




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平均数基本公式:平均数=总数量总份数总数量=平均数总份数总份数=总数量平均数平均数=基准数每一个数与基准数差的和总份数基本算法:求出总数量以及总份数,利用基本公式进行计算.基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式一、算术平均数 例1: 用4个同样的杯子装水, 水面高度分别是4厘米、 5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米? 解:(45+7+8)4=6(厘米) 答:这4个杯子水面平均高度是6厘米。例2: 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分? 解:英语:(842+10)2=89(分) 语文: 89-10=79(分) 政治:862-8983(分) 数学: 91.52-83100(分) 生物: 895-(897983100)94(分) 答:蔡琛这次考试英语、语文、政治、数学、生物的成绩分别是89分、79分、83分、100分、94分。 二、加权平均数例3: 果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元? 解:总价:4.402+4.203+7.20557.4(元) 总千克数: 23510(千克) 单价:57.410=5.74(元) 答:混合后的什锦糖每千克5.74元。 三、连续数平均问题 例5: 已知八个连续奇数的和是144,求这八个连续奇数。 解:每组数之和:1444=36 中间两个数中较大:(362)219中间两个数中较小:19-2=17 答:这八个连续奇数分别为:11、13、15、17、19、21、23和25。 四、调和平均数 例6: 一个运动员进行爬山训练.从 A地出发,上山路长11千米,每小时行4.4千米.爬到山顶后,沿原路下山,下山每小时行5.5千米.求这位运动员上山、下山的平均速度。 解:上山时间: 114.4=2.5(小时) 下山时间:115.5=2(小时)上下山平均速度:112(2.5+2)=4(千米)答:上下山的平均速度是每小时4(千米)五、基准数平均数 例7: 中关村三小有15名同学参加跳绳比赛,他们每分钟跳绳的个数分别为94、95、86、93、87、89、95、92、89、90、93、87、94、91、90,求每个人平均每分钟跳绳多少个? 解:(94+95+90)1590151591(个)答:每人平均每分钟跳91个。习题:1.某次数学考试,甲乙的成绩和是184分,乙丙的成绩和是187分,丙丁的成绩和是188分,甲比丁多1分,问甲、乙、丙、丁各多少分? 解:甲乙丙之和:(1841871881)2280丙:28018496乙:1879691甲:1849193丁:931922.求1962、1973、1981、1994、2005的平均数。 解:2000(38271965)52000(85)52000(17)19833.缝纫机厂第一季度平均每月生产缝纫机750台,第二季度生产的是第一季度生产的2倍多66台,下半年平均月生产1200台,求这个厂一年的平均月产量。解:第一季度总量:75032250(台)第二季度总量:22502664566(台)下半年总量:120067200(台)全年总量:22504566720014016(台)平均月产量台)4.7个连续偶数的和是1988,求这7个连续偶数。解:中间数:19887284答:7个连续偶数分别为:278、280、282、284、286、288、290。不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;11.A、B两地相距30千米.甲骑自行车从A到B,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A到B,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B地.甲出发后多少分钟开始减速的?3612.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的,第二班取走200棵又取走剩下树苗的.第三班取走300棵又取走剩下树苗的,照此类推,第i班取走树苗100i棵又取走剩下树苗的.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了的时间走上坡路,然后用了的时间走下坡路,最后用了的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.22514.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?2.6 3.3归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。六年级数学下册归一问题典型应用题1、为民运输队用3辆运输车6小时运货360吨.照这样计算,用8辆同样的运输车运送2640吨货物,需要多少小时?2、2台拖拉机4小时耕地1公顷,照这样计算,用这样2台拖拉机耕地2.5公顷地,需要多少小时?3、某工厂用4台机床4.5小时加工零件720个,照这样计算,2小时要加工560各零件,需要多少台车床加工?4、自来水公司规定:“每人每月用水不超过2吨时,按每吨1.8元收费,超过2吨的部分按每吨5元收费。”照这样计算,王月家3口人,上月共用水8.4吨,应缴水费多少元?5、一个滴水的水龙头每天浪费掉10升水,照这样计算,这个水龙头一年要浪费水多少升?假设某市有1000个这样的水龙头,一天浪费水多少升?6、小明用20节废旧电池到回收中心换回4节新电池。照这样计算,要换回20节新电池需要多少节废旧电池?7、甲乙两人拿出同样多的钱,合买一箱苹果,甲分去12千克,乙分去18千克,结果乙要给甲6元,苹果每千克多少元?8、运送一批货物,用3辆大卡车8小时可以运完;用4辆小卡车9小时可以运完,现在用2辆大卡车和2辆小卡车同时运,几小时可以运完?9、一件工程,预计15个工人每天做4小时18天可以完成。如果每天增加3人,并每天工作时间增加1小时,要完成这件工程需要多少天?