方程的根与函数的零点教学设计_第1页
方程的根与函数的零点教学设计_第2页
方程的根与函数的零点教学设计_第3页
方程的根与函数的零点教学设计_第4页
方程的根与函数的零点教学设计_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 11 方程的根与函数的零点教学设计 本资料为 WoRD 文档,请点击下载地址下载全文下载地址莲山课 件 m 教学设计 方程的根与函数的零点 作者:董雁飞,黑龙江大庆实验中学教师本教学设计获第五届全国高中青年数学教师优秀课观摩与评比活动优秀课一等奖 整体设计 教学目标 知识与技能 1结合方程根的几何意义,理解函数零点的定义; 2结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系; 3结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法 过程与 方法 1通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯; 2通过数形结合思想的渗透,培养学生主动应用数学思想的意识; 2 / 11 3通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法; 4通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力 情感、态度与价值观 1让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值; 2培养学生锲而不舍的探索精神和严密思考的良好学习习惯; 3使学 生感受学习、探索发现的乐趣与成功感 教学重点与难点 教学重点:零点的概念及零点存在性的判定 教学难点:探究判断函数的零点个数和所在区间的方法 教学的方法与手段 授课类型新授课教学方法启发式教学、探究式学习 教学课件自制 Powerpoint 课件多媒体设备计算机 教学过程 【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标 教师活动:用屏幕显示 第三章 函数的应用 方程的根与函数的零点 3 / 11 教师活动:这节课我们来学习第三章 函数的应用通过第二章的学习,我们已经认识了指数函数、 对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题为此,我们还要做一些基本的知识储备方程的根,我们在初中已经学习过了,而我们在初中研究的 “ 方程的根 ” 只是侧重 “ 数 ” 的一面来研究,那么,我们这节课就主要从 “ 形 ”的角度去研究 “ 方程的根与函数零点的关系 ” 教师活动:板书标题 (方程的根与函数的零点 ) 【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想 教师活动:请同学们思考这个问题用屏幕显示判断下列方程是否有实根,有几个实根? (1)x2 2x 3 0; (2)lnx 2x 6 0. 学生活动:回答,思考解法 教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢? 学生活动:思考作答 4 / 11 教师活动:用屏幕显示函数 y x2 2x 3 的图象 学生活动:观察图象,思考作答 教师活 动:我们来认真地对比一下用屏幕显示表格,让学生填写 x2 2x 3 0 的实数根和函数图象与 x 轴的交点 学生活动:得到方程的实数根应该是函数图象与 x 轴交点的横坐标的结论 教师活动:我们就把使方程成立的实数 x 称为函数的零点 【环节三:形成概念,升华认知】引入零点定义,确认等价关系 教师活动:这是我们本节课的第一个知识点板书 (一、函数零点的定义:对于函数 y f(x),使方程 f(x) 0 的实数x 叫做函数 y f(x)的零点 ) 教师活动:我们可不可以这样认为,零点就是使函数值为 0的点? 学生活动: 对比定义,思考作答 教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系? 学生活动:思考作答 教师活动:这是我们本节课的第二个知识点板书 (二、方程的根与函数零点的等价关系 ) 教师活动:检验一下看大家是否真正理解了这种关系如果已知函数 y f(x)有零点,你怎样理解它? 5 / 11 学生活动:思考作答 教师活动:对于函数 y f(x)有零点,从 “ 数 ” 的角度理解,就是方程 f(x) 0 有实根,从 “ 形 ” 的角度理解,就是图象与 x 轴有交点从我们刚才的探究过程中,我们知道 ,方程f(x) 0 有实根和图象与 x 轴有交点也是等价的关系所以函数零点实际上是方程 f(x) 0 有实根和图象与 x 轴有交点的一个统一体 在屏幕上显示: 教师活动:下面就检验一下大家的实际应用能力 【环节四:应用思想,小试牛刀】数学思想应用,基础知识强化 教师活动:用屏幕显示 求下列函数的零点 (1)y 3x; (2)y log2x; (3)y 1x; (4)y 学生活动:由四位同学分别回答他们确定零点的方法画图象时要求用语言描述 4 个图象的画法 教师活动:根据学生的描述,在黑板上 作出图象 (在接下来探究零点存在性定理时,图象会成为同学们思考问题的很好的参考 ) 教师活动:我们已经学习了函数零点的定义,还学习了方程的根与函数零点的等价关系,在这些知识的探究发现中,我6 / 11 们也有了一些收获,那我们回过头来看看能不能解决 lnx2x 6 0 的根的存在性问题? 