




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版初一数学教案【篇一:2013-2014人教版七年级数学上册教案】 义务教育课程标准人教版 数学教案 七年级 上册 20132014学年度 - 1 -第一章 有理数 单元教学内容 1本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系 引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念 2通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用: (1)数轴能反映出数形之间的对应关系 (2)数轴能反映数的性质w-w-w.x-k-b-1.c.-o-m (3)数轴能解释数的某些概念,如相反数、绝对值、近似数 (4)数轴可使有理数大小的比较形象化 3对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分 4正确理解绝对值的概念是难点 根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质: (1)任何有理数都有唯一的绝对值 (2)有理数的绝对值是一个非负数,即最小的绝对值是零 (3)两个互为相反数的绝对值相等,即a=-a (4)任何有理数都不大于它的绝对值,即aa,a-a (5)若a=b,则a=b,或a=-b或a=b=0 三维目标 - 2 -1知识与技能 (1)了解正数、负数的实际意义,会判断一个数是正数还是负数 (2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解 (3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值 (4)会利用数轴和绝对值比较有理数的大小 2过程与方法 经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法 3情感态度与价值观 使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言 重、难点与关键 1重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值 2难点:准确理解负数、绝对值等概念 3关键:正确理解负数的意义和绝对值的意义 课时划分 11 正数和负数 2课时 12 有理数 5课时 13 有理数的加减法4课时 14 有理数的乘除法5课时 15 有理数的乘方 4课时 第一章有理数(复习) 2课时 - 3 -11正数和负数 第一课时 三维目标 一知识与技能 能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量 二过程与方法 借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性 三情感态度与价值观 培养学生积极思考,合作交流的意识和能力 教学重、难点与关键 1重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法 2难点:正确理解负数的概念 3关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解 教具准备 投影仪 教学过程 四、课堂引入 我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数 在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7% - 4 -五、讲授新课 (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“”的数)叫做负数而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面也加上“”(正)号,例如,+3,+2,+0.5,11+,?就是3,2,0.5,?一个数前面的“”、“”号叫做它的符号,这33 种符号叫做性质符号 (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数 (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数 (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0,是指一个确定的温度;海拔0表示海平面的平均高度 用正负数表示具有相反意义的量 (6)、 请学生解释课本中图11-2,图11-3中的正数和负数的含义 (7)、 你能再举一些用正负数表示数量的实际例子吗? (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量 六、巩固练习 课本第3页,练习1、2、3、4题 七、课堂小结 为了表示现实生活中的具有相反意义的量,我们引进了负数正数就是我们 - 5 -【篇二:2014年新人教版七年级下册全部数学教案】 2014新人教版 七年级数学下册 全 册 教 案 第五章 相交线与平行线 5.1.1相交线 教学目标:1理解对顶角和邻补角的概念,能在图形中辨认2掌握对顶角相等的性质和它的推证过程 3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力 重点:在较复杂的图形中准确辨认对顶角和邻补角 难点:在较复杂的图形中准确辨认对顶角和邻补角 教学过程 一、创设情境,引入课题 先请同学观察本章的章前图,然后引导学生观察,并回答问题 学生活动:口答哪些道路是交错的,哪些道路是平行的 教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备我们先研究直线相交的问题,引入本节课题 二、探究新知,讲授新课 1对顶角和邻补角的概念 学生活动:观察上图,同桌讨论,教师统一学生观点并板书 