附录A 外文翻译原文.pdf

管磨机的总体和结构设计

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图
编号:25631133    类型:共享资源    大小:3.25MB    格式:RAR    上传时间:2019-11-18 上传人:遗**** IP属地:湖北
19
积分
关 键 词:
管磨机 总体 结构设计
资源描述:
管磨机的总体和结构设计,管磨机,总体,结构设计
内容简介:
1ALGORYTHMS FOR SPEED AND STRECH CONTROL OF THE MAIN DRIVES OF AN STRECH-REDUCING TUBE MILL Dorian MACREA SC IPROLAM SA, Negustori 23, Bucharest, Romania: dorian.macreaiprolam.ro Costin CEPISCA Politehnica University, Spl.Indep.313, Bucharest, Romania Abstract. This paper shows the drive solution, the speed references calculation and the automatic control of all speeds range for the assembly of the 24 stands belonging to a stretch-reducing mill for seamless pipes. The correlation between the speed control and the stretching control of the rolled pipe is also shown. The experimental results are real data associated to the most recent project that has been executed at a seamless pipe plant in China. 1 Introduction The concept of common drives of the stands using distribution and differential gear-boxes represents a flexibility limitation of the performances of the mill but using it we can sensibly reduce the costs of the drives 1, 2. Therefore, when we are designing rolling mills of this type, we have to study carefully the necessity and the utility of choosing individual drives for each stand or common drives 3. If we are using a common reducer driven using main and overlapping drives the rotating speed ratios are changing simultaneously at all stands by control of the rotating speed at both (or one of the two) motors and maintaining the ratios for the rotating speeds of the rolling stands as been established by designing of the gears. Thus, in this drive system we can change only the speed average or the stretching average, but not the distribution of the deformation values in the individual sequence of the stands 4, 5. If we may give up the advantages of the individual speed control on the pipe deformation and if we except a larger slipping between the rolls and the rolled material (a current status at easier rolling programs) we could accept a common drive with distribution and differential gears 6, 7. 2 Electromechanical drive solution 2.1. Speed control The 4-motor drive consists of two drive groups which are mechanically separated from one another and, therefore, allow effective crop end control (CEC) even with close sequences of tubes. For this purpose, the entry mill stand group features exceptionally high gear ratios to obtain particularly large elongations (Figure 1). The roll speeds for stand position (i) are calculated as, In the entry side drive group: 2 Distribution & DifferentialGear No. 2Roll rotating speedSRM Rolling stands Distribution & DifferentialGear No. 1n1frommotor 1n2frommotor 2to standn1 + n2Motor1Motor2Motor3Motor4Common variation ofrotating speed ratiosDD1MD1MD2DD2 Figure 1: Schematic for SRM with Common Drive with Distribution and Differential Gears ( )( )11*21*)(IGRDDISDDiIGRSDDIGRMDISMDiIGRSMDispeedRoll+= (1) With respect to the drive group on the run-out side: ( )( )22*22*)(IGRDDISDDiIGRSDDIGRMDISMDiIGRSMDispeedRoll+= (2) The basis speed curve is characterized by high gear ratios in the entry drive group to enable positive differential gear action also in this area, i.e. identical direction of rotation of both basic and differential drives. During the steady-state phase of the rolling process, the basic drives of this system run at identical speeds while the differential drive units operate at exactly synchronized speeds. The speeds are related by the following term: 22*22*1IGRDDISDDIKDIGRMDISMDIKMIGRMDISDD+= (3) 22*11IGRMDISMDICFIGRMDISMD= (4) whereby IKM and IKD are constants. The motors are synchronized automatically in the basic automation system. 