毕业设计(论文)-主减速器及后桥设计说明书.doc_第1页
毕业设计(论文)-主减速器及后桥设计说明书.doc_第2页
毕业设计(论文)-主减速器及后桥设计说明书.doc_第3页
毕业设计(论文)-主减速器及后桥设计说明书.doc_第4页
毕业设计(论文)-主减速器及后桥设计说明书.doc_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

车辆工程学院毕业设计说明书符号说明 rr: 车轮的滚动半径np: 最大功率时发动机的转速vamax: 最高车速igH: 变速器最高档传动比Temax: 发机最大转矩N: 驱动桥数目iTL: 由发动机至所计算的主减速器从动齿轮之间的传系最档传动比T:上述传动部分传动效率K0:离合器产生冲击载荷时超载系数G2: 满载时一个驱动轮上的静载荷系数: 轮胎与路面间的附着系数rr: 车轮的滚动半径lB ilB : 分别为所计算的主减速器从动齿轮到驱动车轮之间的传动效率和传动比p:单位齿长上的圆周力 N/mm ig:变速器档传动比d1:主动齿轮节圆直径F:动齿轮的齿面宽: 半轴的扭转应力T :半轴的计算转矩d:半轴杆部直径 K :超载系数Ks:尺寸系数,反映材料性质的不均匀性,与齿轮尺寸及热处理等有关。Km:载荷分配系数Kv:质量系数,对于汽车驱动桥齿轮,当齿轮接触良好、周节及径向跳动精度高时前 言我国的自卸运输车生产真正起步于20世纪80年代,随着我国经济体制改革的深化,运输车辆的开发与发展对缓解运输紧张,疏通商品流通渠道,促进经济繁荣起了积极的作用。进入21世纪,自卸运输车取得了长足的发展。到2004年全国运输车总产量达430万辆。自卸运输车的特点是以柴油机为动力、中小吨位(1.5吨以下)、中低速度(50公里/时以下)、中间技术、高通过性、低成本和多功能。我国市场现有的自卸运输车主要有三种:1.由轻型货车简化,改装而成的运输车,主要用于,其载货量相对较大,达到35吨;2.载重量小,属实行较好的微型货车,以北汽福田为代表;3.由拖拉机改型而成的运输车。国家有关运输车生产与管理的政策法规:在整车生产方面,1996年原机械工业部与公安部联合颁布了1996年运输车生产企业及其产品目录,正式将自卸运输车的生产纳入有序轨道;在零部件生产方面,从1997年起原机械工业部开始对部分四轮运输车的零部件生产和销售实行合格证制度,首批实行合格证管理的零部件包括四轮运输车的前桥、后桥、悬架、转向器和轮辋等五类。随着经济的发展,收入的不断提高。许多人对自卸运输车提出较高的要求。对于四轮车来说,平头车相对于长头车来说,其美观、视野好、体积小、占据的空间小、机动性好,所以其销量好;自卸车与货箱车相比,自卸车方便、快捷、效率高,所以深受农民的喜欢。同样,由于单排座车比双排座车价格低,而且农民购置农用车的主要目的是生产,所以单派座车比较受欢迎。对市场上现有的自卸运输车的技术分析:1. 经济车速在2530km/h之间,一般在27km/h左右;2. 最高车速为50km/h;3. 较适合的配套发动机逐渐明朗;4. 通过性较好;5. 制动性能较好;6. 部分车型以增加后副钢板弹簧;7. 离合器性能比以往有所改进,扭矩贮备系数趋于合理。伴随着我国汽车工业的发展,和经济状况的不断改善,富裕的客户开始考虑购买舒适性较好的微型货车和皮卡。如何生产适合社会需求、适销对路的自卸运输车,值得我们去研究。第一章 驱动桥结构方案分析1.1 驱动桥概述驱动桥位于传动系统的末端,其基本公用是增大由传动轴传来的转矩,将转矩分配给左、右驱动车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;同时,驱动桥还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。 在一般的汽车结构中,驱动桥主要有主减速器、差速器、驱动车轮的传动装置和驱动桥壳等部件组成。对于各种不同类型的和用途的汽车,正确的确定上述机件的结构型式并成功地将它们组合成一个整体驱动桥,乃是设计者必须首先解决的问题。在汽车总体设计时,从整车性能出发确定了驱动桥的传动比,然而用什么型式的驱动桥,什么结构的主减速器和差速器等在驱动桥设计时要具体考虑的,绝大多数的发动机在汽车上是纵置的,为使扭矩传给车轮,驱动桥必须改变扭矩的方向,同时根据车辆的具体要求解决左右车轮的扭矩分配,如果是多桥驱动的汽车亦同时要考虑各桥间的扭矩分配问题。