基于CADCAE的方盒件变压边力冲压成形工艺设计
收藏
资源目录
压缩包内文档预览:
编号:25629798
类型:共享资源
大小:4.52MB
格式:ZIP
上传时间:2019-11-18
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
20
积分
- 关 键 词:
-
基于
CADCAE
方盒
变压
冲压
成形
工艺
设计
- 资源描述:
-
基于CADCAE的方盒件变压边力冲压成形工艺设计,基于,CADCAE,方盒,变压,冲压,成形,工艺,设计
- 内容简介:
-
南京理工大学泰州科技学院毕业设计(论文)外文资料翻译系部: 机械工程系 专 业: 机械工程及自动化 姓 名: 王忠贤 学 号: 0501510141 外文出处:Advance in FEM Simulation and its Related Technologies in Sheet Metal Forming (July 2001, p641-648) 附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语:该英文翻译经过几次修改后语句较通顺,语义较正确,基本能正确表达原文的内容。这反映了该生通过本英文翻译基本掌握了科技文献的阅读方法和常用专业词汇的翻译方法,但仍需加强学习,基本达到了外文资料翻译的目的。 签名: 2009 年 3 月 16 日附件1:外文资料翻译译文板料成形中有限元仿真及相关技术的研究进展1理研和光材料制造实验室 ,日本 2法国国家科学研究中心,法国 3 IIS,东京大学,六本木,东京都港区,日本 摘要 本文概述了汽车制造商和钢板供应商采用的板料成形仿真及相关技术的现状。为此,作者调查了欧洲、日本和美国的行业,与工程师和研究人员讨论上述问题。各行业中使用的软件如表所示,行业用户对有限元素的评价也归纳在表中。根据这些信息提出在这领域的研究方法。关键词 板料冲压成形,仿真,有限元法,计算机辅助设计1 导言 汽车行业面临着全球范围严重的挑战:激烈的市场竞争和严格的政府环境保护法规。汽车制造商为迎接这些挑战而采取的战略是有时称为3R的策略:缩短上市时间,降低开发成本以赢得竞争,减少车辆重量以提高燃料效率。来实现三个目标的解决方案必不可少的要在产品开发和进程设计中采用基于CAD / CAE / CAM系统集成技术。这一努力最显著的部分在于减少冲压车身面板相关的加工费用和提前期,甚至在增加技术难度,如使用铝合金和高强度钢,和要求冲压件高几何精度情况下。为处理这趋势所带来的超越过去的经验的问题,板料成形仿真的数值方法显得越来越重要。它由计算机试错取代了物理冲压试错。 成功的数值仿真主要取决于成形仿真软件的进展,但其他相关的技术的进展也很重要。相关技术的例子有能迅速构建和修改加工表面的CAD系统,或多或少在CAD表面自动创建有限元网格的现代网格生成器,使用户能够掌握大量的数据的可视化的硬件和软件以及最后在合理的时间内处理大型仿真的计算机硬件。本文的目的在于总结业界金属板料成形仿真和相关技术实现现状,并对未来的研究方向提出建议。在80 和90年代关于金属板料成形仿真已举办了许多国际会议并发表了许相关文章。然而,通过这些信息还不足以解决上述问题。由于这个原因,作者决定访问调查欧洲、日本和美国的汽车行业和钢板供应商,与工作在模具冲压车间和企业冲压部门的工程师和研究人员来讨论这些具体课题。 2 历史背景 本世纪中叶对板料成形过程的分析研究已经开始,在60年代,数值程序(有限差分方法)被应用于轴对称拉伸过程分析中。虽然这种工作对于金属成形分析理论贡献巨大,但是它还不能应用于实际生产。 非线性有限元仿真打开了真实工业冲压过程仿真之路,1985年在安阿伯密歇根州的板材成形过程计算机建模专题讨论会提出了使用壳单元的弹塑性有限元方法对三维汽车车身面板成形过程建模。研究中,对升降机窗口外形的拉伸过程和甲板盖的压边圈夹紧过程进行了仿真,但它们尚处于测试和评价的阶段。因此,在这个会议中,几何建模方法 10月12日和简化的力学建模方法更受到业界赞赏,发表了许多关于成形仿真的文章,其中两个重要方向将使板料成形仿真提升到一个新的水平,一个是动力显式软件的应用,另一个是一步法的提出。在文献【16】中昂纳克和Mattiasson证明采用DYNA3D可对一个油底壳和散热器部分深拉深,可获得用静态显式软件ABAQUS无法获得的的深拉深形状,包括凸缘起皱。会后,一些用于板料成形仿真的动力显式软件如 PAM-STAMP 和OPTRIS 被开发出来,并且许多汽车企业开始尝试使用这些软件。另一方面,开发了基于Batiste al李和常18理念提出的一步法,其中使用一个大时间步长值,逆变形板料从最终的零件配置到最初的板料配置。这个方法的主要好处是计算时间非常短,并且,根据这个方法开发了许多软件,主要在欧洲如ISOPUNCH、SIMEX、FAST FORM3D和AUTO FORM ONE STEP。与此同时进行了根据静态隐式增量方法,这也许是仿真金属板变形的最适当的方法,进行软件开发。那些成果在汽车制造业NUMISHEET3 和NUMISHEET 6的三维金属板料有限元仿真的国际专题讨论会上被提出了。在我们访问的企业所用的静态隐式增量软件是MTLFRM和AUTO FORM。为了避免在静态隐式方法遇到的收敛问题,开发了静态显式软件lTAS3D。在最近十年期间,由于这些非常密集的研究,板料成形仿真发生了显著的变化,如表1所示。有几个独立的研究小组在10年前开发他们自己的有限元软件并且使用自己的软件解决他们的问题。然而,在今天,情况已显著改变了。有三组人: 研究员、软件开发商和软件用户。CIRP成员也许是属于研究员小组,而多数工作在汽车制造商和板料供应商那里的工程师属于软件用户小组。当软件开发商和用户建立了一个非常强的联系时,这两个小组之间的联系却相当弱了。 研究员软件用户软件用户软件开发商研究员1988 1998图1 最近十年期间金属板材成形仿真的趋势。3 企业中使用的软件 我们走访了列于表1至3 的12家公司。地区和公司的选择是基于我们的兴趣,而非基于系统化战略。