二、利润与折扣经典例题例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)解:定价是进价的1+35%打九折后,实际售价是进价的135%90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258(121.5%-1)=1200(元)答:每台DVD的进价是1200元例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价 是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)是乙店的定价(1-10%)(1+20%)是甲店的定价(1+15%)-(1-10%)(1+20%)=7%11.27%=160(元)160(1-10%)=144(元)答:甲店的进货价为144元。例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)分析:要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。解:设第二次降价是按x%的利润定价的。38%40%x%(1-40%)=30.2%X%=25%(1+25%)(1+100%)=62.5%答:第二次降价后的价格是原来价格的62.5%练习:1、某商品按每个7元的利润卖出13个的钱,与按每个11元的利润卖出12个的钱一样多。这种商品的进货价是每个多少元?2、租用仓库堆放3吨货物,每月租金7000元。这些货物原计划要销售3个月,由于降低了价格,结果2个月就销售完了,由于节省了租仓库的租金,所以结算下来,反而比原计划多赚了1000元。问:每千克货物的价格降低了多少元?3、张先生向商店订购了每件定价100元的某种商品80件。张先生对商店经理说:“如果你肯减价,那么每减价1元,我就多订购4件。”商店经理算了一下,若减价5,则由于张先生多订购,获得的利润反而比原来多100元。问:这种商品的成本是多少元?4、某商店到苹果产地去收购苹果,收购价为每千克1.20元。从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。如果在运输及销售过程中的损耗是10,商店要想实现25的利润率,零售价应是每千克多少元?5、小明到商店买了相同数量的红球和白球,红球原价2元3个,白球原价3元5个。新年优惠,两种球都按1元2个卖,结果小明少花了8元钱。问:小明共买了多少个球?6、某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。甲种贷款年利率为12,乙种贷款年利率为14。该厂申请甲、乙两种贷款的金额各是多少?7、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。这批钢笔的进货价每支多少元?8、某种蜜瓜大量上市,这几天的价格每天都是前一天的80。妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。若这10个蜜瓜都在第三天买,则能少花多少钱?9、商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。问:这批凉鞋共多少双?10、体育用品商店用3000元购进50个足球和40个篮球。零售时足球加价9,篮球加价11,全部卖出后获利润298元。问:每个足球和篮球的进价是多少元?综合行程问题综合行程基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度时间;路程时间=速度;路程速度=时间关键问题:确定运动过程中的位置和方向。相遇问题:速度和相遇时间=相遇路程(请写出其他公式)追及问题:追及时间路程差速度差(写出其他公式)流水问题:顺水行程=(船速+水速)顺水时间逆水行程=(船速-水速)逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)2水 速=(顺水速度-逆水速度)2流水问题:关键是确定物体所运动的速度,参照以上公式。过桥问题:关键是确定物体所运动的路程,参照以上公式。主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。例题1 狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米21x米,则狗跑5*4x20米。可以得出马与狗的速度比是21x:20x21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-201,现在求马的21份是多少路程,就是 30(21-20)21630米2甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)(10-8)(10+8)720千米。3在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?答案为两人跑一圈各要6分钟和12分钟解:60012=50,表示哥哥、弟弟的速度差6004=150,表示哥哥、弟弟的速度和(50+150)2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间2 4慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为53秒算式是(140+125)(22-17)=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。5在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300(5-4.4)500秒,表示追及时间55002500米,表示甲追到乙时所行的路程25003008圈100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。6一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒算式:1360(1360340+57)22米/秒关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出13603404秒的路程。也就是1360米一共用了4+5761秒。7猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。