整体式驱动桥一方面需要承担汽车的重荷,另一方面车轮上的作用力以及传递扭矩所产生的反作用力矩皆由驱动桥承担,所以驱动桥的零件必须具有足够的刚度和强度,以保证机件可靠的工作。驱动桥还必须满足通过性急平顺性的要求。对驱动桥的基本要求可以归纳为:一、 所选择的主减速比应能满足汽车在给定使用条件下具有最佳的动力性和燃油经济性;二、 差速器在保证左、右驱动车轮能以汽车运动学所要求的差速滚动外并能将转矩平稳而连续不断的传递给左右驱动车轮;三、 当左右驱动车轮与地面的附着系数不同时,应能充分利用汽车的牵引力;四、 能承受和传递路面和车架或车厢间的铅垂力、纵向力和横向力,以及驱动时的反作用力矩和制动时的制动力矩;五 、驱动桥各零部件在保证其刚度、强度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车的平顺性;六 、轮廓尺寸不大以便于汽车总体布置并与所要求的驱动桥离地间隙相适应;七 、齿轮与其它传动件工作平稳,无噪声;八 、驱动桥总成及零部件设计应尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求;九 、在各种载荷及转速工况有高的传动效率;十 、结构简单、维修方便,机件工艺性好,制造容易。由于后桥结构基本已经固定,在后桥设计中需要改进的问题主要有:齿轮传动的噪声、振动;半轴的可靠性设计;后桥壳的应力分析;双曲面齿轮的设计方法等。 1.2 驱动桥型式及选择驱动桥分两大类:断开式驱动桥和非断开式驱动桥。驱动桥型式与整车有非常密切的关系。根据整车的通过性、平顺性以及操纵稳定性对悬架结构提出了要求,如悬架选择了合适的结构型式,而驱动桥的结构也必须与悬架相适应。因此,驱动桥的选型应从汽车的类型、使用条件和生产条件出发,并和其他各部件的结构型式与特性相适应,以保证汽车达到预期性能要求。由于本设计中所设计的车型为EQ3090自卸运输车,由行驶条件及成本出发,采用非独立悬架及非断开式驱动桥。这种型式驱动桥在汽车,尤其是载重汽车上应用相当广泛。它主要优点是:结构简单、制造工艺性好、成本低、可靠性高、维修调整容易等。本次设计的是EQ3090型自卸型货车的后桥,由经济性及低成本等因素考虑:故本次设计采用非断开式驱动桥,单级主减速器,双曲面齿轮传动,普通对称式圆锥行星齿轮差速器,全浮式半轴,整体式桥壳。第二章 主减速器设计 2.1 主减速器结构方案分析主减速器的结构型式,主要是根据齿轮类型、主动齿轮和从动齿轮的安装方法以及减速型式的不同而异。驱动桥主减速器为适应使用要求发展多种结构型式:如单级主减速器、双级主减速器、和单级主减速器加轮边减速等。由于农用运输车要求经济性较高,故采用单级主减速器。在现代汽车的驱动桥上,主减速器齿轮采用得最广泛的是“格里森”(Gleason)制或“奥利康”(Oerlikon)制得螺旋锥齿轮和双曲面齿轮。由于双曲面齿轮得螺旋角较大,则不产生根切得最少齿数可减少,所以可选用较少的齿数,这又利于的传动比传动。同时双曲面齿轮传动平稳噪声小、负荷大、结构紧凑等优点,所以本次设计采用双曲面齿轮传动。 2.2 主减速比及计算载荷的确定一、主减速器比i0的确定主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃油经济性都有直接影响。i0的选择应在汽车总体设计时和传动系的总传动比一起由整车动力计算来确定。i0=0.377rrnp/vamaxigH 式中 rr: 车轮的滚动半径 rr0.4836m np: 最大功率时发动机的转速 np2800r/min vamax: 最高车速 vamax90Km/h igH: 变速器最高档传动比 igH1i0=0.377rrnp/vamaxigH 0.3770.48362800/9015.71二、 齿轮计算载荷的确定通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情况下作用于主减速器从动齿轮上的转矩的较小者,作为载货汽车在强度计算中用以验算主减速器从动齿轮最大应力的计算载荷。