学生活动:可受到化归思想的启发应用数形结合进行求解 教师活动:用屏幕显示学生所论述的解题过程这种解法充分运用了我们前面的解题思想,将未知问题转化成已知问题,将一个图象不会画的函数转化成了两个图象都会画的函数,利用两个函数图象的交点 解决实根存在性问题看来我们的探究过程是非常有价值的 教师活动:如果不转化,这个问题就真的解决不了吗?现在最棘手的问题是 y lnx 2x 6 的图象不会画,那我们能不能不画图象就判断出零点的存在呢? 【环节五:探究新知,思形想数】探究图象本质,数形转化解疑 教师活动:我们看到,当函数图象穿过 x 轴时,图象就与 x轴产生了交点,图象穿过 x 轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示 y x2 2x 3 的函数图象,多次播放抛物线穿过 x 轴的画面 学生活动:通过观察图象,得出函数零点的左右两侧函数值异号的结论 教师活动:好!我们明确一下这个结论,函数 y f(x)具备什么条件时,能在区间 (a, b)上存在零点? 学生活动:得出 f(a)f(b) 0 的结论 7 / 11 教师活动:若 f(a)f(b) 0,函数 y f(x)在区间 (a,b)上就存在零点吗? 学生活动:可从黑板上的图象中受到启发,得出只有在 a,b上连续不断的函数,在满足 f(a)f(b) 0 的条件时,才会存在零点的结论 【环节六:归纳定理,深刻理解】初 识定理表象,深入理解实质 教师活动:其实同学们无形之中已经说出了我们数学中的一个重要定理,那就是零点存在性定理这是我们本节课的第三个知识点板书 (三、零点存在性定理 ) 教师活动:用屏幕显示 (函数零点存在性定理: 如果函数 y f(x)在区间 a, b上的图象是连续不断的一条曲线,并且有 f(a)f(b) 0,那么,函数 y f(x)在区间 (a, b)内有零点 即存在 c(a , b),使得 f(c) 0,这个 c 也就是方程 f(x) 0 的根 ) 教师活动:这个定理比较长,找个同学给大家读一下 ,让大家更好地体会定理的内容 学生活动:读出定理 教师活动:大家注意到了吗,定理中,开始时是在闭区间 a,b上连续,结果推出时却是在开区间 (a, b)上存在零点你8 / 11 怎样理解这种差异? 学生活动:思考作答 教师活动:虽然我们已经得到了零点存在性定理,但同学们真的那么坦然吗?结合黑板上的图象,再结合定理的叙述形式,你对定理的内容可有疑问? 学生活动:通过观察黑板上的板书图象,大致说出以下问题: 1若函数 y f(x)在区间 a, b上连续,且 f(a)f(b) 0,则 f(x)在区间 (a, b)内会是只有一个零点吗? 2若函数 y f(x)在区间 a, b上连续,且 f(a)f(b) 0,则 f(x)在区间 (a, b)内就一定没有零点吗? 3在什么条件下,函数 y f(x)在区间 (a, b)上可存在唯一零点? 教师活动:那我们就来解决一下这些问题 学生活动:通过黑板上的图象举出反例,得出结论 1若函数 y f(x)在区间 a, b上连续,且 f(a)f(b) 0,则只能确定 f(x)在区间 (a, b)内有零点,有几个不一定 2若函数 y f(x)在区间 a, b上连续,且 f(a)f(b) 0,则 f(x)在区间 (a, b)内也可能有零点 3在零点存在性定理的条件下,如果函数再具有单调性,函数 y f(x)在区间 (a, b)上可存在唯一零点 【环节七:应用所学,答疑解惑】把握理论实质,解决初始9 / 11 问题 教师活动:现在我们不用画出图象也能判断函数零点是否存在,存在几个了那解决 lnx 2x 6 0 的根的存在性问题应该是游刃有余了 用屏幕显示 判断下列方程是否有实根,有几个实根? lnx 2x 6 0 学生活动:通过对零点存在性的探究和理解 ,表述该问题的解法 . 【环节八:归纳总结,梳理提升】总结基础知识,提升解题意识 教师活动:本节课的知识点已经在黑板上呈现出来了,但最重要的,也是贯穿本节课始终,起到灵魂作用的却是三大数学思想,即化归与转化的数学思想,数形结合的数学思想,函数与方程的数学思想数学思想才是数学的灵魂所在,也是数学的魅力所在,对我们解决问题起着绝对的指导作用愿我们每个同学在今后的学习中体味、感悟、应用、升华! 【环节九:理论内化,巩固升华】整理思想方法,灵活应用解题 设置四个练习题,检验学生对本节课内容的掌握情况,增强学生对所学新知的应用意识 10 / 11 1函数 f(x) x(x2 16)的零点为 ( ) A (0,0), (4,0) B 0,4 c ( 4,0), (0,0), (4,0)D 4,0,4 2已知函数 f(x)是定义域为 R 的奇函数,且 f(x)在 (0,) 上有一个零点,则 f(x)的零点个数为 ( ) A 3B 2c 1D不确定 3已知函数 f(x)的图象是连续不断的,有如下对应值表: x1234567 f(x)239 711 5 12 26 那么函数在区间 1,6上的零点至少有 ( ) A 5 个 B 4 个 c 3 个 D 2 个 4函数 f(x) x3 3x 5 的零点所在的大致区间为 ( ) A ( 2,0)B (1,2)c (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论