表1 在欧洲用于汽车制造商和板料供应商的软件公司名称戴姆勒奔驰 雷诺汽车沃尔沃汽车Sollac 访问的地方Sindelfingen Plant德国Guyancourt Technocenter法国Olofstrom Engineering瑞典Montataire Centred tudes et de Development法国仿真软件AUTO FORMLS-DYNA3DLS-N I KE3DOPTRISINDEEDISOPUNCHAF ONE STEPSIMEXOPTRISPAM-STAMPAF ONE STEPAUTO FORMLS- DY NA3DISOPUNCHAUTO FORMPAM-STAMPOPTRISCAD系统CATIASYRKO(内部)I-DEASEUCLIDCATIANAMOS网格生成器MEDINADELTA MESHTRANSKHYPER MESHDELTA MESHAMORADELTA MESHTRANSK表2 在日本用于汽车制造商和板料供应商的软件公司名称马自达日产丰田新日本制钢访问的地方HeadquartersHiroshimaTechnical CenterAtsugiMotomachi PlantToyotaResearch CenterFuttsu仿真软件PAM-STAMPITAS3DAUTO-FORMPAM-STAMPLS-DYNA3DJOH-NIKE3DPAM-STAMPITAS3DCAD系统I-DEASGNC(内部)PUNCH(内部)Integrated CAD(内部)Pro-ENGINEERPRO-ENGINEER网格生成器GNCI-DEASFEMBPATRANK-SWADCADISCT表3 在美国用于汽车制造商和板料供应商的软件公司名称克莱斯勒汽车福特汽车国家钢铁美国钢铁访问的地方Technical CenterAuburn Hills, MichiganResearch LaboratoryDearborn, MichiganProduct Application CenterLivonia, MichiganTroy, Michigan仿真软件LSDYNA 3DAUTO FORMMTLFRMOPTRISAUTO FORM(EU)DYNA 3DFAST-FORM3DDYNA 3DCAD系统CATIAI-DEAS(PDGS)CATIA网格生成器DELTA MESHDYNAFORMHYPER MESHI-DEAS (模具表面) 自带板料网格软件 DYNA FORMHYPER MESH3.1欧洲工业 ( 1 )戴姆勒奔驰公司尽管1994年戴姆勒奔驰公司就引进了板料成形仿真,但在模具车间由受过训练的制造工程师生产化利用它从1996年1月开始的。如表1所示,目前金属成形团队正在使用7种软件。ISOPUNCH和AOTO FORM ONE FORM用于快速预先优化在零件设计部分零件形状,而不是用作几何工具。AUTO FORM更多地被用于评估几何工具原型的模具设计和系列模具设计。有时LS-DYNA3D或OPTRIS被用于执行更加确切的优化。INDEED和LS-DYNA3D被用于预测反弹。在Shindelfingen工厂,相当多的工程师已经被训练使用仿真软件, 其中有14 名AUTO FORM 工程师和 4名 OPTRlS 工程师。 ( 2 )雷诺汽车 在80年代期间,雷诺通过与各大学和研究机构合作在开发板料成形仿真的数值方法上付出很大的努力。其中最重要的成果之一是开发基于单步法的SIMEX软件。雷诺正在在模具设计部门使用此软件,并试图与SIMTEC软件公司进一步开发新的功能。其中一个功能是自动优化模具设计,另一个功能是能对影响成形过程的疲劳极限的评价。为了更准确地对形成效应的评价,在1993年,引入了 OPTRIS和PAM的编码。SIMEX和OPTRIS融入了FICTURE处理器,因此,这两个仿真软件可用于同一用户界面。( 3 )沃尔沃汽车公司 在1989年,沃尔沃,第一次表明了动态显式软件DYNA3D对钣金成形过程的仿真的适用性,并在经过5年的研究后,在冲压车间引入该软件实际使用。沃尔沃公司目前在产品设计和冲压工艺/模具设计中使用三种有限元软件:AUTOFORM ONE STEP、AUTO FORM 和LS-DYNA3D。所有仿真软件综合成CATIA/NAMOS ,这是一个专用于汽车制造的计算机辅助设计软件。目前11个训练有素的工程师能够使用这一系统执行仿真。 ( 4 )Sollac公司作为钢板供应商,Sollac利用有限元软件向金属板材用户提供技术服务。Solace开发了单步求解器ISOPUNCH并对其商业化。对于Solace而言,作为一种提供技术服务的途径,仿真已逐渐变得重要了。3.2日本产业 ( 1 )马自达 在1990年,通过与ESI和IBM的合作,马自达开始了评估PAM-STAMP可应用性的初步研究。对于日本汽车制造商在板料冲压部门使用有限元软件这是最早的尝试。虽然马自达内部模具的CAD系统可以提供信息以便优化模具表面,但是系统无法跟上快速变化的技术趋势,因此马自达决定引入使用有限元仿真。与欧洲汽车制造商不同,马自达只使用PAM-STAMP作为仿真软件,两名工程师在仿真环境中深入开展高级仿真。( 2 )日产汽车 于1994年,日产汽车开始使用ITAS3D,稍候再模具设计车间引入了PAMSTAMP和AUTO FORM。通过与Rilk合作,日产公司已经开发出了专业版本的ITAS3D,打算在早期阶段冲压作业中以获取正确的变形形状;变形由于重量和压边圈夹紧产生。大多数计算机试错都是在早期设计阶段进行,即在零件设计后使用大致接近模具面的几何图形。四个工程师从事零件仿真工作和仿真系统的开发。 ( 3 )日本丰田汽车 由于丰田汽车有一个非常先进的几何建模软件,模具的计算机辅助设计,和训练有素的模具设计工程师,对引进仿真他们没有太多的热情。然而,在锻压车间,高强度钢板和新面板形状被使用,如大型规模做片断侧面板,迫使丰田使用有限元仿真技术。LS-DYNA3D测试于1993年并被使用,丰田汽车公司自己拥有“虚拟试错系统”,其中包括友好的用户界面、LS-DYNA3D和一个新开发的数据库。目前四个仿真工程师在从事此系统的开发和应用。 ( 4 )新日本制钢 在日本,日本深冲压研究小组( JDDRG )在促进汽车和钢铁公司之间的密切联系。新日本制钢已主要是基于这个框架内与汽车公司开展了合作调研工作。在1991年,开发出了lTAS3D,而于1994年,又开发了出PAM-STAMP。有限元仿真主要优点是减少实验次数,这项技术手段在被正式使用之前主要用于解决薄板用户所提出的问题。3.3美国工业( 1 )克莱斯勒汽车公司 在美国,作为三大汽车制造商之一,克莱斯勒是最后使用仿真的。然而,于1994年,克莱斯勒开发的最先进的仿真系统采用了CATIA和LS- DYNA3D,成为生产模具进程的主流设计。所有主要的重要的面板都使用它仿真。使克莱斯勒采用当前先进的动态软件仿真的关键原因是计算机硬件和可视化工具开发与应用。 ( 2 )福特汽车公司 MTLFRM 是唯一用于板料成形仿真的静态隐式软件,早在70年代,由Tang和他的同事开发,并在福特广泛使用。这个软件主要优点是能够预测几乎所有成形瑕疵包括缺陷回弹,但缺点是计算时间长。然而,最近,通过引进先进的直接矩阵方法求解MTLFRM ,计算时间大大减少。动态显式软件运作也可以用于该工具设计阶段。 ( 3 )国家钢铁 在1996年,在北美洲,汽车制造商和金属板供应商之间有一个合作研究方案,叫做“汽车钢铁伙伴关系”,并在 1996年,国家钢铁决定利用有限元仿真技术与汽车制造商合作建造有共同技术的汽车制造基地,并使用了LS-DYNA3D和FASTFORM3D。这些软件被广泛应用于支持客户活动,如管状液压和拼焊板的形成。 ( 4 )美国钢铁公司 美国钢铁公司通过“汽车和钢铁伙伴关系”和“回弹项目”与汽车制造商密切合作。钢板使用性能的评估是一个重要的课题。例如,通过使动态代码和静态代码相结合来仿真面板局部凹痕抗力的形成过程。