按发动机最大转矩和最低档传动比确定从动齿轮计算转矩TgeTce=TemaxiTlK0T/N式中 Temax: 发机最大转矩Temax 403.3 NmN: 驱动桥数目 N=1iTL:由发动机至所计算的主减速器从动齿轮之间的传系最档传动比 iTL36.7T:上述传动部分传动效率 取T0.9K0: 离合器产生冲击载荷时超载系数 K0=1Tce = TemaxiTlK0T/N=403.336.710.9 /1 =4185.5 Nm按驱动轮打滑确定从动齿轮计算转矩 TcsTcs = G2rr/lBilB式中 G2: 满载时一个驱动轮上的静载荷系数 G2=60979.8=59750.6 N : 轮胎与路面间的附着系数 取0.85rr: 车轮的滚动半径 rr=0.4836mlB ilB : 分别为所计算的主减速器从动齿轮到驱动车轮之间的传动效率和传动比 lB0.9、 ilB1Tcs = G2rr/lBilB 59750.60.850.4836/0.91 = 23344.16 Nm 2.3 主减速器齿轮主要参数的计算一、 主、从动齿轮齿数的选择对于单级主减速器,当i0较大时,则应尽量使主动齿轮的齿数Z1取得小些,以得到满意的驱动桥离地间隙。一般Z1可取712,为了磨合均匀主、从动齿轮的齿数Z1、Z2之间应避免有公约数,为了得到理想的齿面重叠系数,其齿数之和应不少于40。查汽车车桥设计表3-12Z17 Z2i0Z1=40二、 从动齿轮节圆直径及端面模数的选择根据从动锥齿轮的计算转矩,按经验公式d2=kd2式中 d2:从动锥齿轮的节圆直径,;kd2:直径系数,取kd2=1316;Tj:计算转矩,Tj=4185.5Nm所以,d2=kd2 =14 =225.6圆整取 d2225mm从动锥齿轮大端模数 md2/Z2=5.62 取m6三、 齿面宽的选择 汽车主减速器双曲面齿轮的从动齿轮齿面宽F(mm)推荐为: F0.155d234.35mm取F35mm四、 双曲面齿轮的偏移距E轿车、轻型客车和轻型货车主减速器的E值,不应超过从动齿轮节锥距的40。图21 双曲面齿轮的偏移距和偏移方向五、 螺旋角的选择 螺旋角是在节锥表面的展开图上定义的,“格里森”制推荐用下式,近似预选主动齿轮螺旋角的名义值:125+5+9050.95式中: 1:主动齿轮名义螺旋角的预选值; z1、z2:主、从动齿轮齿数; d2:从动齿轮节圆直径 mm;E: 双曲面齿轮的偏移距 mm。六、 圆弧齿双曲面齿轮的几何尺寸设计1.确定主动小齿轮的轮齿数Z1.Z1=72.确定主动小齿轮的轮齿数Z2Z2=403. 齿数比的倒数=0.175注:(1)(2)分别表示前面第1个、第2个公式计算结果,以下如是4大齿轮的齿面宽F F=0.155d2=355. 小齿轮轴线偏移距EE=456. 大齿轮分度圆直径d2d2 =2257. 刀盘名义直径rd rd=114.38. 初定小齿轮螺旋角1=50 9.1角的正切值 tg1=1.19175410. 初选大齿轮的分锥角之余切值ctg2i =1.2(3)=0.21 11. sin2i的正弦值sin2i=0.97865312. 初定大齿轮中点分度圆半径Rm2=95.4347313. 大小螺旋角差值之正弦值sini=0.46146114. cosi之余弦cosi=0.8871615. 初定小齿轮的扩大系数(14)+(9)(13)=1.43710816.小齿轮中点分度圆半径换算值(3)(12)=16.7010817. 初定小齿轮中点分度圆半径Rm1=(15)(16)=24.0012618. 轮齿收缩系数TR=0.02(1)+1.06=1.219. 近似计算公法线在大齿轮轴线上的投影(17)=478.452420. 大齿轮轴线在小齿轮回转平面内偏置角正切tg=0.09405321. 角的余弦=1.00441322.角的正弦sin=0.0936423. 大齿轮轴线在小齿轮回转平面内偏置角=5.37304824.初算大齿轮回转平面内偏置角正弦值sin2=0.44797725. 2角正切tg2=0.50106726. 初算小齿轮分锥角正切tgr1=0.18688127. r1角余弦cosr1=0.98298228. 第一次校正小齿轮螺旋角的正弦sin2=0.45573229. 2的余弦cos2=0.89011730.第一次校正后小齿轮螺旋角正弦tg1=1.20024731. 扩大系数修正量(28)(9)-(30)=-0.0038732. 