【板书】1与3是直线ab、cd相交得到的,它们有一个公共顶点o,没有公共边,像这样的两个角叫做对顶角 学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:2和4再也是对顶角紧扣对顶角定义强调以下两点: (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行 (2)对顶角是成对存在的,它们互为对顶角,如1是3的对顶角,同时,3是1的对顶角,也常说1和3是对顶角 2对顶角的性质 提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么 【板书】1与2互补,3与2互补(邻补角定义),l3(同角的补角相等) 学生活动:表格中的结论均由学生自己口答填出 五、布置作业:课本p3练习 5.1.2垂线(第一课时) 教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.毛 2.了解垂直概念,能说出垂线的性质经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线,会用三角尺或量角器过一点画一条直线的垂线. 重点两条直线互相垂直的概念、性质和画法. 教学过程 一、创设问题情境 1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线,思考这些给大家什么印象? 在学生回答之后,教师指出:垂直两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容. 2.学生观察课本p3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系? 教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中a是直角是特殊情况.其特殊之处还在于:当a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等. 3.师生共同给出垂直定义. 师生分清互相垂直与垂线的区别与联系:互相垂直指两条直线的位置关系;垂线是指其中一条直线对另一条直线的命名。如果说两条直线互相垂直时,其中一条必定是另一条的垂线,如果一条直线是另一条直线的垂线,则它们必定互相垂直。 4.垂直的表示法. 垂直用符号来表示,结合课本图5.15说明直线ab垂直于直线cd,垂足为o,则记为abcd,垂足为o,并在图中任意一个角处作上直角记号,如图. 5.简单应用 (1)学生观察课本p6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例. (2)判断以下两条直线是否垂直: 两条直线相交所成的四个角中有一个是直角; 两条直线相交所成的四个角相等; 两条直线相交,有一组邻补角相等; 两条直线相交,对顶角互补. 二、画图实践,探究垂线的性质 1.学生用三角尺或量角器画已知直线l的垂线. (1)已知直线l(教师在黑板上画一条直线l),画出直线l的垂线.待学生上黑板画出l的垂线后,教师追问学生:还能画出l的垂线吗?能画几条?通过师生交流,使学生明确直线l的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线l的垂线位置?在学生道出:在直线l上取一点a,过点a画l的垂线,并且动手画出图形. 教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直. (2)经过直线l外一点b画直线l的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直. 教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知直线垂直. 2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图: (1)过点p画射线mn的垂线,q为垂足; (2)过点p画射线bn的垂线,交射线bn反向延长线于q点; (3)过点p画线段ab的垂线,交线ab延长线于q点. 学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线. 三、课堂小结 本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗? 四、布置作业:课本p7练习,p9.3,4,5,9. 5.1.2垂线(第二课时) 教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。毛2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离. 教学重点:垂线段最短的性质,点到直线的距离的概念及其简单应用. 教学难点:对点到直线的距离的概念的理解. 教学过程 一、创设问题情境 1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田p处,如何挖渠能使渠道最短? 学生看图、思考. 2.教师以问题串形式,启发学生思考. (1)问题1,上学期我们曾经学过什么最短的知识,还记得吗? 学生说出:两点间线段最短. (2)问题2,如果把渠道看成是线段,它的一个端点自然是p,那么另一个端点的位置呢?把江河看成直线l,那么原问题就是怎么的数学问题. 问题2使学生能用数学眼光思考:在连接直线l外一点p与直线l上各点的线段中,哪一条最短? 3.教师演示教具,给学生直观的感受. 教具如图:在硬纸板上固定木条l,l外一点p,转动的木条a一端固定在点p.使木条l与a相交,左右摆动木条a,l与a的交点a随之变化,线段pa长度也随之变化.pa最短时,a与l的位置关系如何?用三角尺检验. 4.学生画图操作,得出结论. (1)画出直线l,l外一点p; (2)过p点出pol,垂足为o; (3)点a1,a2,a3在l上,连接pa、pa2、pa3; (4)用叠合法或度量法比较po、pa1、pa2、pa3长短. 5.师生交流,得出垂线的另一条性质. 