正确的答案是猎犬至少跑60米才能追上。解:由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*35/3a米。从而可知猎犬与兔子的速度比是2a:5/3a6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完8 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?答案:18分钟解:设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解9甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?答案是300千米。解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360(1+1/5)300千米从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米10一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?解:(1/6-1/8)21/48表示水速的分率21/4896千米表示总路程11快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3时间比为3:4所以快车行全程的时间为8/4*36小时6*33198千米12小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?解:把路程看成1,得到时间系数去时时间系数:1/312+2/330返回时间系数:3/512+2/530两者之差:(3/512+2/530)-(1/312+2/330)=1/75相当于1/2小时去时时间:1/2(1/312)1/75和1/2(2/330)1/75路程:121/2(1/312)1/75+301/2(2/330)1/75=37.5(千米)分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。 分数单位:把单位“1”平均分成几份,表示这样一份的数。百分数:表示一个数是另一个数百分之几的数。常用方法:逆向思维方法:从题目提供条件的反方向(或结果)进行思考。对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化同倍率法:总量和分量之间按照同分率变化的规律进行处理。浓度配比法:一般应用于总量和分量都发生变化的状况。1、三组少先队员植树,第一组种的棵树占总数的30%,第二组种的与第三组种的棵树比为0.9:1.2,如果第一组比第三组少种20棵,那么三组各种多少棵?2、修配厂三个车间共同生产一批零件,甲车间生产零件数占总数的40%,比丙车间多生产360只,而乙、丙生产零件数之比为7:5,三个车间各生产多少件?3、甲、乙两个仓库存大米重量比3:7,如果从乙仓库调2500千克大米,这时甲仓大米重量是乙仓库的32,求甲、乙两仓库各有多少千克大米?4、甲、乙两队原有人数比为7:3,甲队抽30人到乙队,则两队人数比为3:2,甲、乙两队原有多少人?5、小明读一本数,已读和未读的页数之比为1:5,如果再读30页,则乙读和未读的页数比为3:5,这本书共多少页?6、修一条路,原来已修的与未修的路程比为4:5,再修50米,则未修的占全长的94,这条路全长多少米?7、甲书架上的书与乙书架上的书之比为4:7,两书架各增加55本后,甲书架与乙书架上书之比为5:6,甲、乙两书架原来各有多少本书?8、小明的课外书是小芳课外书的6倍,如果两人各拿走2本,小明现在课外书是小芳的8倍,小明原有课外书多少本?9、A、B两种商品价格比为7:3,如果它们价格分别涨70元,它们价格比为7:4,这两种商品原来价格多少元?10、兄弟两人每年收入的比为4:3,每年支出的比为18:13,从年底到年初,他们都结余了720元,他们每年收入多少元?盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量基本题型:一次有余数,另一次不足;基本公式:总份数(余数不足数)两次每份数的差当两次都有余数;基本公式:总份数(较大余数一较小余数)两次每份数的差当两次都不足;基本公式:总份数(较大不足数一较小不足数)两次每份数的差基本特点:对象总量和总的组数是不变的。关键问题:确定对象总量和总的组数。1、幼儿园把一箱苹果分给一批小朋友,如果每人2个,则多18个,如果每人3个,则少12个。问幼儿园有多少个小朋友?一共有多少个苹果?(1812)(32)=3023018=782、一堆桃子分给一群猴子,如果每只猴子分10个桃子,则有两只猴子没有分到;如果每只猴子分8个桃子,则刚好分完。求有多少只猴子?多少个桃子?102(108)=10108=803、实验小学学生乘车春游,如果每车坐60人,则有15人上不了车;如果每车坐65人,恰好多出一辆车。问一共有几辆车?有多少个学生?(1565)(6560)=16601615=9754、学生分练习本,如果每人分4本,则多8本;如果有1人分10本,其余每人分6本,则缺18本。学生有多少人?练习本有多少本?18(106)8(64)=111148=525、小强从家到学校,如果每分走50米,上课就要迟到3分;如果每分走60米,就可以比上课时间提前2分到校。小强家到学校的路程是多少千米?(350260)(6050)=27(273)50=1500米=1.5千米 BAIDU_CLB_fillSlot( 920970 ); 6、张华离家到县城去上学,他以每分50米的速度走了2分后,发现按这个速度走下去就要迟到8分。于是他加快了速度,每分多走10米,结果到校时,离上课还有5分。张华家到学校的路程是多少?8505(5010)10=70(7028)50=4000米7、一组学生植树,每人栽6棵还剩4棵;如果其中3人各栽5棵,其余每人各栽7棵,正好栽完。这一组学生有多少人?一共栽多少棵?4(75)3(76)=101064=648、小红的爷爷买回一筐梨,分给全家人。如果小红和小妹两人每人分4个,其余每人分两个,还多出4个;如果小红一人分6个,其余每人分4个,又差12个。小红家有多少人?这筐梨有多少个?