大齿轮扩大系数修正量的换算(3)(31)=-0.0006833. 校正后大齿轮分偏置的正弦sin1=(24)-(22)(32)=0.4480434. 1角正切tg1=0.50115635. 校正后小齿轮分锥角正切tgr1=0.18684836. r1角值r1=10.5835737. r1角余弦 cosr1=0.98298838.第二次校正后螺旋角差值的正弦sin1=0.45579439. 1角的值1=27.1160340. 1角的余弦cos1=0.89008541. 第二次校正后螺旋角差值的正切值tg1=1.19166142. 1 角值1=49.9978243. 1角余弦cos1=0.64281744.确定大齿轮螺旋角2=(42)-(39)=22.8817945. 2角余弦cos2=0.92130946. 2角的正切tg2=0.42204247. 大齿轮分锥角余弦ctgr2=0.20992248. r2的值 r2=78.1445349. r2的正弦sinr2=0.97866950. r2角的余弦cosr2=0.20544451.=24.3508652.=464.529853. (51)+(52)=488.880754.大齿轮分锥距在螺旋线上中点切线方向投影=89.8412955. 小齿轮分锥距在螺旋线上中点切线方向投影=83.7747156 极限齿形角正切-tg01=0.12664557. 极限齿形角负值-01=7.21779858. 01角的余弦cos01=0.99207659. =0.00619860. =0.00011561. (54)(55)=7526.42862. =0.00080663. (59)+(60)+(62)=0.00711964.108.111765. 齿线中点曲率半径rd=108.975366. 比较rd与rd比值1.04886267.(3)(50)=0.035953(左)1.0-(3)=0.825(右)68.=85.30786(左) (35)(37)=0.183669(右)69.(37)+(40)(67)(左)=1.01498970. 圆心至轴线交叉点的距离Zm=(49)(51)=23.8314371.大齿轮分锥顶点至轴线交叉点的距离Z=(12)(47)-(70)=-3.7976372.大齿轮分锥上中点锥距Am=97.5148273.大齿轮节锥距A0=114.95274.大齿轮的分锥上齿宽之半(73)-(72)=17.4372275.大齿轮在齿面宽中点处的齿工作高hgm=76.77.78. 轮齿两侧压力角的总和i=40。79. i角正弦sini=0.64278880.平均压力角20。81. 角的余弦cos=0.93969382. 角的正切tg=0.3639783.84. 双重收缩齿齿根角的总和D=85. 大齿轮齿顶高系数K=0.1386. 大齿轮齿根高系数Kb =1.150-(85)=1.0287. 大齿轮齿面宽中点处的齿顶高ham2=(75)(85)=1.02872188. 大齿轮齿面宽中点处的齿根高hfm2=(75)(86)+0.05=8.12150489. 大齿轮齿顶角2=(84)(85)=1.11556190. 2角正弦sin2=0.0194791. 大齿轮齿根角2=(84)-(89)=7.46600392. 2角的正弦sin2=0.12993893. 大齿轮大端齿顶高h2/=(87)+(74)(90)=1.3682194. 大齿轮的齿根高h2/=(88)+(74)(92)=10.3872695. 径向间隙C=0.15(75)+0.05=1.23698696. 大齿轮齿全高h=(93)+(94)=11.7554897. 大齿轮齿工作高hg=(96)-(95)=10.518598. 大齿轮的面锥角02=(48)+(89)=79.26014。99. 02角的正弦sin02=0.982483100. 02角的余弦cos02=0.18635101.大齿轮的根锥角R2=(48)-(91)=70.67852。102. R2角的正弦inR2=0.943677103.R2角的余弦cosR2=0.330868104.R2角的余切ctgR2=0.350616105. 大齿轮外圆直径d02=106. 大端分度圆中心到轴线交叉点的距离(70)+(74)(50)=27.4138107. 