了交通拥挤。纵观汽车的发展历史可以看出,微型车在它的发展中对汽车技术的应用和推进起了很大作用。我国的微型车近几年得到了较快的发展。但在一些人的观念中,微型车总是技术含量低,操纵性及舒适性差。然而从目前市场上的微型车来看,它并不是这样。像我国的长安新星、五菱阳光、飞民意等微型客车系列无论是在车身设计、底盘的开发和配置都跟随时代的发展潮流。取得了人们的认可和信赖。在市场上获得了较好的反应。本次设计的内容是微型客车的后驱动桥和后悬架。后驱动桥和后悬架是保证整车行驶平稳性,操纵稳定性,乘坐舒适性等性能的重要总成。根据微型客车的特点,我在设计中从实际出发,尽可能用简单的结构来实现驱动桥和悬架的功能,并在传统设计基础上进行合理的改进,比如使用Excel编程对齿轮齿轮几何尺寸进行计算。由于本人能力有限,在设计中也有不妥的地方,希望老师批评指正。第一章 驱动桥的设计与计算1.1 驱动桥的结构方案分析驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。驱动桥设计应当满足如下基本要求:a)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。b)外形尺寸要小,保证有必要的离地间隙。c)齿轮及其它传动件工作平稳,噪声小。d)在各种转速和载荷下具有高的传动效率。e)在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 f)与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。g)结构简单,加工工艺性好,制造容易,拆装,调整方便。驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构叫复杂,但可以大大提高汽车在不平路面上的行驶平顺性。断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。其结构如图1-1所示:图 1-1 断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量大是它的一个缺点。本设计根据所定车型及其动力布置形式(前置后驱)采用了非断开式驱动桥。 1半轴 2圆锥滚子轴承 3支承螺栓 4主减速器从动锥齿轮 5油封 6主减速器主动锥齿轮 7弹簧座 8垫圈 9轮毂 10调整螺母 图1-2 非断开式驱动桥1.2主减速器的设计与计算1.2.1 主减速器的结构形式主减速器的结构形式主要是根据齿轮形式,减速形式的不同而不同。其主要的应用齿轮形式有螺旋锥齿轮,双曲面齿轮,圆柱齿轮和蜗轮蜗杆等形式。图1-3 主减速器齿轮传动形式1)当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。2)当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度;双曲面从动齿轮直径比相应的螺旋锥齿轮较小,因而有较大的离地间隙。另外,双曲面齿轮传动比螺旋锥齿轮传动还具有如下优点:1)在工作过程中,双曲面齿轮副纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。2)由于存在偏移距,双曲面齿轮副同时啮合的齿数较多,重合度较大,不仅提高了传动平稳性,而且使齿轮的弯曲强度提高约30。3)双曲面齿轮相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为大,其结果使齿面的接触强度提高。4)双曲绵主动齿轮的变大,则不产生根切的最小齿数可减少,故可选用较少的齿数,有利于增加传动比。5)双曲面齿轮传动的主动齿轮较大,加工时所需刀盘刀顶距较大,因而切削刃寿命较长。但是,双曲面齿轮传动也存在如下缺点:1)沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。双曲面齿轮副传动效率约为96,螺旋锥齿轮副的传动效率约为99。2)齿面间大的压力和摩擦功,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。3)双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。4)双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑油即可。由于双曲面齿轮具有一系列的优点,因而它比螺旋锥齿轮应用更广泛。一般情况下,当要求传动比大于45而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。对于中等传动比,两种齿轮传动均可采用。本设计的主减速器传动比达到5.68,所以选用双曲面齿轮传动,有利于减小体积,增大离地间隙。1.2.2 主减速器主动锥齿轮的支撑形式及安置方法现代汽车主减速器主动锥齿轮的支撑形式主要有两种:悬臂式和跨置式。图1-4 主减速器锥齿轮的支撑形式本设计主动齿轮的支撑形式采用悬臂式。1.2.3 主减速比的确定主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃油经济性都有直接影响。i0的选择应在汽车总体设计时和传动系的总传动比一起由整车动力计算来确定。i0=0.377rrnp/vamaxigH (1-1)式中 rr: 车轮的滚动半径 rr0.3015m np: 最大功率时发动机的转速 np5500r/min vamax: 最高车速 vamax110 Km/h igH: 变速器最高档传动比 igH1代入数据得 :i0 = 0.377rrnp/vamaxigH 0.3770.30155500=5.681.2.4 主减速器齿轮计算载荷的确定根据书明书及计算结果,发动机最大扭矩为57Nm,主减速比5.68由于汽车行驶时,传动系的载荷是不断的变化的,很难测到,也不稳定我们可以令经济机好发动机复合以后所输出的最大扭矩,配以最低挡传动比和驱动轮在良好的路面上行驶开始滑转这两种情况下作用在主减速器上的转矩()的较小者,作为经济轿车在强度计算中用以演算主减速器从动齿轮最大应力的计算载荷,即: (1-2)式中:发动机的最大扭矩,Nm; 由发动机到所计算的主减速器从动齿轮之间的传动系最低挡传动比;本车为6.4传动系上的部分传动效率;取0.9;由于猛结合离合器而产生的冲击载荷的超载系数,对于一般货车,矿用车和越野车等取;当性能系数时,可取,或有实验决定; 汽车满载时,经济轿车一个驱动桥给水平地面的最大负荷(对于后驱动桥来说,应考虑汽车最大加速时的负荷增大量);n 经济轿车的驱动桥数,此时为1; 轮胎对地面的附着系数,对于一般车轮的公路用汽车,可取0.85,越野车可取1.0;车论的滚动半径;本车轮胎 155R13LT.,分别有计算所得从动齿轮到两车轮之间穿传动效率;G2=mg55%=9055N=575.746.6810.9/1= 1672.1 Nm=16809.855%0.850.3015/0.96=2417.3Nm计算的载荷转矩为最大转矩,而不是正常的持续转矩,不能用于疲劳损坏的依据应按所谓的平均牵引力的公式计算,即主减速器从动齿轮的平均计算转矩: (1-3)式中: 汽车满载时总重,;本车为16464N .所牵引的挂车的满载总重,仅用于牵引车的计算;道路的滚动阻力系数,计算时,对于轿车可取f0.0100.015;对于载货车,可取0.0150.09,对于越野汽车可取0.0200.035;汽车正常使用时平均爬坡系数,载货汽车0.051.09 ; 取 0.07 。车论的滚动半径,m; 本车 0.3015m 。起初的性能系数: (1-4)当 16时,可取 0 ,带入得 0.19560450/20216取 0 , 等见式(1-3)从动齿轮 Tim=16809.80.3015(0.015+0.08)/0.96=491.2N.1.2.5 主减速器齿轮基本参数的选择1、主、从动齿轮齿数的选择对于本轻型载货汽车采用的单级主减速器,首先应根据的大小选择主减速器的主、从动齿轮的齿数,。为了使磨合均匀,之间应避免有公约数;为了得到理想的齿面重合系数,其齿数之和对于微型客车应不小于40 。当较大时,尽量的取小,以得到满意的离地间隙。本车主减速器传动比达到5.68,初步取=7 ,=40 。