(422122)(42)=9422(92)4=269、学校有一批树苗,交给若干少先队员去栽,一次一次往下分,每次分一棵,最后剩下12棵不够分了;如果再拿来8棵树苗,那么每个少先队员正好栽10棵。参加栽树的少先队员有多少人?原有树苗多少棵?128=2010208=19210、有一批正方形的砖,排成一个大正方形,余下32块;如果将它们改排成每边比原来多一块砖的正方形,就要差49块。这批砖原有多少块?(32491)2=40404032=163211、某年级同学春游时租船游湖,若每只船乘10人,还多2个座位;若每只船多坐2人,可少租一条船,这时每人可节省5角钱。租一只船需要多少钱? (1022)2=55102=48480.5=2412、小李到市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元。已知牛肉比猪肉每千克贵8角。牛肉、猪肉各多少钱一千克?(0.81842)(2018)=4.24.20.8=513、学校买来一批篮球与排球分给各班,排球是篮球的2倍,若篮球每班分2个,多4个;若排球每班分5个,少2个。学校有几个班?篮球与排球各买了几个?(422)(522)=105102=48482=2414、用绳子量井深,把绳三折来量,井外余4米,把绳折四折量,井外余1米。求绳长和井深。整数解法:把绳三折来量,井外每折余4米,所以井外共余4(米);把绳四折来量,井外每折余米,所以井外共余(米)为什么把绳三折来量井外余米,而四折来量余米呢?这是因为在井内多了(折)的缘故,故井外余绳的差()米就是井内折的长,也就是井深米列式为:(4)()(米)井深()(米)绳长分数解法:把绳三折来量,井外余4米,就是指绳长的1/3比井深多4米;把绳四折来量,井外余米,就是指绳长的1/4比井深多1米;综合上面两句话,说明绳长的1/3比绳长的1/4多(4-1)3米。列式为:(41)(1/31/4)36(米).绳长36(1/3)48(米).井深答:井深米,绳长米方程解法:解:设井深x米.3(4+x)=4(1+x)比和比例比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。 比值:比的前项除以后项的商,叫做比值。比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不比例:表示两个比相等的式子叫做比例。a:b=c:d或比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。比例尺:图上距离与实际距离的比叫做比例尺。按比例分配:把几个数按一定比例分成几份,叫按比例分配。1甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快答案:甲收8元,乙收2元。解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*618元,“乙钓了两条”,相当于乙吃之前已经出资2*612元。而甲乙两人吃了的价值都是10元,所以甲还可以收回18-108元乙还可以收回12-102元刚好就是客人出的钱。2一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。3甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?解:原来甲.乙的速度比是5:4现在的甲:5(1-20)4现在的乙:4(1+20)4.8甲到B后,乙离A还有:5-4.80.2总路程:100.2(4+5)450千米4一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?答案为64:27解:根据“周长减少25”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。根据“体积增加1/3”,可知体积是原来的4/3。体积底面积高现在的高是4/39/1664/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高64/27:164:275某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?第二题:答案为65吨橘子+苹果30吨香蕉+橘子+梨45吨所以橘子+苹果+香蕉+橘子+梨75吨橘子(香蕉+苹果+橘子+梨)2/13说明:橘子是2份,香蕉+苹果+橘子+梨是13份橘子+香蕉+苹果+橘子+梨一共是2+1315份工程问题1甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/169/80表示甲乙的工作效率9/80545/80表示5小时后进水量1-45/8035/80表示还要的进水量35/80(9/80-1/10)35表示还要35小时注满答:5小时后还要35小时就能将水池注满。2修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/107/100,可知甲乙合作工效甲的工效乙的工效。又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x1x10答:甲乙最短合作10天3一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东中山大学附属口腔医院工勤事务岗工作人员(驾驶员)招聘1人模拟试卷及答案详解(夺冠系列)
- 小学防欺凌测试题及答案
- 工贸安全考试题及答案
- 告别诗考试题目及答案
- 高青网格员考试题及答案
- 企业人才招募分析模板及指南
- 合规操作流程承诺函9篇
- 2025年病案编码员资格证试题库(附答案)
- 2025年公共艺术音乐试卷及答案
- 数据资讯协作守秘承诺函6篇范文
- 食品安全双总监制度
- 【《城市社区居家养老服务优化分析-以F社区为例》5300字(论文)】
- 运动障碍康复护理课件
- 激发学生潜能班会课件
- 人教版五年级数学上册教学计划跨学科整合
- 2025至2030中国靶材用高纯铜行业动向追踪及发展契机可行性报告
- 衡阳市长乐矿业有限公司衡阳县双溪铅锌矿矿山生态保护修复方案
- 2025至2030中国急救箱急救包行业产业运行态势及投资规划深度研究报告
- 含充电桩租车位合同范本
- 2025届高考语文复习:赏析小说和散文中重要词语和句子的含义(高考新题型)课件
- 社会变迁下家庭教育的挑战与机遇
评论
0/150
提交评论