




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-本文为网络收集精选范文、公文、论文、和其他应用文档,如需本文,请下载-参数方程在解题中的广泛应用本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!参数方程在解析几何中是一个十分重要的内容,而且是高中数学的一个难点。近几年来高考对参数方程和极坐标的要求稍有降低,但是,可用参数方程求解的问题和内容有所增加且与三角函数联系紧密。本文以具体的例子阐述参数方程的广泛应用。 一、探求几何最值问题 有时在求多元函数的几何最值有困难,我们不妨采用参数方程进行转化,化为求三角函数的最值问题来处理。 例1(1984年考题) 在ABC中,A,B,C所对的边分别为a、b、c,且c=10,,P为ABC的内切圆的动点,求点P到顶点A、B、C的距离的平方和的最大值和最小值。 解 由,运用正弦定理,可得: sinAcosA=sinBcosB sin2A=sin2B 由AB,可得2A=-2B。 A+B=,则ABC为直角三角形。 又C=10,,可得: a=6,b=8,r=2 如图建立坐标系,则内切圆的参数方程为 所以圆上动点P的坐标为(2+2cos,2+2sin),从而=80-8cos 因02,所以 例2 过抛物线 (t为参数,p0)的焦点作倾角为的直线交抛物线于A、B两点,设0,当取什么值时,AB取最小值。 解 抛物线 (t为参数)的普通方程为=2px,其焦点为。 设直线l的参数方程为: (为参数)代入抛物线方程2px得: 又0 当=时,AB取最小值2p。 二、解析几何中证明型问题 运用直线和圆的标准形式的参数方程中参数的几何意义,能简捷地解决有关与过定点的直线上的动点到定点的距离有关的问题。 例3 在双曲线中,右准线与x轴交于A,过A作直线与双曲线交于B、C两点,过右焦点F作AC的平行线,与双曲线交于M、N两点,求证:FMFN=ABAC(e为离心率)。 证明 设F点坐标为(c,0), A点坐标为(,0)。又,设AC的倾角为,则直线AC与MN的参数方程依次为: 将、代入双曲线方程,化简得: 同理,将、代入双曲线方程整理得: FMFN=FMFN=ABAC。双曲线的一条准线与实轴交于P点,过P点引一直线和双曲线交于A、B两点,又过一焦点F引直线垂直于AB和双曲线交于C、D两点,求证:FCFD=2PAPB。 证明 由已知可得。设直线AB的倾角为,则直线AB的参数方程为 (t为参数)代入,可得:据题设得直线CD方程为 (t为参数)代入,得:,从而得,即得FCFD=2PAPB。 三、探求解析几何定值型问题 在解析几何中点的坐标为(x,y),有二个变元,若用参数方程则只有一个变元,则对于有定值和最值时,参数法显然比较简单。 例5 从椭圆上任一点向短轴的两端点分别引直线,求这两条直线在x轴上截距的乘积。 解 化方程为参数方程: (为参数) 设P为椭圆上任一点,则P(3cos,2sin)。 于是,直线BP的方程为: 直线的方程为: 令y=0代入BP,的方程,分别得它们在x轴上的截距为和。 故截距之积为:()()=9。 四、探求参数的互相制约条件型问题 例6 如果椭圆与抛物线=6(x-n)有公共点,试求m、n满足的条件。 分析 如果本题采用常规的代入消元法,将其转化为关于x的一元二次方程来解,极易导致错误,而且很难发现其错误产生的原因。若运用参数方程来解,则可“轻车熟路”,直达解题终点。 解 设椭圆的参数方程为 抛物线的参数方程为 (t为参数) 因它们相交,从而有: 由得: 代入得: 配方得:。即 19 -2n-m2 所以m-n2为两曲线有公共点的条件。注:特别地,当n=3/2时,即为广东省1985年高考理科第34题。本文从网络收集而来,上传到平台为了帮到更多的人,如果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院信息化建设2025年区域协同发展与资源共享研究报告
- PET塑料行业未来发展趋势与市场潜力解析
- 工程技术应用与实际试题及答案
- 年产20万吨多晶硅建设项目规划设计方案
- 工程经济运作模型分析试题及答案
- 2025市政工程行业动态试题及答案
- 黑龙江xx工厂建设可行性研究报告
- 食堂及餐饮服务外包协议
- 供应链协同平台2025年制造业数字化管理创新与实践报告
- 家具制造业个性化定制生产模式下的定制化生产流程再造报告
- 新教师入职培训新学期新教师入职培训课件
- 电梯修理(T)实操考试题目
- 中医临床医学针灸在强迫症治疗中的应用
- 数控程序的管理制度
- 绍兴市星域电子游艺厅建设项目环境影响报告
- 《企业会计准则第 25 号-保险合同》应用指南
- 电源接入 施工方案
- 核心素养视域下跨学科学习的内涵认识与实践路径
- 头颈部鳞癌治疗现状及免疫治疗进展
- 回弹法测试原始记录表
- 律师评析:实际施工人诉讼案例
评论
0/150
提交评论