附件2:外文原文(复印件)Advance in FEM Simulation and its Related Technologies in Sheet Metal Forming1 Material fabrication Lab., RIKEN, Wako, Japan2 LPMTM-CNRS, University Paris Nerd, Valentines, France3 IIS, The University of Tokyo, Roping, Minato-key, Tokyo, JapanAbstract This paper presents an overview of the current state of sheet metal forming simulation and related technologies employed by automakers and steel sheet suppliers. For this purpose the authors visited industries in Europe, Japan, and the United States, to discuss the above-mentioned issues with engineers and researchers. Soft wares used in each industry are shown in tables and evaluations of finite element cods from industrial users are also summarized in a table. Based on that information the future direction of research in this field is suggested.Key words sheet metal forming, simulation, finite element method, CAD1 INTRODUCTIONThe automotive industry faces world-wide serious challenges: fierce market competition and strict governmental regulations on environment protection. The strategies of the automakers to meet these challenges are sometimes called the 3R Strategy: Reduction in time-to market, reduction in development costs to gain competitiveness, and reduction in the vehicle weight to improve fuel efficiency. The solutions to achieve this triple goal are essentially based on the implementation of CAD/CAE/CAM technologies in product development and process design.A very significant component of this endeavor is focused on the reduction of the tooling costs and the lead-time related to the stamping of auto body panels, even under increasing technological difficulties such as the use of aluminum alloys and high-strength steels, and requirements for higher geometrical accuracy of stamped parts. To deal with the problems brought about by these trends, which are beyond past experience, numerical methods for sheet forming simulation become more and more important, replacing the physical tryout of stamping dies by a computer tryout.The success of numerical simulation depends mainly on the advances in forming simulation codes, but progress in other related technologies is also important. Examples of related technology are the CAD systems that rapidly construct and modify tool surfaces, modern mesh generators to, more or less automatically, create Famishes CAD surfaces, visualization hardware and software, which enables users to grasp the huge data, and, finally, the computer hardware, which makes it possible to perform large scale simulations within reasonable time. The objective of the paper is to present an overview of the current state of sheet metal forming simulation and related technologies realized in industries, and to suggest the future directions of research. Many international conferences have been held and numerous papers are published related to sheet metal forming simulation in the 1980and 1990. However, the information obtained through these events is not sufficient to address the above issues. For this reason the authors decided to visit automotive industries and sheet steel