2019年六年级奥数专题18:抽屉原理.doc_第1页
2019年六年级奥数专题18:抽屉原理.doc_第2页
2019年六年级奥数专题18:抽屉原理.doc_第3页
2019年六年级奥数专题18:抽屉原理.doc_第4页
2019年六年级奥数专题18:抽屉原理.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年六年级奥数专题18:抽屉原理 一、填空题1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有 个人的朋友数目相同.2.在明年(即xx年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有 个.(2)至少有 个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸 次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取 颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出 颗.5.从1,2,3,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有 对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有 人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有 个.8.一付扑克牌共有54张(包括大王、小王),至少从中取 张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了 个球.10.某班有37名小学生,他们都订阅了小朋友、儿童时代、少年报中的一种或几种,那么其中至少有 名学生订的报刊种类完全相同.二、解答题11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).14.能否在88的棋盘上的每一个空格中分别填入数字1,或2,或3,要使每行、每列及两条对角线上的各个数字之和互不相同?请说明理由.答 案 1. 2因为每个人至少有1个朋友,至多有99个朋友,将有1个朋友的人,2个朋友的人,99个朋友的人分成99类,在100个人中,总有两个人属于同一类,他们的朋友个数相同.2. (1)3;(2)636因为xx年有365天,故在xx年出生的孩子至少有(个)孩子的生日相同;又因为1000-(365-1)=363,即至少有363个孩子将来不单独过生日.3. 91当摸出的2个球颜色相同时,可以有4种不同的结果;当摸出的2个球颜色不同时,最多可以有3+2+1=6(种)不同结果.一共有10种不同结果.将这10种不同结果看作10个抽屉,因为要求10次摸出结果相同,故至少要摸910+1=91(次).4. 4;7将三种不同颜色看作3个抽屉,对于第一问中为保证一次取到2颗相同颜色的珠子,一次至少要取13+1=4(颗)珠子.对于第二问为了保证一次取到两种不同颜色珠子各2颗,一次至少要取4+(12+1)=7(颗)珠子.5. 1将112这十二个数组成这六对两数差为6的数组.任取7个数,必定有两个数差在同一组中,这一对数的差为6.6. 267将4千万人按头发的根数进行分类:0根,1根,2根,150000根共150001类.因为40000000=(266150001)+99743266150001,故至少有一类中的人数不少于266+1=267(个),即该省至少有267个人的头发根数一样多.7. 7将每10块颜色相同的木块算作一类,共3类.把这三类看作三个抽屉,而现在要保证至少有三块同色木块在同一抽屉中,那么至少要有23+1=7(块).8. 29将4种花色看作4个抽屉,为了保证取出3张同色花,那么应取尽2个抽屉由的213张牌及大、小王与一张另一种花色牌.计共取213+2+1=29(张)才行.9. 9将5个同学投进的球作为抽屉,将41个球放入抽屉中,至少有一个抽屉中放了9个球,(否则最多只能进58=40个球).10. 6订阅报刊的种类共有7种:单订一份3种,订二份3种,订三分1种.将37名学生依他们订的报刊分成7类,至少有6人属于同一类,否则最多只有66=36(人).11. 将整数的末位数字(09)分成6类:在所给的7个整数中,若存在两个数,其末位数字相同,则其差是10的倍数;若此7数末位数字不同,则它们中必有两个属于上述6类中的某一类,其和是10的倍数.ABCEFGH12. 将边长为1的正方形分成25个边条为的正方形,在51个点中,一定有(个)点属于同一个小正方形.不妨设A、B、C三点边长为的小正方形EFGH内,由于三角形ABC的面积不大于小正方形面积EFGH的,又EFGH的面积为.故三角形ABC的面积不大于.13. 考虑最极端的情况,有3个小朋友分到1本,有3个小朋友分到2本,有3个小朋友分到16本,最后两个小朋友分到17本,那么一共至少要3(1+2+3+16)+217=442(本),而442420,故一定有4个小朋友分了同样多的书.14. 