大齿轮外缘至小齿轮轴线的距离X02=(106)-(93)(49)=26.07477108. 109.110. 大齿轮面锥顶点至小齿轮轴线的距离Z0=(71)-(108)=-4.68301111. 大齿轮根锥顶点至小齿轮轴线的距离ZR=(71)+(109)=1.023266112.(12)+(70)(104)=103.7904113. 修正后小齿轮轴线在大齿轮回转平面那的偏置角正弦sin=114. 角的余弦cos=0.901122115. 角的正切tg=0.48114116.小齿轮顶锥角正弦in01=(103)(114)=0.298152117.小齿轮的面锥角01=17.34667。118.01角的余弦cos01=0.954518119. 01角的正切tg01=0.312359120.121.小齿轮面锥顶点至大齿轮轴线的距离G0=122.tg/=123. /=0.92496。cos/=0.99987124./=(39)-(123)左=26.119107。cos/=0.897327125.1=(117)-(36)=6.763103。 cos1=0.993042126.(113)(67)右-(68)右=0.174023-(113)(67)右-(68)右=-0.54136127.128.(68)左+(87)(68)右=85.4968 129.130.(74)(127)=19.42987131.小齿轮外缘至大齿轮轴线的距离BR=(128)+(130)(129)+(75)(126)左=105.55132.(4)(127)-(130)=19.43049133. 小齿轮轮齿前缘至大齿轮轴线的距离B1=(128)+(132)(129)+(75)(126)右=62.53676134.(121)+(131)=119.8138135.小齿轮的外缘直径d01=136.137.在大齿轮回转平面内偏置角正弦sin0=138. 在大齿轮回转平面内偏置角0=26.75671。139. 0角的余弦cos0=0.892926140.141.小齿轮根锥顶点至大齿轮轴线的距离GR=142.sinrR1=(100)(139)=0.166397143.小齿轮根锥角rR1=9.5784。144. rR1角的余弦cosrR1=0.986059145. rR1角的正切tgrR1=0.16875146.最小齿侧间隙Bmin=0.1524147.最大齿侧间隙Bmax=0.2032148.(90)+(92)=0.149408149.(96)-(4)(148)=6.544887150.在节平面内大齿轮内锥距Ai=(73)-(4)=80.07705双曲面齿轮副的理论安装距与另外几个尺寸参数的关系。图22 双曲面齿轮副的安装尺寸 2.4 主减速器齿轮强度计算一、 单位齿上的圆周力按发动机最大扭矩计算时: pTemaxig103/F式中:p:单位齿长上的圆周力 N/mm ;Temax:发动机最大扭矩 N/m;ig:变速器档传动比;d1:主动齿轮节圆直径 mm;F:动齿轮的齿面宽 mm 。pTemaxig103/F =403.36.43103 /35=1977.36 N/mm二、 齿轮的弯曲强度计算 w=2103TjK0KsKm/KvFzm2J 式中: Tj:齿轮的计算转矩 Nm; K0: 超载系数,取 K01; Ks:尺寸系数,反映材料性质的不均匀性,与齿轮尺寸及热处理等有关。当端面模数m1.6mm时,Ks; Km: 载荷分配系数,取Km1.10Kv:质量系数,对于汽车驱动桥齿轮,当齿轮接触良好、周节及径向跳动精度高时,可取Kv1;Z: 计算齿轮的齿数;m: 端面模数 mm;J:计算弯曲应力用的综合系数。图23 弯曲计算用综合系数J w=2103TjK0KsKm/KvFzm2J 21034185.511.10/13440620.3 437.05 MPa汽车主减速器齿轮的弯曲应力应不大于700 MPa , 满足要求。三、 齿轮的接触强度计算j 式中 T1j : 主动齿轮计算转矩 Nm; Cp :材料的弹性系数,对于钢制齿轮副取232.6/mm; d1 : 主动齿轮的节圆直径 mm; K0、 Kv 、Km :见上式说明; Ks:尺寸系数,可取 Ks1; Kf : 表面质量系数,对于制造精密的齿轮可取 Kf1; F : 齿面宽 mm,取齿轮副中较小的; J:计算弯曲应力用的综合系数。