suppliers in Europe, Japan and the United States to discuss these specific topics with engineers and researchers working at die shops and in sheet stamping sections of industries.2. HISTORICAL BACKGROUNDAnalytical study of sheet metal forming process was already started in the middle of this century 1, 2 and numerical procedures (finite difference methods) were applied to analyze ax symmetric drawing process in the 1960 3.Although such work contributed greatly to develop the theory of sheet metal forming analysis, this kind of approach could not be applicable to the actual production parts. Non-linear finite element methods opened the path for the simulation of real industrial stamping processes 4-6. A symposium on computer modeling of sheet metal forming process was held in Ann Arbor, Michigan in 1985 7, in which three dimensional auto-body panel forming processes are modeled by elastic-plastic finite element methods using shell elements8-9. In these studies drawing process of a lift window outer and binder wrapping process of a deck-lid were simulated, but they were in the stage of testing and evaluation, since finite element. Simulation was still an extremely time consuming and unreliable tool to the engineer in the press shop. So that, in this symposium, geometric modeling methods 10-12 and simplified mechanical modeling methods 13-14 were much more appreciated by participants from industries. In NUMIFORM 915, numerous papers concerning the sheet forming simulation were presented, and among them two important directions were suggested which brought sheet forming simulation to a new horizon; one was the application of a dynamic explicit code16 and the other was the proposal of the one step method. In16Honaker and Madison demonstrated the deep drawing of an oil-pan and a radiator part by using DYNA3D,obtaining deeply drawn shapes including wrinkle on the flange, which was not possible by using the static implicit code ABAQUS. After this conference several dynamic explicit codes specialized to the sheet forming simulation, such as PAM-STAMP and OPTRIS, were developed, and many automotive industries started to try these codes. On the other hand the one step method proposed by Batiste al. was developed based on idea of Chang and Lee, in which a single large time step was used, deforming the sheet inversely from the final part configuration to the initial blank configuration. A major advantage of this method is the very short computation time, and thus, based on this strategy, many codes have been developed mainly in Europe. These are ISOPUNCH, SIMEX, and FAST FORM3D and AUTO FORM ONE STEP. Meanwhile there were several activities to develop codes based on the static implicit incremental approach, which may be the most appropriate method for sheet metal forming simulation. Those endeavors are presented at the International Symposium on FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry 19, NUMISHEET3 20 and NUMISHEET 621.The static implicit incremental codes used in the