注意到8行、8列及两对角线共有18条“线”,每条线上有8个数字,要使每条线上的数字和不同,也就是需要每条线上的数字和有18种以上的可能.但我们填入的数只有1、2、3三种,因此在每条线上的8个数字中,其和最小是8,最大是24,只有24-8+1=17(种).故不可能使得每行,每列及两条对角线上的各个数字之和互不相等.十八 抽屉原理(2) 年级 班 姓名 得分 一、填空题1.半步桥小学六年级(一)班有42人开展读书活动.他们从学校图书馆借了212本图书,那么其中至少有一人借 本书.2.今天参加数学竞赛的210名同学中至少有 名同学是同一个月出生的.3.学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有 名学生是同年同月出生的.4.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒里,一次至少摸出_ 个,才能保证有2个小球是同色的.5.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出_个,才能保证有6个小球是同色的.6.布袋中有60个形状、大小相同的木块,每6块编上相同的号码,那么一次至少取出 块,才能保证其中至少有三块号码相同.7.某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果.现将苹果个数相同的箱子算作一类.设其中箱子数最多的一类有n个箱子,则n的最小值为 .8.有形状、大小、材料完全相同的黑筷、白筷、红筷各4双,混杂在一起,要求闭着眼睛,保证从中摸出不同颜色的2双筷子,则至少要摸出 根.9.袋子里装有红色球80只,蓝色球70只,黄色球60只,白色球50只.它们的大小与质量都一样,不许看只许用手摸取,要保证摸出10对同色球,至少应摸出_只.10.有红笔、蓝笔、黄笔、绿笔各2支,让一位小朋友随便抓2支,这位小朋友至少抓 次才能确保他至少有两次抓到的笔的种类完全相同.(每抓一次后又放回再抓另一次)二、解答题11.某游旅团一行50人,随意游览甲、乙、丙三地,问至少有多少人浏览的地方完全相同.12.从一列数1,5,9,13,93,97中,任取14个数.证明:其中必有两个数的和等于102.13.在一个边长为1的正三角形内,任给5个点,证明:其中必有两个点之间的距离不大于1/2.14.设,是任意互异的12个整数,试证明其中一定存在8个整数,使得:恰是1155的倍数.答 案1. 6将42名同学看成42个抽屉,因为212=542+1,故至少有一个抽屉中有6本或6本以上的书.2. 18因210=1712+16,故一定有18个或18个以上同学在同一月出生.3. 2这40名同学的年龄最多相差36个月(三年)因40=136+4,故必有2人是同年、同月出生的.4. 5从极端考虑:即使先取走取的4个球都是不同色的,那么取第5个球时就必有二球同色了.5. 21将球按颜色分成4类,每次各取5个时,也无6球同色,故应取(6-1)4+1=21(个)球,才能保证一定有6球同色. 6. 21将布袋中的木块按编号分成606=10(类)要保证其中某一类至少有三个,至少应拿出(3-1)10+1=21(块).7. 6每箱数目是120144,共有25种可能.因126=525+1,故至少有5+1=6(个)装相同苹果数的箱子,即n最小为6.8. 11当摸出10根时,可能是8根黑筷,白筷,红筷各一根,没有“不同颜色的二双”.当摸出11根时,至多有8根属于同一颜色,那么另3根中至少有二根是同色的.9. 23当摸出22只球时,可能有9对同色球,但剩余四球分别为红、蓝、黄、白各一只,达不到10对,另一方面,每摸出5个球,就会出现一对同色球,将这一对挪开,再摸出两个球,就必然会又出现一对红色球,如此下去,摸出23只球就能保证有10对同色球.10. 11两支笔的种类可分为同色与异色.同色的有4种,异色的有3+2+1=6种,为了保证至少有两次抓到笔的种类完全相同,至少要抓110+1=11(次).11. 浏览一个地方的,有3种,浏览二个地方的,有3种,浏览三个地方的,有1种,一个地方也不去的,有1种,共有8种方式.故至少有(人).浏览的地方是完全相同的.12. 给出的数是一个等差数列,它一共有25个数,将这25个组分成13组:.在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.13. 如图,将三角形三边中点连结起来,就将原三角形分成了四个小三角形, 其边长均为,在原三角形内,任意给5个点,其中至少有两点在同一个小三角形内,这两点的距离小于小三角形的边长.ABCPQ. 14. 对1155分解质因数得1155=35711.在所给的12数中,必有2数除以11,余数相同,设这2数为x1,x2,则(x1-x2)是11的倍数.在剩下的数中,必有2数除以7,余数相同,设这2数为x3,x4,则(x3-x4)是7的倍数.在剩下的8数中,必有2数除以5,余数相同,设这2数为x5,x6,则(x5-x6)是5的倍数.在剩下的6数中,必有2数除以3,余数相同,设这二数为x7,x8,则(x7-x8)是3的倍数.