2、从动齿轮节圆直径及端面模数的选择主减速器准双曲面齿轮从动齿轮的节圆直径,可以根据公式2-1较小的结果,按经验公式选出: (1-5)式中: 从动锥齿轮节圆直径,mm;直径系数,可取1316;按2-1计算结果的最小者;计算结果 15=178mm ;对于微型客车以按主减速器主动锥齿轮的计算载荷 预选该齿轮的大端端面模数: m = , (1-6) 式中: 主动锥齿轮的计算转矩 ,Nm ;计算得 m = 4.74由机械设计手册表16.4-3 取m =4.5.3、.双曲面齿轮齿宽F的选择通常推荐双曲面齿轮传动从动齿轮的齿宽F 为其节锥距的0.30倍,但F不应超过端面模数的m 的10倍 。 对于汽车工业,主减速器圆弧齿锥齿轮推荐采用: F=0.155=0.155178=27.59圆整为28mm。 (1-7) 式中: 从动齿轮节圆直径,mm;4、准双曲面小齿轮偏移距以及方向的选择E过大则导致齿面纵向滑动的增大,引起齿面的过早损伤。E过小则不能发挥准双曲面的优点。传动比越大则对应的E就越大。大传动比的双曲面齿轮传动偏移距E可达从动齿轮节圆直径的2030% ,当偏移距E大于从动齿轮节圆直径的20%时,应检查是否存在根切。关于双曲面齿轮偏移方向的规定:小齿轮为左旋,从动齿轮右旋为下偏移;,主动齿轮右旋,从动轮为左旋 为上偏移。本设计采用下偏移 。初选E = 0.2 =35.6mm。5、螺旋角的选择双曲面齿轮传动,由于主动齿轮相对于从动齿轮有了偏移距,使主、从动齿轮的名义螺旋角不相等,且主动齿轮的大,从动齿轮的小。选择齿轮的螺旋角时,应考虑它对齿面重叠系数、轮齿强度,轴向力大小的影响。螺旋角应足够大以使齿面重叠系数不小于1.25 ,因为齿面重叠系数越大,传动就越平稳,噪音就越低。 双曲面齿轮大、小齿轮中点螺旋角平均值多在3540范围内 。 “格里森”制推荐用下式预选主动齿轮螺旋角名义值:=55 (1-8)双曲面齿轮传动,当确定了主动齿轮的螺旋角之后,用下式近似确定从动齿轮的名义螺旋角: 式中:准双曲面齿轮传动偏移角的近似值计算得:= 28, = 27。双曲面齿轮传动的平均螺旋角 : 6、法面压力角的选择加大压力角可以提高齿轮的强度,减少齿轮不产生根切的齿数。但对于尺寸小的齿轮,大压力角易使齿顶变尖宽度过小,并使齿轮的端面重叠系数下降。对于双曲面齿轮来说,虽然打的齿轮轮齿两侧齿形的压力角是相等的,但小齿轮轮齿两侧的压力角不相等。因此,其压力角按平均压力角考虑。在车辆驱动桥主减速器的“格里森”制双曲面齿轮传动中,轿车选用19的平均压力角;载货车选用2230的平均压力角。本微型客车采用19。7、圆弧齿锥齿轮铣刀盘名义直径的选择“格里森”制圆弧齿双曲面齿轮铣刀盘的名义直径是指通过被切齿轮齿间中点的假想同心圆的直径。选择时通常是兼顾两个方面,即设计及使用提出的最合适的齿向曲率以及加工时用最经济的刀盘直径。可用下式初步估算刀盘的名义直径: mm (1-9)式中: K 系数,选取0.91.1范围内的某值,以使为标准值; ,分别为从动齿轮的节锥距和中点锥距 mm ; 从动齿轮的螺旋角 。按上式 初步估算值在下表中选出其最接近的刀盘名义半径的标准值,或按从动齿轮节圆直径直接在该表钟选取刀盘名义半径。本车从动齿轮节圆直径为178mm中选取刀盘名义半径为79.4mm。8、双曲面齿轮参数的计算。下表给了“格里森”制(圆弧齿)双曲面齿轮的几何尺寸的计算步骤,该表参考“格里森”制双曲面齿轮1971年新的标准而制定的。表中的(65)项求得的齿线曲率半径 与第七项的选定的刀盘半径的差值不得超过值的。否则要重新计算(20)到(65)项的数据。当时,则需要第(20)项tan的数据增大。否则,tan减小。若无特殊的考虑,第二次计算时,将tan的数据增大10%即可。如果计算的结果还不能和接近,要进行第三次计算,这次tan的数据应根据公式: (1-10)表1-1 圆弧齿双曲面齿轮的几何尺寸计算结果序号计算公式结果注释(1)7小齿轮齿数(2)40大齿轮齿数(3)0.175齿数比的倒数(4)F27.59大齿轮齿面宽(5)E35.6小齿轮轴线偏移距(6)178大齿轮分度圆直径(7)79.4刀盘名义半径(8)55小轮螺旋角的预选值(9)1.428147957(10)0.21(11)0.978653497(12)75.49947501大轮中点节圆半径(13)0.461461016齿轮偏置角初值(14)0.887160487(15)(14)+(9)(13)1.546195095小轮直径放大系数k(16)(3)(12)13.21240813小轮中点节圆半径(17)20.42896064(18)01.2轮齿收缩率(19)379.9502702截距(20)0.0897287470.0897287470.089728747小轮偏置角(21)1.0040175541.0040175541.004017554(22)sin0.08936970.08936970.0893697(23)5.1275.1275.127(24)0.4473444340.4473444340.447344434大轮偏置角(25)0.5001828730.5001828730.500182873(26)0.178674050.1768080.188765673小轮节锥角初值(27)0.9844100890.9844100890.984410089(28)0.4544289410.4544289410.454428941(29)0.8907829910.8907829910.890782991(30)1.4422763271.4422763271.442276327(31)-0.00642034-0.00642034-0.00642034(32)(3)(31)-0.00112356-0.00112356-0.00112356(33)0.4474448460.4474448460.447444846(34)0.5003232450.5003232450.500323245(35)tan=0.178623920.178623920.188734467小齿轮节锥角(36)10.127586210.127586210.1275862(37)0.9844186320.9844186320.984418632(38)0.4545269990.4545269990.454526999齿轮偏值角校正值(39)27.034504627.034504627.0345046(40)0.8907329640.8907329640.890732964(41)1.4279499181.4279499181.427949918(42)54.996266654.996266654.9962666(43)0.5736298240.5736298240.573629824(44)27.961762027.961762027.9617620(45)0.8832607150.8832607150.883260715(46)0.5308536680.5308536680.530853668(47)0.1997334430.1997334430.199733443大轮节锥角(48)78.7048 78.7048 78.7048 (49)0.9806309120.9806309120.980630912(50)0.1958647880.1958647880.195864788(51)20.6661392120.6661392120.66613921(52)385.4673204385.4673204385.4673204(53)(51)+(52)406.1334596406.1334596406.1334596(54)68.0028739868.0028739868.00287398(55)66.3668883866.3668883866.36688838(56)0.1444574840.1444574840.144457484极限压力角(57)8.22 8.22 8.22 (58)0.9897265310.9897265310.989726531(59)0.0099814510.0099814510.009981451极限曲率半径(60)0.0001989420.0001989420.000198942(61)4513.1391474513.1391474513.139147(62)0.0003624940.0003624940.000362494(63)0.0105428870.0105428870.010542887(64)85.0901880385.0901880385.09018803(65)rln=85.9734334685.9734334685.97343346极限法(66)V=0.9235411080.9235411080.923541108(67)(50)(3); 1.0(3)0.0342763380.034276338(68);67.5048985467.50489854(69)1.014949696(70)(49)(50)20.26585493(71)(12)(47) (70)-5.18608486大轮节锥顶点到交叉点的距离(72)76.99071498大轮节点锥距(73)90.75789774大轮外锥距(74)(73)(72)13.76718277(75)9.518大轮平均工作(76)0.504775482(77)0.605463992(78)45两侧轮齿压力角之和(79)sin0.707106772(80)22.49999962平均压力角(81)cos0.923879535(82)tan0.414213555(83)1.461719408双重收缩齿的大轮齿顶角和齿根角之和(84)385.8939236(85)0.17大轮齿顶高系数(86)0.98大轮齿根高系数(87)1.61806大轮中点齿顶高(88)9.37764大轮中点齿根高(89)72.25404104大轮齿顶角(90)0.01908168(91)5.338199277大轮齿根角(92)sin0.093034418(93)1.880760979大轮齿顶高(94)10.65846184大轮齿根高(95)C=0.150(75)+0.051.4777顶隙(96)12.53922282大轮全齿高(97)11.06152282大轮工作齿高(98)79.7981 大轮顶锥角(99)sin0.984189796(100)cos0.177117041(101)=(48)()73.3666 大轮根锥角(102)sin0.958155644(103)cos0.286247728(104)cot0.298748674(105)178.7367497大论大端齿顶圆直径(106)(70)+(74)(50)22.96236127大轮轮冠到轴交叉点的距离(107)21.11802891(108)-0.15134052(109)-2.31158022(110)-4.0102032大轮顶锥锥顶到轴交叉点的距离(111)-7.02343233大轮根锥锥顶到轴交叉点的距离(112)(12)+(70)(104)81.5538723工艺节锥的大轮节锥角(113)sin0.436521271(114)cos0.899693937(115)tan=(113)/(114)0.485188633(116)=(103)(114)0.257535345小轮顶锥角(117)14.92386861(118)cos0.966268879(119)tan0.266525551(120)-18.3471896小轮面锥顶点到轴交叉点的距离(121)37.66541648(122)tan0.015350043啮合线和小轮节锥母线的夹角(123)0.8794236010.99991(124)26.15508103齿轮偏置角和的差(125)4.796282358小轮齿顶角(126)0.184289333(127)1.113945517(128)67.78941937(129)0.969664365(130)(74)(127)15.33589152(131)(128)+(130)(129)+(75)(126) 84.41415277小轮轮冠到轴交叉点的距离(132)(4)(127)(130)15.39786529小轮前轮冠到轴交叉点的距离(133)47.75728837(134)(121)+(131)122.0795692小轮大端齿顶圆直径(135)65.07464886(136)79.14656451确定小轮根锥的大轮偏置角(137)0.449798424(138)26.73075225(139)cos0.893130101(140)-13.9405054小轮根锥顶点到轴交叉点的距离(14133.53747596(142)sin0.158188561小轮根锥角(143)9.101769586(144)cos0.987408922(145)tan0.160205724(146)0.2最小法向侧隙(147)0.4最大法向侧隙(148)(90)+(42)(149)(96)(4)(148)9.445939665(150)63.16789774图1-5 双曲面齿轮副的理论安装距和另外几个参数的关系1.3 双曲面齿轮的强度计算(1) 单位齿上的圆周力在汽车工业中,主减速器齿轮的表面耐磨性,常用在其齿轮的假定单位压力即单位齿长的圆周力来估算,即: N/mm式中 :P作用在齿轮上的圆周力,按照发动机的最大转矩和最大附着力矩两种工作载荷来计算,N ; F从动齿轮的齿面宽,mm 。按照发动机最大转矩来计算: N/mm (1-11)式中: 主动齿轮节圆直径,mm; 变速器的传动比。 按最大转矩 =665.5Nmm893 按最大附着力 945 Nmm 8931.25=1116表1-2单位齿长上的圆周力参数汽车类别挡挡直接挡轮胎与地面附着系数轿车8935363218930.85载货汽车142925014290.85公共汽车9822140.86牵引汽车5362500.86在现代汽车的制造业中,由于材料以及加工工艺等质量的提高,单位齿长的圆周力有时会高出上表中的数据。(微型客车类似轿车,因此可参考轿车的标准。)(2)轮齿的弯曲强度计算汽车主减速器双曲面齿轮的计算弯曲强度应力为: N/ (1-12)式中: 该齿轮的计算转矩,Nm ;对于从动齿轮,按中的较小者和 计算;对于主动齿轮,还需将上述计算转矩换算到主动齿轮上 ; 超载系数 ,取 1 ; 尺寸系数,当端面模数 时 , ; 载荷分配系数 ,取 =1.00 ; 质量系数,=1 ; F 计算齿轮的齿面宽 ,28mm; J 计算弯曲应力用的综合系数,它综合考虑了齿形系数。查得 J=0.264; 用计算: 大齿轮: =404.5 小齿:弯曲强度验算合格。 (3) 齿轮的齿面接触强度计算圆锥齿轮与双曲面齿轮的齿面的计算接触应力为: 用计算: (1-13)=1837.92800齿面接触强度验算合格。(4) 主减速器齿轮的材料及热处理汽车驱动桥主减速器的工作相当繁重,与传动系其他齿轮比较,它具有载荷大,作用时间长,载荷变化多,带冲击等特点。其损坏形式主要有轮齿根部弯曲折断,齿面疲劳点蚀,磨损和擦伤等。双曲面齿轮用渗碳合金制造,选用材料为20GrMnTi,经渗碳,淬火,回火,喷丸处理后,轮齿表面硬度达HRC3245,渗碳层深度为0.91.3mm。1.4 主减速器轴承的计算初选主动齿轮上的轴承A,B为圆锥滚子轴承30000型,代号7305E,中窄(3)系列,额定动载荷49500N.从动锥齿轮上的轴承C,D为圆锥滚子轴承轻窄(2)系列,代号7208E,额定动载荷59800N.根据结构尺寸和布置形式,首先求出作用在轴承上的轴向力,径向力,然后求出轴承反力。 图1-6主动锥齿轮面的受力(1)确定圆周力。根据主动齿轮齿面宽中点的圆周力;T为作用在主减速器齿轮上的当量转矩;为齿轮齿面中点的分度圆直径;根据对双曲面齿轮: 为从动轮齿面宽中点的分度圆直径;为从动齿轮节圆直径;F为从动齿轮齿面宽;为主从动齿轮齿数;为从动齿轮根锥角;为双曲面主从动齿轮的中点螺旋角; =17827.6sin73.4=151.6mm=151.6=40.8mmN (1-14)作用在从动齿轮齿宽中点的圆周力N. (1-15)(2)确定轴向力和径向力。参考下图图1-7 轴向力和径向力根据主动齿轮为左旋,旋转方向为反时针,所以主动齿轮的轴向力 (1-16) 其中为法向压力角,为根锥角。A=4116N.从动齿轮的轴向力=959.2N. (1-17)主动齿轮的径向力=1031N (1-18)从动齿轮的径向力= 2683N (1-19)(3) 确定轴承的径向力。轴承的径向载荷就是上述齿轮的径向力,圆周力及轴向力三者所引起的轴承径向支撑反力的向量和。