industries, visited by us, are MTLFRM, INDEED 2, 3 and AUTO FORM 24-26 In order to avoid the convergence problem in the static implicit approach, the static explicit code lTAS3D was developed 27, 28. Due to these very intensive activities, the trend of sheet forming simulation has undergone significant change during the last decade, which may be able to be illustrated like Fig.1. There existed several independent research groups, 10 years before, which developed their own FE codes and solved their problems using their own codes. However, today, the situation has dramatically changed. There are three groups of people; researchers, software developers and software users. Carp members may belong to the group of researchers and most engineers working in automakers and sheet suppliers may belong to the group of software users. There is a rather thin relationship between these two groups, while a very strong relationship has been established between software developers and users.3. SIMULATION CODES USED IN INDUSTRIESWe visited 12 companies listed in Table 1 to 3. Choice of regions and choice of companies are based on our interest, and not on some systematic strategy.3.1 European Industries(1) Daimler Benz AGAlthough in 1994 sheet metal forming simulation was introduced in Daimler Benz, the productive use of it in die shop by trained tool engineers was since January 1996. As shown in Table 1, currently seven codes are being used by the metal forming team. ISOPUNCH and AUTO FORMONE STEP are used for a fast pre-optimization of shape of parts at the parts design section without tool geometry. AUTO FORM is most intensively used to evaluate the tool geometry for the prototype die design and also the series die design. Sometimes LS-DYNA3D or OPTRIS is employed to perform a more exact Optimization. INDEED and LS-NIKE3D are used for prediction of the spring backed shape. A rather large number of engineers have been trained to use the simulation codes.(2) Renault AutomobileRenault made significant efforts to develop numerical method for sheet metal forming simulation during the1980 .in cooperation with universities and research institutes. One of the important results from these attempts was the development of the code SIMEX based on the one step approach. Renault is utilizing this code in the die design section and is trying to develop further new technological features in cooperation with the software company SIMTEC. One feature is the auto maticoptimization of tool design 29and the other is evaluation of fatigue limit taking into account the effect of a forming process PO.In order to perform more accurate evaluation of the forming defect, OPTRIS and PAM-STAMP codes were introduced in 1993. SIMEX and OPTRIS are integrated into the pre and post processor FICTURE, so that both simulation codes can be used in the unified user interface.