图22 接触强度计算用综合系数Jj = =2095.88 Mpa 主从动齿轮的接触应力是相同的,许用接触应力为2800 Mpa。满足条件要求。2.5 主减速器齿轮的材料及热处理汽车驱动桥主减速器的工作相当繁重,与传动系其它齿轮相比较,它具有载荷大、作用时间长、载荷变化多等特点。其损坏形式主要有:齿根弯曲折断、齿面疲劳点蚀、磨损和擦伤等。据此对驱动桥齿轮的材料及热处理应有一下要求:一 有高的弯曲疲劳强度和表面接触疲劳强度及较好的齿面耐磨性;二 轮芯部应有适当的韧性以适应冲击载荷,避免轮齿根部折断;三 钢材的锻造、切削与热处理等加工性能好,热处理变形小,以提高产品质量,减少成本并降低废品; 本次设计主减速器主、动齿轮材料选用20CrMnTi 。齿轮渗碳1.21.5、齿面淬火使其硬度达到5864。第三章 差速器设计 3.1 差速器机构方案分析根据汽车行驶运动学的要求和实际的车轮、道路以及他们之间的相互关系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别。例如,转弯时外侧车轮的行程总要比内侧的长。另外,即使汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求车轮行程不等。在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传递给左右车轮,则会由于左右驱动车轮的转速虽相等而行程却又不相等的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑的能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都装有差速器。差速器保证了汽车驱动桥两侧车轮在行程不等时具有以不同速度旋转的特性,从而满足汽车行驶运动学的要求。差速器的结构型式有多种,其主要的结构型式有:对称式圆锥行星齿轮差数器、防滑差速器,防滑差速器又可分为自锁式和强制锁止式。对于农用运输车来说,由于路面状况一般,各驱动车轮与路面的附着系数变化小,因此采用结构简单、工作平稳、制造方便、造价又低的对称式圆锥行星齿轮差数器。 图31 普通圆锥齿轮差速器的 工作原理简图 3.2 差速器齿轮主要参数的计算行星齿轮数目的选择:轿车常用2个行星齿轮,载货汽车和越野汽车多用个行星齿轮,少数汽车采用3个。本次设计采用4个行星齿轮。1球面半径/由经验公式 /=其中-行星齿轮的球面半径系数,=2.5-3.0,取=2.6-差速器计算转矩取Tcs 和Tce两者中较小值 =4185.5/=402锥齿轮的节锥距A0A0=(0.98-0.99)=39.2 mm3.行星齿轮齿数Z1和半轴齿数齿数Z2取Z1=10 Z2=16查机械设计实用手册 表8-3查机械设计实用手册 图8-34.节锥角5.锥齿轮大端端面模数meme=圆整后取me=4.56.压力角取压力角=22.5。 7.节圆直径de de1= me=41.55192 de2= me=66.483078.轴交角90。9.周节 t3.1416m13.0539510.齿面宽F=0.2837.65= 10.976 圆整后取b=1111.齿工作高 hg hg1.6m6.648307 mm12.齿全高h h1.788m+0.0517.480483 mm 13.齿顶高 hh20.430+m =2.387287 mmh1=hg- h2=4.261019 mm14.齿根高hh1=1.788m- h1=3.168464 mm h2=1.788m- h1=5.042195 mm15.径向间隙 c chhg0.83217616.齿根角1 arctan=4.6210662=arctan7.32956317.面锥角0011239.33495022 62.6156818.根锥角RR1=1-1=27.38432 R2=2-2=50.6650519.外圆直径d0d01=d1+2 h1cos1=48.77859 mm d02=d2+2 h2cos2=69.01359mm20.节锥顶点至齿轮外缘距离0 01- h1sin1=30.9832 mm 01- h2sin2=18.75154 mm21.理论弧齿厚ss1=t-s2=6.0096 mms2=-( h1- h2)tan-m=4.986 mm22.