图1-8 悬臂式支撑主动锥齿轮轴承安装位置关系其中,a=107,b=35,c=142 所以=1020N; (1-20)=3766N (1-21)图1-9 骑马式支撑从动锥齿轮轴承安装位置关系其中b=52,c=66,a=118=1986N, (1-22)=2573N (1-23)(4) 按下式求轴承的当量载荷。Q=XR+YA,X为径向系数,Y为轴向系数。对主动齿轮上的轴承B,查表得e=0.83.0.83,这时X=0.4,Y=0.7.Q=37660.4+41160.7=4387.6. =353,取40。=353=2005。取1,=1.2。对主动齿轮上的轴承B, =14578小时 (1-24)对轴承A, e,X=0.4,Y=0.7;Q=XR+YA=3289.2N,=38093小时对轴承C, e,X=1,Y=0.Q=1986=196136小时,取1.8对轴承D, e,X=1,Y=0,Q=2573, =218946小时。以上轴承寿命的校核均满足汽车的第一次大修里程时间,因此合格。1.5 差速器的设计与计算差速器的功能是保证汽车的驱动桥两侧车轮在形成不等时能以相应的不同转速旋转,从而满足汽车行驶运动学的要求。由于微型客车的行驶路况较好,因此选用普通对称式圆锥行星齿轮差速器,保证该车在行驶和转向时的差速功能。1.5.1 参数选择1、行星齿轮数目的选择。 n=22、行星齿轮的球面半径= =33.23、行星齿轮与半轴齿轮齿数的选择。,。 4、差速器圆锥齿轮模数及半轴齿轮节圆直径,行星齿轮与半轴齿轮的节锥角的初步确定。=29 =61其中 分别为行星齿轮和半轴齿轮的齿数节圆直径=40,=72.5、压力角 目前汽车差速器锥齿轮的压力角大多的选用=,齿高系数为0.8最小的齿数可以减小到10。6、行星齿轮安装孔的直径以及深度LL=1.1L=17 mm L=18.7mm其中: 差速器传递的转矩, Nm; n 行星齿轮数; l 为行星齿轮支撑面的中点到锥顶的距离,mm; l0.5, 为半轴齿轮齿面中点处的直径,而0.8; 支撑面的许用挤压应力,可取69MP。1.5.2差速器齿轮的几何尺寸的计算和强度计算表1-3 汽车差速器的直齿锥齿轮几何尺寸计算序 号项 目计算公式结 果(1)行星齿轮齿数 应尽量取小10(2)半轴齿轮齿数 切满足安装要求18(3)模数m4(4)齿面宽9.870410835(5)齿工作高6.4(6)齿全高7.203(7)压力角一般汽车:22.5(8)轴交角90(9)节圆直径=40=72(10)节锥角=29.0546=60.945(11)节锥距9.870410835(12)周节t=3.1416m12.5663704(13)齿顶高2.17679012(14)齿根高h1=2.92879012h2=2.17679012(15)径向间隙0.803(16)齿根角=5=8.6(17)面锥角(18)根锥角(19)外圆直径(20)节锥顶点至齿轮外缘距离33.9518.10(21)理论弧齿厚6.965.60(22)齿侧间隙B0.1052差速器齿轮主要是进行弯曲强度计算,不考虑疲劳寿命,因为行星齿轮在差速器的工作中主要起着等比推力杠杆的作用,只是在左右驱动轮有转速差时才有相对的滚动。汽车差速器的弯曲应力为: MP (1-25)式中 : T 差速器一个行星齿轮给予一个半轴的转矩 Nm;Tj 计算转矩;n 差速器行星齿轮数目;Z2 半轴齿轮齿数; K0 超载系数,取 K01; Ks 尺寸系数,反映材料性质的不均匀性,与齿轮尺寸及热处理等有关。当端面模数m1.6mm时,Ks; Km 载荷分配系数,取Km1;Kv 质量系数,对于汽车驱动桥齿轮,当齿轮接触良好、周节及径向跳动精度高时,可取Kv1;F 齿面宽 mmm 端面模数 J 计算汽车差速器齿轮弯曲应力用的综合系数。由 计算 :=906MPa 由计算可知 : 锥齿轮的弯曲应力能够符合要求 。1.6 半轴的设计与计算半轴根据其车轮端的支承方式不同,可分为半浮式、34浮式和全浮式三种形式。半轴的形式取决于半轴的支撑形式。根据非断开式驱动桥,该设计采用半浮式半轴。半浮式半轴计算载荷的确定:一、第一种载荷工况下车轮所收的纵向力最大,同时承受垂向力。对左右半轴来说,垂向力为,为一侧车轮本身对地面的垂直载荷;为汽车满载静止于水平地面上时驱动桥给地面的载荷;为汽车加速或减速时的质量转移系数。=5133N (1-26)纵向力按最大附着力计算=4346N (1-27)对驱动轮来说,当按发动机最大转矩及传动系最抵挡传动比计算的纵向力小于最大附着力决定的纵向力时,按下式计算, (1-28)为差速器的转矩分配系数,为发动机最大转矩,i为最低档传动比,为汽车的传动效率,为轮胎的滚动半径。左右半轴所承受的弯矩为=611.7N (1-29)转矩为二 、在第二种载荷工况下由于侧向力最大时没有纵向力作用,所以半轴只受弯矩,并且左右车轮承受的垂向力和侧向力各不相等。; (1-30) (1-31); (1-32) (1-33)为左右驱动车轮的轮距,为汽车的质心高度,为轮胎与路面的侧向附着系数。 =8053N; =402N; =8353N; =702N在左右半轴上由,引起的合成弯矩分别为; (1-34) (1-35)将数据带入计算得:=1713.4N; =171.5N三 、在第三种载荷的工况下由于垂向力最大时没有纵向力和侧向力作用,所以半轴只受垂向弯矩;, (1-36)其中,为动载荷系数;=740N四、半轴强度的计算计算转矩TN (1-37) (1-38)所以合格。半浮式半轴在上述三种载荷下的弯曲应力和合成应力分别为:1. 230.9MPa; =431MPa2. 650MPa; =745.2MPa64.7MPa; =370MPa3. 279.3MPa; 由于,所以上述的校核都合格。五、半轴花键的剪切应力和挤压应力的校核;半轴花键的剪切应力:= (1-39)半轴的花键的挤压应力=133.2MPa; (1-40)因为=71.05MPa,=196MPa,所以半轴花键合格。1.7 驱动桥壳设计 驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经过悬架传给车架,它又是主减速器,差速器,半轴的装配基体。驱动桥壳大致可分为可分式、整体式和组合式三种形式。该设计采用的是焊接式整体式桥壳。选定桥壳的形式后,对其进行受理分析和强的计算。一 、汽车以最大牵引力行驶时的桥壳强度计算;在左右钢板弹簧座之间的弯矩M为 M=116.3Nm (1-41)在左右钢板弹簧座之间的垂向弯矩Mv为 (1-42)水平弯矩 = (1-43)在左右钢板弹簧座之间转矩 T=730Nm (1-44)在该断面的合成弯矩为 1449Nm (1-45)在该断面处的合成应力为二、汽车紧急制动时的桥壳强度计算在左右钢板弹簧座之间垂向弯矩水平弯矩为=; (1-46), (1-47)取0.588。制动力引起的转矩为 T= (1-48)在该断面的合成弯矩为Nm, (1-49) (1-50)桥壳的需用弯曲应力为300-500MPa,所以以上校核均合格。第二章 悬架的设计与计算悬架是现代汽车上重要的总成之一,它把车架与车轴弹性的链接起来。其主要作用是传递车轮和车架之间的一切力和力矩,缓和路面和车架之间的冲击载荷;衰减由此引起的承载系统的震动。保证汽车的行驶平顺性、操纵的稳定性,是车轮在路面不平和载荷变化时有理想的运动特性,并使汽车获得高速行驶的能力。2.1 弹性元件的设计一、钢板弹簧的设计和计算1、采用纵置对称式钢板弹簧。2、钢板弹簧主要参数的确定。图2-1 钢板弹簧总成在自由状态下的弧高确定满载弧高。初选=15mm钢板弹簧长度L的确定。L=0.422210=1000mm。钢板弹簧断面宽度的确定:=172, 刚度C=4227/172=24.6N/mm;均厚hp=mm总片数N取5,为了不使片宽过大,取h=5mm.b=mm3 . 钢板弹簧各片长的确定。(采用作图法)图2-2 钢板弹簧各片长度L1=1000,L2=916,L3=630,L4=446,L5=2604、钢板弹簧总成在自由状态下的弧高及曲率半径计算。H=,= (2-1)所以H=172+15+21=208mm5、钢板弹簧总成各片在自由状态下的曲率半径。 (2-2)为预紧力。分别取-80,40,45,50,55。求的R1=663mm,R2=574mm,R3=571mm,R4=568mm,R5=565mm。二、钢板弹簧强度验算1、汽车驱动时,后钢板弹簧承受的压力最大,在它的前半段出现的最大应力为=746.5MPa, (2-3)所以合格。