故存在8个数x1,x2,x8,使(x1-x2) (x3-x4) (x5-x6) (x7-x8)是1155的倍数.附送:2019年六年级奥数专题19:最值问题 一、填空题1.一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试 次才能配好全部的钥匙和锁.2.用长和宽分别是4厘米和3厘米的长方形小木块,拼成一个正方形,最少要用这样的木块 块.3.一个一位小数用四舍五入法取近似值精确到万位,记作50000.在取近似值以前,这个数的最大值是 .4.100个自然数,它们的总和是10000,在这些数里,奇数的个数比偶数的个数多,那么这些数里至多有 个偶数.5.975935972( ),要使这个连乘积的最后四个数字都是零.在括号内最小应填 .8649877426.有三个连续自然数,它们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是 .7.下图九个数中取出三个数来,这三个数都不在同一横行,也不在同一纵行.问:怎样取才能使这三个数之和最大,最大数是 .8.农民叔叔阿根想用20块长2米,宽1.2米的金属网建一个靠墙的长方形鸡窝.为了防止鸡飞出,所建鸡窝的高度不得低于2米,要使鸡窝面积最大,长方形的长和宽分别应是 .9.一个三角形的三条边长是三个两位的连续偶数,它们的末位数字和能被7整除,这个三角形的最大周长等于 .10.农场计划挖一个面积为432m2的长方形养鱼池,鱼池周围两侧分别有3m和4m的堤堰如图所示,要想占地总面积最小,水池的长和宽应为 .34二、解答题11.下图中,已知a、b、c、d、e、f是不同的自然数,且前面标有两个箭头的每一个数恰等于箭头起点的两数的和(如b=a+d),那么图中c最小应为多少? a b c d e f12.唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原速度的n10%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次?13.某游泳馆出售冬季学生游泳卡,每张240元,使用规定:不记名,每卡每次只限一人,每人只限一次.某班有48名学生,老师打算组织学生集体去游泳,除需购买若干张游泳卡,每次游泳还需包一辆汽车,无论乘坐多少名学生,每次的包车费均为40元.若要使每个同学游8次,每人最少交多少钱?1.31.72.314.某商店需要制作如图所示的工字形架100个,每个由铝合金型材长为2.3米,1.7米,1.3米各一根组装而成.市场上可购得该铝合金型材的原料长为6.3米.问:至少要买回多少根原材料,才能满足要求(不计损耗)?答 案 1. 6第一把钥匙最坏的情况要试3次,第二把要试2次,第三把要试1次,共计6次.2. 12因4和3的最小公倍数为12,故最少需这样的木块12块.3. 50000.44. 48一共有100个自然数,其中奇数应多于50个,因为这100个自然数的总和是偶数,所以奇数的个数是偶数,至少有52个,因而至多有48个.5. 20因975=3952,935=1875,972=24322,要使其积为1000的倍数,至少应乘以522=20.6. 1105因为12、13、14的公倍数分别加上12、13、14后才依次是12、13、14倍数的连续自然数,故要求是13的倍数的最小自然数,只须先求12、13、14的最小公倍数为1092,再加上13得1105.7. 20第一横行取6,第二横行取7,第三横行取7.8. 12米,6米.金属网应竖着放,才能使鸡窝高度不低于2米.如图,设长方形的长和宽分别是x米和y米,则有x+2y=1.220=24.长方形的面积为S=xy=.xy因为x与2y的和等于24是一个定值,故它们的乘积当它们相等时最大,此时长方形的面积S也最大,于是有:x=12,y=6.9. 264依题意,末位数字和能被7整除的只有7、14、21等三种.但三个两位的连续偶数相加其和也一定是偶数,故符合题意的只有14.这样三个最大的两位连续偶数.它们的末位数字又能被7整除的,便是90、88、86,它们的和即三角形最大周长为90+88+86=264.10. 24m,18m如图,设水池边长为xm,宽为ym,则有xy=432,占地总面积S=(x+8)(y+6)m2于是S=xy+6x+8y+48=6x+8y+480.因6x+8y=48432为定值,故当6x=8y时,S最小,此时x=24,y=18.11. 依题意,d应当取最小值1,那么a和f只能一个为2,另一个为4.这样,根据b=a+d,e=d+f,b和e便只能一个为3,另一个为5,而c=b+e.所以c最小应为3+5=8. 12. 米老鼠跑完全程用的时间为10000125=80(分),唐老鸭跑完全程的时间为10000100=100(分). 唐老鸭第n次发出指令浪费米老鼠的时间为.当n次取数为1、2、3、413时,米老鼠浪费时间为1.1+1.2+1.3+1.4+2.3=22.1(分)大于20分.因为米老鼠早到100-80=20分,唐老鸭要想获胜,必须使米老鼠浪费的时间超过20分钟,因此唐老鸭通过遥控器至少要发13次指令才能在比赛中获胜.13.