齿测间隙 B B=0.150 mm23弦齿厚 SXSX1=S15.914 mmSX2=S24.9068 mm 3.3 差速器齿轮强度计算差速器齿轮主要进行弯曲强度计算,而对疲劳寿命则不予考虑,这是由于行星齿轮在差速器的工在作中经常只起等臂推力杆的作用,仅在左右驱动轮有转速差时行星齿轮和半轴齿轮之间才有相对滚动的缘故。 汽车差速器齿轮的弯曲应力为:w=2103TK0KsKm/KvFz2m2J式中 T :差速器一个行星齿轮给予一个半轴的转矩 Nm; T627.825 Nm;Tj : 计算转矩;n : 差速器行星齿轮数目;Z2 : 半轴齿轮齿数; K0: 超载系数,取 K01; Ks: 尺寸系数,反映材料性质的不均匀性,与齿轮尺寸及热处理等有关。当端面模数m1.6mm时,Ks0.65; Km: 载荷分配系数,取Km1.10Kv:质量系数,对于汽车驱动桥齿轮,当齿轮接触良好、周节及径向跳动精度高时,可取Kv1;F :齿面宽 mmm :端面模数 J :计算汽车差速器齿轮弯曲应力用的综合 系数。图32弯曲计算用综合系数w=2103TK0KsKm/KvFz2m2J 906.735 MPa 差速器齿轮弯曲应力应不大于980 MPa,满足要求。第四章 半轴及桥壳设计 4.1 半轴的设计计算一、半轴的的型式从差速器传出来的扭矩经过半轴。轮毂最后传给车轮,所以半轴是传动系中传递扭矩的一个重要零件。 普通非断开式驱动桥的半轴,根据其外端的支承型式或受力状况的不同,分为:半浮式、3/4浮式和全浮式三种型式。半轴的首要任务是传递扭矩,但由于轮毂的安装结构的不同,非全浮式半轴除受扭矩外,还要受到车轮上的垂向力、侧向力以及牵引力或制动力所形成的纵向力。由于农用运输车行驶的路面一般,对舒适性要求不高,后桥所受载荷较大,因此采用全浮式半轴。二、半轴杆部直径的初选在设计时,全浮式半轴杆部直径的初步选取可按下式进行:d=式中 d :半轴杆部直径 mm; T : 半轴计算转矩 Nm; : 半轴扭转许用应力 MPa ,查表可知当采用40Cr、40MnB、40MnVB、40和45号钢等作为全浮式半轴的材料时,其扭转屈服极限可达784MPa。在保证安全系数在1.31.6范围内,半轴扭转许用应力可取为490588MPa。计算中取490 MPa d=27.22 mm圆整后取 d30 mm四、 半轴的强度计算 3式中 :半轴的扭转应力 MPa; T : 半轴的计算转矩 Nm; d : 半轴杆部直径 mm。3 365.55 MPa 490588 MPa,故满足要求。四、半轴的结构设计及材料与热处理为了使半轴的花键内径不小于其杆部直径,常常将加工花键的端部做的粗些,并适当地减小花键槽的深度,因此花键的齿数必须相应的增加,通常取10齿至18齿。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过度圆部分的圆角半径以减小应力集中。半轴多采用含铬的中碳合金钢制造,如40Cr,40CrMnMo,40CrMnSi,35CrMnSi35CrMnTi等。本次设计采用的材料是40Cr。半轴的热处理都采用调质处理的方法,调质后要求杆部硬度为HB388-444(突缘部分可降至HB248)。由于硬化层本身的强度较高,加之在半轴表面形成大残余压应力,以及采用喷丸处理,滚压半轴突缘根部过度圆角等工艺,使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高的十分显著。 4.2 桥壳的设计驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车载荷的作用,并将载荷传递给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、和铅垂力也是经过桥壳传到悬架或车厢上。因此桥壳既是承载件又是传动件,同时它又是主减速器、差速器及驱动车轮传动装置的外壳。驱动桥桥壳既是承载件又是传动件,因此桥壳需要有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量。桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。桥壳大体可分三种型式:可分式、整体式、组合式。 