2、钢板弹簧卷耳和弹簧销的强度计算:卷耳处所受应力=350MPa, (2-4)所以合格。为眼弹簧纵向作用在卷耳中心线上的力,D为卷耳内径,b为钢板弹簧宽度,h1为主片厚度。3、钢板弹簧销收挤压应力的计算=7MPa。 (2-5)为满载静止时钢板弹簧端部的载荷,b为卷耳处的宽度,d为钢板弹簧销的直径。所以合格。2.2 减振器的设计一、分类悬架中用的最多的减振器是内部充有液体的液力式减振器。汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦和液体的粘性摩擦形成了振动阻力,将震动能量转变成热能,并散发到空气中去,达到迅速减振的目的。根据结构形式的不同,减振器分为摇臂式和筒式两种,设计减振器时应当满足的基本要求是,在使用期间保证汽车行驶平顺性能稳定。二、相对阻尼系数减振器在卸荷阀打开前,减振器中的阻力F与减振器震动速度v之间有如下关系 F=。式中,为减振器的阻尼系数。设计时,先选取y与s的平均值。对于无内摩擦的弹性元件悬架,取=0.250.35;对于有内摩擦的弹性元件悬架,取小些。该设计取0.3。 三、减振器阻尼系数的确定减振器阻尼系数。因悬架系统固有震动频率,所以理论上。实际上应根据减振器的布置特点确定减振器的阻尼系数。,式中,n为双横臂悬架的下臂长,a为减振器在下横臂上的连接点到下横臂在车身上的铰接点的距离。四、最大卸荷力F0的确定为了减小传到车身上的冲击力,当减振器活塞振动速度达到一定值时,减振器打开卸荷阀。此时活塞速度称为卸荷速度vx。 式中,vx一般为0.150.30;A为车身振幅,取40mm;为悬架振动固有频率。五、筒式减振器工作缸直径D的确定根据伸张形成的最大卸荷力F0计算工作缸直径D. D,式中,为工作缸最大允许压力,取34MPa,为连杆直径与缸筒直径之比,双筒式减振器取0.400.50,单筒式取0.300.35。将数据代入得,D=26.确定工作缸直径为40mm。贮油筒直径Dc=1.35D=36,壁厚2mm,材料可选20钢。结论作为微型客车的后驱动桥和后悬架的设计,我根据目前市场上微客的特点,结合自己对微客的认识和掌握情况,分别采用了一下结构形式:主减速器为双曲面齿轮传动的单级主减速器,主动齿轮的支撑形式为悬臂式,主减速器从动齿轮采用无辐式结构,并用螺钉固定在差速器壳上;差速器为普通对称式圆锥齿轮差速器;半轴的形式为半浮式半轴;驱动桥壳为焊接整体式桥壳。作为非断开式驱动桥,其后悬架对应采用下面形式:弹性元件为对称式钢板弹簧,减振器为液力筒双向作用式减振器。以上所采用的结构形式,均能实现后驱动桥和后悬架的功能。在驱动桥主减速器的设计中,它的传动比和齿轮的结构及安放位置是合理的。对从动齿轮的调整采用结构简单的调整垫片形式;对这对双曲面齿轮的几何参数的计算参照刘惟信汽车设计总结的公式,进行了反复计算。减振器采用垂直的安置方式,以发挥它的重大减振作用。综上可得,本设计结构合理,符合实际应用,具有很好的动力性和经济性,驱动桥和悬架总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。但此设计过程仍有许多不足,在设计结构尺寸时,有些设计参数是按照以往经验值得出,这样就带来了一定的误差。另外,在一些小的方面,由于时间问题,做得还不够仔细,恳请各位老师同学给予批评指正。参考文献1 刘惟信.汽车车桥设计.北京:清华大学出版社,20032 徐灏.机械设计手册(3) 北京:机械工业出版社,19953 余志生.汽车理论北京:机械工业出版社,19954 余志生.汽车理论.第三版 北京:机械工业出版社,20005 陈家瑞.汽车构造(下册).北京:机械工业出版社,20026 东北工学院机械设计/机械制图教研室.机械零件设计手册.北京:冶金工业 出版社,19767 湘潭机电高等专科学校 刘小年.机械制图(第二版).北京:机械工业出版社,19998 王昆、何小柏、汪信远.机械设计、机械设计基础课程设计. 北京:高等教 育出版社,20059 南京机械高等专科学校,陈于萍.互换性与测量技术基础.北京:机械工业 版社,200310 彭文生、李志明、黄华梁.机械设计. 北京:高等教育出版社,200211 吴宗泽.机械设计实用手册.北京:化学工业出版社,200112 张义民、闻邦春、林逸.汽车半轴的可靠性设计.汽车技术,2004 p13 刘克俊差速器锥齿轮啮合侧隙的调整设计.汽车技术,200314 刘惟信.圆锥齿轮与双曲面齿轮传动.北京:人民交通出版社,1985 15 第一汽车制造厂.解放牌CA10B型载重汽车零件图册.北京:机械工业出版 社,1972 致 谢通过这次毕业设计,我感觉收益颇深,相信对我以后的工作和学习有着深远影响。这次毕业设计,使我将三年半来学到的知识进行了一次大总结,一次大检查,特别是机械设计、工程制图、机械原理等基础知识,进行了一次彻底的复习。这都要感谢数个月来我们指导老师李水良老师细心的指导和督促,没有老师的教导和帮助我无法相信自己能独立完成如此复杂的毕业设计,当中凝聚了老师的多少辛勤汗水可想而知。所以,在此我要感谢所有在此次设计中给予我帮助的老师同学们,谢谢他们的无私帮助。再次感谢!Driving Axlel automobile driving axleThe driving axle is one of cross bars supporting a vehicle, on which the driving wheels turn .The driving axle includes a housing ,an axle drive ,a differential , tow axle shafts (half axles ),and final drives (if any ) .The axle .or main, drive is a drive-line unit that increases the torque delivered by the transmission and transmits it to the driving wheels, via the differential. In automobiles, the axle drive shaft, usually called the propeller shaft.The axle drive may be a Single or a double-stage type, the former comprising a pair of gears and the latter .tow pairs of gear. Drive pinion I may be made integral with its shaft, or it may be detachable from the shaft. Driving gears and are usually made in the form of detachable gear rings that are bolted or riveted to the differential case .Alex drive bevel pinions and gears are made with helical teeth in order to reduce noise in operation.The tow-stage axle drive consists of a pair of bevel gears and a pair of spur gears. Drive bevel pinion drives bevel gear that is fixed to the flange of the intermediate shaft made integral with 2nd stage driving spur gear .Gears meshes with driven spur gear which is fastened to the case rotates in taper roller bearings installed in the differential carrier that makes part of the driving axle