




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,6.2立方根,第六章实数,导入新课,讲授新课,当堂练习,课堂小结,1.了解立方根的概念,会用立方运算求一个数的立方根;2.了解立方根的性质,并学会用计算器计算一个数的立方根或立方根的近似值(重点、难点),学习目标,导入新课,某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?,情境引入,讲授新课,问题:要做一个体积为27cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?,解:设正方体的棱长为x,则,这就是要求一个数,使它的立方等于27.,因为,所以x=3.正方体的棱长为3.,想一想(1)什么数的立方等于-8?(2)如果问题中正方体的体积为5cm3,正方体的边长又该是多少?,-2,立方根的概念,一般地,一个数的立方等于a,这个数就叫做a的立方根,也叫做a的三次方根记作.,立方根的表示,一个数a的立方根可以表示为:,根指数,被开方数,其中a是被开方数,3是根指数,3不能省略.,读作:三次根号a,,填一填:根据立方根的意义填空:,因为=8,所以8的立方根是();,因为()3=0.125,所以0.125的立方是();,因为()30,所以0的立方根是();,因为()38,所以8的立方根是();,因为()3,所以的立方根是().,0,2,-2,0,-2,立方根的性质,一个正数有一个正的立方根;,一个负数有一个负的立方根,,零的立方根是零.,立方根是它本身的数有1,-1,0;平方根是它本身的数只有0.,知识要点,每个数a都有一个立方根,记作,读作“三次根号a”.如:x3=7时,x是7的立方根,注意:这个根指数3绝对不可省略.,类似开平方运算,求一个数的立方根的运算叫作“开立方”.,注:“开立方”与“立方”互为逆运算,典例精析,例1求下列各数的立方根:,(1),(2),(3),(4),(5),(5)-5的立方根是,(3),(4)0.216;,(5)5.,因为=_,=_,所以_;因为=_,=_,所以_;,2,2,=,3,3,=,你能归纳出立方根的另一性质吗?,两个,互为相反数,一个,为正数,0,0,没有平方根,一个,为负数,平方根与立方根的区别和联系,可以为任何数,非负数,典例精析,例3计算:.,解:原式=3+2-(-1)=5+1=6.,例2的算术平方根是.,2,例4用计算器求下列各数的立方根:343,-1.331.,由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.,不同的计算器的按键方式可能有所差别!,例5用计算器求的近似值(精确到0.001).,用计算器计算,你能发现什么规律?用计算器计算(精确到0.001),并利用你发现的规律求,的近似值.,=6,=0.6,=0.06,=60,小结:被开方数的小数点向左或向右移动3n位时立方根的小数点就相应的向左或向右移动n位(n为正整数).,当堂练习,0.5,-3,10,1,2.比较3,4,的大小.,解:33=27,43=64,因为275064,所以34,3.立方根概念的起源与几何中的正方体有关,如果一个正方体的体积为V,那么这个正方体的棱长为多少?,解:,4.求下列各式的值.,(1),(2),(3),(4),=0.3,=,=,=,=,=,5.比较下列各组数的大小.,(1)与2.5;(2)与.,解:因为=92.53=15.625所以15.625所以2.5,因为=3所以3所以,若=2,=4,求的值.,解:=2,=4.x=23,y2=16,x=8,y=4.x+2y=8+24=16或x+2y=824=0.=4或=0.,拓展提升,性质,定义,正数的立方根是正数,负
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉字的六种结构方式
- 2025-2026年北京市中考英语综合提高练习试卷4
- 高端消费品市场需求研究
- 2025年国际劳动合同范本下载
- 水质标准基本知识培训课件
- 酒店网络安全方案
- 智算中心虚拟化平台部署与管理方案
- 混凝土运输途中振动控制方案
- 输电线路隐患排查与整改方案
- 建筑工程施工中污染控制与治理方案
- 员工应聘登记表(齐全版)
- 手术室停电停水应急预案
- 人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计
- 《高级统计实务和案例分析》和考试大纲
- 韦莱韬悦-东方明珠新媒体集团一体化职位职级体系方案-2018
- 2024新版(外研版三起孙有中)三年级英语上册单词带音标
- 注塑缺陷的原因分析与解决对策培训教程
- 中欧班列课件
- 2025年九省联考新高考 物理试卷(含答案解析)
- 口腔颌面外科消毒和灭菌-手术区的消毒消毒巾铺置法(口腔科技术)
- 医院标识标牌采购投标方案(技术方案)
评论
0/150
提交评论