(3) Vivo Car CorporationVolvo, for the first time, demonstrated the applicability of dynamic explicit code DYNA3D to the simulation of sheet metal forming process in 1989 16, and after 5 years of research, the code was introduced in the press shop for actual use. Volvo currently uses three FE codes, AUTOFORM ONE STEP, AUTO FORM and LS-DYNA3D. All the simulation codes are integrated into CATIANAMOS, which is specialized CAD software for automakers. Currently 11 trained engineers are able to perform simulations using this system.(4) SolaceAs a steel sheet supplier, Solace uses FE codes to provide technical services to the sheet metal users. Solace developed a one step solver ISOPUNCH 23 and commercialized it. Simulation has become increasingly important for Solace as a means to provide technical services.3.2 Japanese industries(1) MazdaMazda began a preliminary study to evaluate the applicability of PAM-STAMP in cooperation with ESI and IBM in 1990. This was the earliest attempt, for Japanese automakers, to employ a FE code to the sheet stamping section. Although Mazda had an in-house die face CAD system which could provide information for optimizing the die face geometry, the system could not keep pace with the rapid changes in the technical trends and therefore Mazda decided to introduce FE simulation. In contrast to the European automakers, Mazda use only PAM-STAMP as the simulation code, and two engineers are intensively engaged in simulations.Advanced - simulation(2) Nissan MotorNissan started the use of ITAS3D in 1994, and PAMSTAMP and AUTO FORM were introduced a little later to the tool design section. Nissan has developed the special version of ITAS3D in cooperation with Rilke intending to obtain a correct deformation shape at the early stages of stamping operation; the deformation due tow eight and the binder wrapping. Most of the computer tryouts are performed during the early design stage, just after part design, using the roughly approximated die face geometry. Four engineers are engaged in simulation of new parts and also in the development of the simulation system.(3) Toyota MotorSince Toyota had very advanced geometric modeling software, Die Face CAD, and well trained die design engineers, they were not much enthusiastic for introduction of the simulation. However, the increase usage of high strength steel sheet in the press shop and introduction of new panel shapes, such as a large-size done-piece side panel, forced Toyota to employ FE simulation. LS-DYNA3D was tested in 1993 and introduced. Now, Toyota has their own “Virtual Tryout System”, which consists of well defined user interface, LS-DYNA3D and a newly developed data base. Currently four simulation engineers work on this system.(4) Nippon SteelThe Japan Deep Drawing Research Group (JDDRG) facilitates a close relationship between the automotive and steel companies in Japan. Mainly based on this framework, Nippon Steel has carried out cooperative research works with automotive companies.lTAS3D was introduced in1991, and PAM-STAMP in 1994. The main advantage of FEM simulation is the reduction in the number of experime
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。