housing.The differential is a drive-line unit that divides the torque applied to it between the tow axle shafts and allows one driving wheel to turn at a different speed from the other.The differential consists of case, cross or spider pinion .and side gears, also known as axle gears .the differential pinions are freely mounted on the cylindrical arms of the spider, which is held in the differential case, and remain in constant mesh with the differential side gears.When the automobile is moving down a straight and even road, both driving wheels meet with one and the same rolling resistance. In this case, axle driven gear, or differential ring gear, causes the differential case to rotate .when the differential case rotates pinions and their spider arms move around in a circle with tow differential side gears are meshed with the pinions, the side gears must rotate, causing the axle shafts and their associated driving wheels to turn. With equal resistance applied to each wheel, the differential pinions do not rotate. They apply equal torque to the side gears and therefore both driving wheels rotate at one and the same speed is unequal ,the differential pinions rotate on their spider arms as well as drive round with the differential case .supposing that one of the axle shaft is prevented from rotating ,the differential pinions would have to walk around the stationary side gear ,causing the other side gear to rotate at twice its normal speed .You can now see how the differential can allow one driving wheel to turn faster than the other .Whenever the automobile goes around a turn ,the outer driving wheel travels a greater distance than the inner drive wheel .the inner wheel speeds up proportionately ,thanks to the differential pinions that rotate on their spider arms and ,rolling around the slower side gear send more rotary motion to the outside wheel. The differential side gears are splined on to the inner ends of the axle shafts .The other ends of the shafts are attached to the driving wheel hubs by means of flanges .Trucks use full floating axle shafts .Such axle shafts are acted upon by torque only .All the other loads acting on the driving wheels are taken by the driving axle housing, because the wheel hubs are supported by bearings mounted on the housing.l Driving axle of general-purpose wheeled tractorGeneral-purpose wheeled tractors are a four-wheel drive type, they have tow driving axles-front and rear .Both axles are similar in construction, expect for the housing. Each driving axle consist if a housing, an axle drive ,a differential ,and final drives .The front and rear-axles drives are interchangeable and comprise a pair of spiral bevel gears . The axle drive pinion is made integral with a shaft that is supported by tow taper roller bearings installed in axle drive pinion carrier .The latter is accommodated in differential carrier and is fixed to it by bolts. The flange of the axle drive pinion carrier is provided with threaded holes to fit puller screws that are used to remove the axle drive pinion carrier from the differential carrier .The position of the drive pinion relative to the centerline of the axle is adjust by means of a pack of shims placed under the flange of the drive pinion carrier Shims palace under the cone of the front bearing are used to adjust the preload on the drive pinion bearings. Splined to adjust the preload on the drive pinion shaft is universal-joint flange .The axle drive gear is bolted to the differential case flange.THE DIFFERENTIAL consists of