设一共买了x张卡,一共游泳y次,则共有xy=488=384(人次),总运费为:(240x+40y)元.因240x40y=24040384是一定值,故当240x=40y,即y=6x时和最小,此时可求得x=8,y=48.总用费为2408+4048=3840(元),平均每人最少要交384048=80(元).14. 每根原材料的切割有下表的七种情况:2.3米22111.7米31211.3米4321损耗/米1.71.21.100.10.31.0 显然三种方案损耗较小. 方案依次切割原材料42根、14根、29根和1根共用原材料42+14+29+1=86(根).十九 最值问题(2) 年级 班 姓名 得分 一、填空题1.下面算式中的两个方框内应填 ,才能使这道整数除法题的余数最大. 25=1042.在混合循环小数2.718281的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大.写出新的循环小数: 3.一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是 .4.将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个最大乘积等于 .5.一个五位数,五个数字各不同,且是13的倍数.则符合以上条件的最小的数是 .6.把1、2、3、4、99、100这一百个数顺序连接写在一起成一个数.Z=12345678910119899100从数Z中划出100个数码,把剩下的数码顺序写成一个,要求尽可能地大.请依次写出的前十个数码组成一个十位数 .7.用铁丝扎一个空心的长方体,为了使长方体的体积恰好是216cm3,长方体的长,宽,高各是 cm时,所用的铁丝长度最短.8.若一个长方体的表面积为54平方厘米,为了使长方体的体积最大,长方体的长,宽,高各应为 厘米.9.把小正方体的六个面分别写上1、2、3、4、5、6.拿两个这样的正方体,同时掷在桌子上.每次朝上的两个面上的数的和,最小可能是 .最大可能是 ,可能出现次数最多的两个面的数的和是 .10.将进货的单价为40元的商品按50元售出时,每个的利润是10元,但只能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个.为了赚得最多的利润,售价应定为 .二、解答题11.王大伯从家(A点处)去河边挑水,然后把水挑到积肥潭里(B点处).请帮他找一条最短路线,在下图表示出来,并写出过程.AB河12.某公共汽车线路上共有15个车站(包括起点站和终点站),公共汽车从起点站到终点站的行驶过程中,每一站(包括起点站)上车的人中恰好在以后的各站都各有1人下车,要使汽车在行驶中乘客都有座位,那么在车上至少要安排乘客座位多少个?13.有一块长24厘米的正方形厚纸片,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒,现在要使做成的纸合容积最大,剪去的小正方形的边长应为几厘米?14.某公司在A,B两地分别库存有某机器16台和12台,现要运往甲乙两家客户的所在地,其中甲方15台,乙方13台.已知从A地运一台到甲方的运费为5百元,到乙方的运费为4百元,从B地运一台到甲方的运费为3百元,到乙方的运费为6百元.已知运费由公司承担,公司应设计怎样的调运方案,才能使这些机器的总运费最省?答 案 1. 2426和24因为除数是25,余数最大应是24,所以被除数为25104+24=2426.算式应为262425=10424.2. 3. 471设这个整数为1000K+123,其中K是整数.因1000K+123=(1001K+117)+(K-6),1001K和117都是13的倍数,因而(K-6)是13的倍数,K的最小值是6,这个数为6123,612313=471.4. 2618因37=17+11+7+2,它们的积为171172=2618.5. 10257五位数字各不相同的最小的五位数是10234.1023413=7873.故符合题意的13的最小倍数为788.验算:13788=10244有两个重复数字,不合题意,13789=10257符合题意.6. 9999978956由计算可知,Z共有192位数,去掉100位数码,还剩92个数字,所以是92位数.对来说,前面的数字9越多,该数越大.因此中开头应尽可能多保留9.在Z中先划去第一个9前的8个数码,再分别划去第二个9、第三个9、第四个9、第五个9前各19个数码,这时共划去了84个数,这时得到的数是:99999505152535455565758596061还需要划去16个数码,第六个9前面有19个小于9的数码,划掉7以前的6和6以下的所有数码,这样又划掉16个数码,还剩下7、8、5等3个数码,新组成的数为:99999785960616299100,前十个数码组成的十位数是9999978596.7. 6,6,6设长方体的长、宽、高分别为xcm,ycm和zcm.则有xyz=216.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论