




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 5 浅谈高中数学思维能力培养之重要性 我们对周围世界的认识过程,从感觉、知觉到表象,都是我们对周围世界的直接反映,是对客观事物的个别属性、整体和外部联系的反映。然而,并非一切事物都是被我们直接地感知到,还需要以一定的知识为中介,间接地去反映和认识客观事物,这就是思维,它是认识的高级阶段。 高中数学的特点,就是更加注重对于思维能力的培养。它要求一位高中生,不再是简单地去认识、记忆一些数学现象与数学问题。它强调的是同学们在以往学习的基础上,对于自然界数的概念,有一定的认识 ,具备一些基本知识的前提下,主观能动地去学习,即自学能力,能够独立地去思考,分析问题的能力,这一点是与以往的学习迥然不同的。例如,这样一个问题,对于二次函数 y ax bxc(a0) ,在初中,同学们知道,当 a 0 时,则函 数 y 具有极小值 (4ac b2) 4a,当 a 0 时,函数具有极大值, (4ac b2) 4a。 作为一个高中生, 这样简单地记住是远远不够的,记得,我在上课时曾经提问这个问题。一些同学能够很快地给出关于二次函数极值问题的答案,但是当我问这是为什么原因时,同学竟然茫然不知所 答。显然这些同学并未真正理解并掌握这个知识点,所以就不能运用它解决一些关于函数的2 / 5 问题,如对于 y e( x2 2x 3)攪写出它的值域以及单调区间, 有些同学就感到束手无策,实际上对于, y x2 2x 3,这个函数, 同学们应该知道它的图象是一条抛物线,由于 a 0,开口向下,以 x 1 为对称轴,如右图,当x 从 1 时, y随 x 的增大而增大, y 也随 x 的增大而增大。当 x 从 1 时, y随 x 的增大而减少, y 也随 x 的增大而减小。 对于求函数值域,从图象上把握或者把 y x 攩 2 攪 2x 3 变形为 y (x 1)2 4,就可以得到,当 x 1,y具有最大值, 4, y 具有最大值, e4,可见, 在真正理解掌握,知识的前提下,就能够化知识为能力,不再死般硬套,那么问题也就迎刃而解了。因此,对于在课堂上强调培养学生能动地去思考分析问题的能力的重要性可见一斑。 在整个高中数学,加上学生已有对数学的一些认识,牵涉到的概念、定理是不计其数的,不在理解的基础上,加以灵活应用,学生学的只是一些 “ 死 ” 的知识。有些学生只是记住一些题目,想想老师以前似曾这么讲过,这些都不能很好的学好数学,只要注重数学思维能力的培养,才 能建立良好的学习态度,培养对数学的浓厚的兴趣,这才是学好数学的有效途径,那么,数学的思维能力,包括什么内容呢?大致上,我把它们分成五个方面: 第一个方面,是理解概念、应用概念解决问题的能力。3 / 5 理解能力是学习数学的基础,我们必须把握概念的本质,从而能够应用概念去解决问题,例如,求两个集合的交集,同学应该知道,交集是两个集合元素共同部分组成的一个集合,那么有针对性地应用这个概念去寻找两个集会的公共部分,问题就解决了,有些同学之所以不能区分,交集、并集的概念,就在于不注重对概念的理解,以致做很多的题目,也 只能是事倍而功半了。 第二个方面,是推理判断的能力。这要求同学们在理解概念的基础上,进一步展开,从而推导出结果,判断命题的正确性,这主要体现在几何证明题的推证上。有些同学平时不注意培养自己的推理能力,题目做不出来,不经思考抄作业,也不去判断题目的可能性,结果遇到要解决的问题,朦朦胧胧地有一点知道却不知如何下手。 第三个方面,指分析综合的能力,指能对一个数学问题的已知、求证的性质,展开、比较、再把各个部分联系起来的一种能力,例如,对于空间的一条直线 a 与平面,已知直线不在平面内,且直线 a 平行于单面内一条直线 b,求证,直线 a 平行于平面。 分析:直线 a 不在平面内,我们知道直线 a 与平面平行或相交,若直线与平面相交,那么,必定与平面交于直线 b、外一点 A(因为两直线平行 ),那么过点 A 作平面内直线 b 的平行线 c。根据平行公理,就知 a 平行于 c,这与 ac=A相矛4 / 5 盾。那么直线 a 与平面相交不可能。所以直线与平面平行。通过这样一个问题,就要求学生具备一种分析综合的能力。教学中,一定要注意、引导学生自己去思考,分析问题、逐步培养学生的这种能力。 第四个方面,指空间想象、联想的能力。它主要是指学生 能对一些平面图象,平面直观图,能够明确它的实际的立体图形,从而帮助自己分析问题。联想指对于一个数学问题,同学们能够把它跟自己学过的知识联系起来,从而应用知识解决问题。 第五个方面,运用一些数学 “ 模型 ” 去解决问题的能力。例如对于 y x 攽 1 崐 2x 敀,求函数的值域,思路:由于 攽 1 2x敀与 x 是相差一次幂的,由此,我们联想到 “ 二次函数 ” ,这个模型,可令 攽 1 2x敀 t(t0) ,得到 x (1 t2) 2,从而把 y 变成关于 t 的一元二次函数,从而求得值域,可见数学模型在解决数学问题的作用。 上面综述了关于高中数学必须具备的五个方面的思维能力,那么,怎样培养同学们的思维能力呢? 我想,同学们首先要正确对待课本上的基本概念、基本规律,把握它们的实质,在平时作一些题目时,要注意题目的含义,弄清知识点,进一步巩固这些概念,从而能够运用概念解决数学问题。 其次,在平时作题目时,一定要独立思考,即便碰到一5 / 5 些困难,在参考的时候,一定要分析一下为什么,自己是知识点不知道呢?还是缺乏解题的能力,真正理解一道题目。 再次,就是对数学经常用到的一些工具,必须掌握,在作一道数学题目时, 如果一种方法不行,想一下能否用其他的方法,正面征服不行,是否可用反证法呢,逻辑推导不行,是否可从图象上去把握等等,即使一道题目解出来了,不要就此算了,看是否能用更简单的方法去解,最好比较一下各种作法的区别、异同,从而掌握事物的本质。 只要同学们坚持做到以上几点,注重对自己思维能力的培养,相信可在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 储运工程项目管理方案(3篇)
- 玻璃工程节点方案设计(3篇)
- 电子商务平台使用协议详解
- 金融科技行业智能风控技术创新与金融安全保障实践专题
- 文化治理数字转型-洞察及研究
- 绿色供应链协同-第1篇-洞察及研究
- 决策边界分析-洞察及研究
- 办公室装修合同书样本6篇
- 行业云平台架构-洞察及研究
- 停车场道闸施工合同4篇
- 2025-2026学年人民版小学劳动技术六年级上册教学计划及进度表
- 新学期三年级班主任工作计划(16篇)
- 接种疫苗预防流感课件
- 游戏体验寻规律(教学设计)-2024-2025学年人教版(2024)小学信息技术五年级全一册
- 基于plc的恒压供水控制系统设计
- 环保设备加工处理方案(3篇)
- 《成人重症监护病房口腔护理专家共识》解读课件
- 2025中小学生法制知识竞赛题库及答案
- 恶性间皮瘤护理查房
- 2025新版劳动合同范本
- 2025年中学无线电知识竞赛题库
评论
0/150
提交评论