case, four pinions, and tow side gears .The differential case comprise tow halves that are bolted together and supported by taper roller bearings installed in the differential carrier .Screwed in the bearings housing from the outside are nuts used to adjust the backlash between the ring gear and drive pinion teeth and the side bearing preload.Welded to the top of the driving axle housing at both its ends are spring pads .The housing of both its ends are spring axels are provided with filler ,overflow ,and drain holes closed by plugs .Both housing also have vents ,The rotating components of the driving axles are lubricated with transmission oil .As distinct from the automobiles considered in this text, all tractors include final drives in their power trains .The final drives of general-purpose wheel tractors are referred to as wheel-hub reduction gears.While transmitting power to the driving wheels, wheel-hub reduction can increase their torque .These are planetary reduction gear sets consist of sun gear ,or wheel ,three planet ,or pinion ,gears ,planet or pinion ,carrier .stationary internal ,or ring ,gear ,and housing.The sun gear is splined to the outer end of the axle shaft is splined to the differential side gear .The cylindrical planet gears are in constant mesh with both the sun gear and the ring gear and are free to rotate on roller bearings mounted on shafts that are attached to the planet carrier .The planet carrier is fasted to the reduction gear housing by means of studs and nuts .The flange of housing ,driving wheel brake drum 13,and wheel hub are clamped together by bolts .The planet carrier and reduction gear housing form the driven part of the planetary gear set and rotate with the driving wheel of the tractor .The driving gear hub is supported by taper roller bearings mounted on axle shaft housing ,or axle sleeve .The axle sleeve is connected to the stationary ring gear by means of adapter hub that has internal splines and external teeth . The splines are meshed with matching splines on the axle sleeve, and the teeth are meshed with internal teeth ring gear.Wheels and its maintainModern wheeled tractors and automobiles use pneumatic-tired disc wheels. As a result of the driving wheel tires gripping the road, the rotary motion of the wheels is transformed into the translational motion of the tractor or automobile.According to their purpose, wheels are classified as driving .driven steerable, and combination types.Trucks and general-purpose wheeled tractors have all their wheels of one and the same size .Row-crop tractors have their rear wheels larger than the front wheels .The rear wheels carry the major proportion of the load due to the weight of the tractor .The front wheels are loaded lighter and this makes them easier to turn and provide good directional steering stability, which is essential for row-crop work.A TRUCK WHEEL consists of disc and flat base rim that is made integral with it, while the other flange is formed by detachable side ring that is held to the rim by split lock ring on the rim .which doubles as a side ring and a lock ring.The wheel disc is provided with holes for mounting the wheel on the wheel mounting bolts ,or wheel studs ,on the wheel hub ,where it is fixed by nuts .Both the holes and the nuts are tapered to ensure exact location of the wheel on its hub .The rear driving axles of trucks carry tow wheels at each end .The inner wheels are held to the hubs by cap nuts that are threaded both on the inside and on the outside .and the outer wheels