3Speed range forrolling programBasic speed curveCEC reserve Figure 2 : Speed diagrams of the tandem differential drive 2.2 Strech control The motor speeds at changes in elongation are calculated with the rotational speed values resulting from the calculation of the changes in speed. This method ensures that the operator can effect a change in elongation by means of a change in speed, if necessary, if motor speed limits are reached with no change in speed. One input value is used for the change in elongation. Input range: -100 . +100% Standard: 0 % (in rolling program) Calculation: Conversion of the entered value P: 100/*100/1maxPPPS+= (5) with Pmax as internal limiting value, e.g. 20% in the actual project. The following calculation results in a “pivoting” of the speed diagram with the pivot point IPSPP (Figure 2). One stand position is defined as the pivot point: IPSPP= IPSI. This has the effect that the entry speed and thus the throughput of material remain more or less constant. Each gearbox is assigned to one motor. A characteristic value which is determined together with the rolling program, determines the gear stage (0 or 1). The corresponding gear ratios are indicated in the Table 1. 4Further calculation of new motor speeds: IGRMD 1= 1 or gear ratio of the switching step chosen. The same is to be applied for IGRMD2, IGRDD1 and IGRDD2. For calculation reasons we define the variables X= IKM and Y = IKD. Table 1 Gear ratio IGRMD1 IGRDD1IGRMD2 IGRDD2 Gear stage 0 1 1 1 1 1 1 1 1 1 If only the stand group on the inlet side is occupied by roll stands and the drives on the run out side are not used to drive guide stands etc. the following applies: 2*112IGRMDIGRMDISMDISMD = and X=0 Y=1 (6) Final calculation of new motor speed: ()()1*1111*1IGRDDIPSFIGRSDDICFYRAPIPSIIGRSSDDICFZMWUAVSMDIGSRSDDIGRDIGRSDIGRSMIGRDDISDDIGRMDISMDUAVOSDD+= (7) ()()1*111111IGRMDMDIGRSDDIGRSIGRDDOSDDISDDIGRMDISMDOSMD+= (8) ()2*11*11*2IGRDDICFIGRMDOSMDXYIGRDDISDDYRAPOSDD= (9) 2*112IGRMDICFIGRMDOSMDOSMD= (10) After every calculation of a motor speed, limit values are checked and corrected accordingly. The change in inlet and outlet speed can be calculated with the basic equation: IOSAJGIS+=* (11) with: IS - Inlet or outlet speed after change in elongation m/s; G - Gradient relationship of inlet or outlet speed (m/s)/% (in Rolling program); AJ - Adjusted input value P %; IOS - Inlet or outlet speed at default settings of the motors m/s. If only the stand group on the inlet side is occupied by roll stands and the drives on the run-out side are not used to drive guide stands, the following applies: OSDD2 = 0, OSMD2 = 0. 5 Figure 3: Speed diagram ranges. 3 Experimental results Table 2 Figure 4: Experimental speed diagram Motor speeds: MD1 OD1 MD2 OD2 Nominal 970.74 503.42 970.74 913.10 P = 100% 1076.64 473.76 1076.64 1142.83 P = - 100% 864.83 533.07 864.83 683.37 vem/s va m/s Nominal 1.13 7.35 P = 100% 1.16 8.81 P = - 100% 1.10 5.89 6 References 1 Pehle H., Process Management System for Strech-Reducing Mills, Ed. MDM-MEER 1991. 2 Thieven P., Untersuchungen zur Innenpolygonbildung beim Streck-reduzierung von Rohren, Stahl und Eisen Revue , Nr.8/1996, p. 119 126. 3 Macrea D., Florea N., Tudor Gh., Considerations and Achievements in the Field of Process Control of Tube Rolling Mills, National Confernce for Metalurgy, Bucharest, 29-30 September 1997. 4 Pehle H., J., Eicholz H., Technologische Grundlagen und Entwiklungen des Streckreduzierens von Rohren, Ed. MDM-MEER 1998. 5 Manig G., Muehle U., Rueckert G., Quality Management in Tube Production with Online Measuring and Control Systems, Ed. Mannesmannrohren-Werke Sachsen GmbH 1998. 6 Macrea D., Florea N., Loghin M., Control and Measuring System for the Rolling Gap at a Continuous Mill, International Conference for Metrology and Measuring Systems METSIM2002, Bucharest 27-28 June 2002. 7 Macrea D., Cepisca C., Measuring System and Method of the Dimensions and Shape for Big Diameter Welded Pipes, TheInternational Symposium “Advanced Topics in Electrical Engineering” -ATEE 2004, Bucharest 25-26 November 2004. PROGRAM VARIABLES IKM, IKD Rolling mill constants. The values are determined when drawing up the rolling program. ISMD1 Speed of the basic motor of the inlet side drive group ISDD1 Speed of the differential drive motor of the inlet side drive group ISMD2 Speed of the basic motor of the o
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:管磨机的总体和结构设计
链接地址:https://www.renrendoc.com/p-25631133.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!