一 可分式桥壳可分式桥壳由两部分组成,每部分均有一个铸件壳体和一个压入其内部的轴管,轴管与壳体用铆钉连接。可分式桥壳制造工艺简单,主见速器轴承的支撑刚性好。但拆装,调整,维修很不方便,轴壳的刚度和强度受到结构的限制,现已很少采用,应用的也多在中小型汽车上。二 整体式桥壳整体式桥壳的刚度和强度都比较大。桥壳制成整体式结构后,主减速器和差速器装配总成再用螺栓安装到桥壳上,这种结构对主减速器的拆装,调整都比较方便。按照制造工艺的方法,整体式桥壳又可分为铸造式,冲压焊接式和扩张成形式三种。1. 铸造式桥壳这种结构的桥壳强度和刚度较大,钢板弹簧座与桥壳壳体铸成一体,桥壳可根据强度要求铸成适当的形状。与冲压桥壳相比,主要缺点是重量大,加工面多,制造工艺复杂等。2. 冲压焊接式桥壳钢板冲压焊接成型的整体式桥壳具有重量轻,工艺简单,材料利用率高等优点,并适合大量的生产,因此在中小吨位货车和矫车上被广泛采用。由于目前冲压设备有了长足发展,这种桥壳的优点更为突出,有许多重型车的桥壳也已采用了这种结构。3. 扩张成形式桥壳这种桥壳无论是刚度和强度都比较大,其重量也轻材料还省。但制造这种桥壳需要专用的扩张设备,而这种设备目前国内很少,所以成本太高而不能被广泛使用。三 组合式桥壳组合式桥壳是主减速器壳与部分桥壳铸成一体,而后用无缝钢管压入壳体两端,两者间用塞焊方法焊接在一起。它具有较好的从动齿轮轴承的支撑刚度,主减速器的装配调整也较分开式桥壳方便。然而这种桥壳要求有较高的加工精度,它的维修,装配,调整,与整体式桥壳相比仍较复杂。桥壳刚度与整体式相比也较差,常见于轿车,轻型货车的驱动桥壳。从运输车的实际使用情况及成本出发,采用冲压焊接式桥壳。桥管两端使用无缝钢管。结 论 本次设计的是EQ3090型自卸运输车的后驱动桥。经过仔细认真的计算,驱动桥的主减速器、差速器、半轴等主要零件的强度和刚度均符合要求。本设计在经指导老师的指导和参考相关资料信息的基础上,努力将各种结构方案最优化,并在保证质量的前提下,尽量降低成本。由于缺乏实际经验,在其设计过程中,出于安全性考虑各项计算的安全系数都较偏大。从本次设计中可以看到,双曲面锥齿轮的计算量相对比较大,并且针对的主要是轿车、越野汽车。如何简化计算过程,减轻工作量并总结出一套适合EQ3090型自卸运输车得设计计算,保证其正确性和安全可靠性, 值得我们进行进一步研究。另外,如何选择低成本、高质量的材料,值得考虑;对材料进行何种热处理,以提高其工艺性和强度还要进一步研究。在今后的设计工作中,如何利用前人已有的研究成果,并将其应用到实际生产中,是值得我们去深入探讨的。 由于本人的水平及经验有限,在本设计中难免出现疏漏和错误,请各位老师多批评指正。参考文献1. 陈家瑞汽车构造第三版北京:人民交通出版社, 1993,P275-P4042. 余志生汽车理论第三版北京:机械工业出版社, 2000,P57-P703. 刘惟信汽车设计 北京:清华大学出版社, 2001,P273-P4054. 王望予汽车设计第三版北京:机械工业出版社, 2005,P99-P1315. 阎荫棠公差设计与检测北京:机械工业出版社, 1996,P35-P736. 李遂亮主减速传动比优选方法河南农业大学学报, 1999,P8-P227. 诸文农底盘设计上 册北京:机械工业出版社,1981,P156-P3028. 刘小年机械制图第二版北京:机械工业出版社,2001,P1-P569. 蔡春源机械零件手册第三版天津:冶金工业出版社,1994,P154-P23010. 徐安汽车底盘第四版北京:机械工业出版社,2005,P234-P25711. 彭文生机械设计第二版北京:高等教育出版社,2002,P96-P15212. 陈殿云工程力学第一版兰州:兰州大学出版社,2003,P92-P10613. 小林明汽车工程手册第一版北京:机械工业出版社,1984,P189-P13114. 刘世恺汽车传动系构造原理第一版北京:人民交通出版社,1996,P168-P22215. 徐清福国外汽车结构图册第一版北京: 机械工业出版社,1996,P159-P167致 谢附录 自制Excel表格附表1 主减速器主、从动齿轮参数表小轮齿数z17大论齿数z240225D2齿数比的倒数z1/z20.175齿宽b23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论