教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短. 关于垂线段教师可让学生思考: (1)垂线段与垂线的区别联系. (2)垂线段与线段的区别与联系. 二、点到直线的距离 1.师生根据两点间的距离的意义给出点到直线的距离命名. 按照两点间的距离给点到直线的距离命名,教师板书: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. 在图5.1-9中,po的长度是点p到直线l的距离,其余结论pa、pa2长度都不是点p到l的距离. 2、练习课本p6练习 三、课堂小结:通过这节课,我们主要学习了什么呢? 四、布置作业:课本p8.6,p10.10,11,12,p10观察与猜想. 5.1.3同位角、内错角、同旁内角 教学目标:1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角. 重点:同位角、内错角、同旁内角的概念与识别; 难点:识别同位角、内错角、同旁内角。 教学过程 一、导入新课 前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。 二、同位角、内错角、同旁内角 如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。 我们来研究那些没有公共顶点的两个角的关系。 c 1 ab 8 1与2、4与8、5与6、3与7有什么位置关系? 在截线的同旁,被截直线的同方向(同上或同下). 具有这种位置关系的两个角叫做同位角。 同位角形如字母“f”。【篇三:人教版初一上数学教案(全册)】 1.1.1正数和负数 教学目的: (一)知识点目标: 1.了解正数和负数是怎样产生的。 2.知道什么是正数和负数。 3.理解数0表示的量的意义。 (二)能力训练目标: 1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的 符号化方法。 2.会用正、负数表示具有相反意义的量。 (三)情感与价值观要求: 通过师生合作,联系实际,激发学生学好数学的热情。 教学重点:知道什么是正数和负数,理解数0表示的量的意义。 教学难点:理解负数,数0表示的量的意义。 教学方法:师生互动与教师讲解相结合。 教具准备:地图册(中国地形图)。 教学过程: 引入新课: 1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演, 另一名在黑板上速记,看哪一组记得最快、最好? 内容:老师说出指令: 向前两步,向后两步;向前一步,向后三步; 向前两步,向后一步; 向前四步,向后两步。 如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出 2、2、1、3、2、1、4、2等。 师其实,在我们的生活中,运用这样的符号的地方很多,这节课, 我们就来学习这种带有特殊符号、表示具有实际意义的数-正数 和负数。 讲授新课: 1.自然数的产生、分数的产生。 2.章头图。问题见教材。让学生思考33、净胜球数与排名顺序、 3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在 这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加 上“十”(正号)表示正数。 举例说明:3、2、0.5、等是正数(也可加上“十”) 3、2、0.5、等是负数。 4、数0既不是正,也不是负数,0是正数和负数的分界。 0是一个确定的温度,海拔为0的高度是海平面的平均高度,0的 意义已不仅表示“没有”。 5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材 p5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的 1313本地某银行的存折,说出你知道的信息。 巩固提高:练习:课本p5练习 课时小结:这节课我们学习了哪些知识?你能说一说吗? 课后作业:课本p7习题1.1的第1、2、4、5题。 活动与探究:在一次数学测验中,某班的平均分为85分,把高于平 均分的高出部分记为正数。 (1)美美得95分,应记为多少? (2)多多被记作一12分,他实际得分是多少? 课后反思: 1.1.2正数和负数 教学目的: (一)知识点目标: 1.了解正数和负数在实际生活中的应用。 2.深刻理解正数和负数是反映客观世界中具有相反意义的理。 3.进一步理解0的特殊意义。 (二)能力训练目标: 1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。 2.熟练地用正、负数表示具有相反意义的量。 (三)情感与价值观要求: 通过师生合作,联系实际,激发学生学好数学的热情。 教学重点:能用正、负数表示具有相反意义的量。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度知识产权运营与管理服务合同
- 2025年度个性化自驾游车牌租赁合同范本
- 2025年智慧办公区全权运营及配套设施服务租赁合同
- 干股绩效考评协议
- 2025年智能电网升级改造工程劳务合作合同范本
- 2025年绿色能源项目技术研发合作协议书
- 暂住协议转租合同
- 2025年离婚协议中子女监护权明确转移及抚养费支付合同
- 2025年度高端职业健康体检设备租赁与定期保养协议
- 2025年福建省事业单位招聘考试通-用知识题库及解析
- 教职工开学安全知识培训课件
- 2025年公路交通水运三类人员试题及答案
- 2025年甘肃省公职招录考试(省情时政)历年参考题库含答案详解(5套)
- 期末必考题检测卷(三)(含答案)高一数学下学期人教A版必修第二册
- 2025年度以新质生产力助推高质量发展等继续教育公需科目试题及答案
- 站点考勤管理制度
- 高中特难英语题目及答案
- 园区改造运营方案(3篇)
- 烧山谅解协议书
- 全工程咨询管理办法
- 2025-2030中国重水市场运行态势与未来竞争力剖析报告
评论
0/150
提交评论