are mounted on the cap nuts and fixed in place by taper nuts screwed on the nuts .The wheel nuts on the right side of truck have right-hand threads, whereas the nuts on the left side of the truck are threaded left-hand .The reason is to tighten the nuts, not loosen them, and thus prevent them from working loose on acceleration and braking.An automobile pneumatic tire consists of casing, inner tube, and flap .The tire casing comprises tread, side walls, and beads .Tires for good roads use small tread patterns, while those for bad roads or cross country service large tread patterns.The inner tube is made in the form of a hollow elastic rubber doughnut that is inflated with air after it is installed inside the tire and the tire is put on the wheel rim .The inner tube is inflated through tire valve that consists of housing 11,valve inside ,and cap .The valve housing is made of brass in the dorm of a flanged tube that is mounted in the inner tube by means of a washer and a nut and sticks out through a hole in the wheel .Some tire valve housing are of comprise construction :the upper part is made of brass and the lower part ,of rubber that is vulcanized on to the inner tube .The valve inside is a check valve that opens to let air in the inner tube when an air closed ,spring pressure and air pressure inside the tube hold the valve .When the valve is closed ,spring pressure and air pressure inside the tube hold the valve in its seat .It includes core with a rubber ring ,a plunger pin ,and a spring .The valve inside is Screwed in the tire valve housing and is closed by the cap Screwed on the housing.To the construction of the driving and steerable wheels, each wheel comprises hub , disc with rim ,and tire with inner tube .The rim is welded to the disc and the disc is bolted to the hub .The driving wheel tires are of low-pressure type and have heavy tread bars for better traction. The driving wheel hub is keyed to axle shaft and is fixed in place by means of bolted-on insert with worm whose threads mesh with the rack teeth cut in the half axle .By turning the worm one can change the position of the wheel on the axle shaft to obtain the desired track width .Before doing this ,it is necessary to jack up the rear part of the tractor to clear the wheels of the ground and loosen the bolts that hold the inserts to the wheels hubs .Should this adjustment prove insufficient ,the track width can further be increased by placing the wheels with the concaves of their discs facing inwards.On some row-crop tractors ,the rear wheel discs are bolts to lugs welded on the wheel rims .In this case ,the crack width can be changed by bolts the discs in alternative positions to the lugs .Also the concave wheel discs may be used either with the concave facing inwards or outwards.Trouble-free operation of automobiles and wheeled tractors largely depends on the condition of the tires. Therefore, during operation, one should adhere to following rules.Prevent fuel and, or oil from getting onto the tires. Cleans the tires regularly from dirt and remove all foreign articles, such as stones, form the treads. Do not apply brakes sharply, never start away form rest with a jerk, and avoid making sharp turns, for all this causes uneven wear of the tires. Do not allow excessive slipping of the driving wheels. When preparing your tractor or automobile for a long-term storage, jack up the wheels and put trestles under the axles or frame to relieve the tires.The service life of
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。