JX1021TS3轻型货车驱动桥设计
60页 27000字数+说明书+任务书+开题报告+6张CAD图纸
JX1021TS3轻型货车驱动桥设计开题报告.doc
JX1021TS3轻型货车驱动桥设计说明书.doc
主动齿轮.dwg
从动齿轮.dwg
任务书.doc
半轴.dwg
半轴齿轮.dwg
封皮.doc
答辩相关材料.doc
行星齿轮.dwg
设计图纸6张.dwg
题目审定表.doc
驱动桥总成.dwg
摘 要
轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要。驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载货汽车显得尤为重要。为满足目前当前载货汽车的快速、高效率、高效益需要的同时时,必须要搭配一个高效、可靠的驱动桥。设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本的轻型货车驱动桥具有一定的实际意义。
本设计首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用单级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用铸造整体式桥壳。在本次设计中,主要完成了单级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核及材料选取等工作。最后运用AUTOCAD完成装配图和主要零件图的绘制。
关键词:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳
ABSTRACT
Pickup trucks take a large proportion of commercial vehicles production, and the drive axle is one of the most important structure. Drive axle is the one of automobile four important assemblies, Its performance directly influence on the entire automobile, especially for the truck .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance.
The configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Single Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle, the checking of Axle Housing and the election of the material and so on. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components.In this paper, first of all determine the structure of major components and the main design parameters, the analysis of the various parts of the structure of the bridge drive type, the form of the development process and its advantages and disadvantages of the past, determined on the basis of the design program, using the traditional design method of various parts of the drive axle Main reducer, differential, axle, axle housing was designed to calculate and complete the check. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components.
Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing
目 录
摘要I
AbstractII
第1章 绪论1
1.1 选题的背景目的及意义1
1.2 国内外驱动桥研究状况1
1.3 设计主要内容3
第2章 驱动桥的总体方案确定4
2.1驱动桥的种类结构和设计要求4
2.1.1汽车车桥的种类4
2.1.2驱动桥的种类4
2.1.3驱动桥结构组成4
2.1.4 驱动桥设计要求5
2.1.5设计车型主要参数5
2.2主减速器结构方案的确定6
2.2.1 主减速比的计算6
2.2.2 主减速器的齿轮类型7
2.2.3 主减速器的减速形式8
2.2.4 主减速器主从动锥齿轮的支承形式及安装方法9
2.3 差速器结构方案的确定11
2.4半轴的形式确定11
2.5 桥壳形式的确定12
2.6本章小结13
第3章 主减速器设计14
3.1概述14
3.2主减速器齿轮参数的选择与强度计算14
3.2.1 主减速器计算载荷的确定14
3.2.2 主减速器齿轮参数的选择15
3.2.3 主减速器齿轮强度计算18
3.2.4 主减速器轴承计算24
3.3主减速器齿轮材料及热处理30
3.4主减速器的润滑31
3.5 本章小结31
第4章 差速器设计32
4.1概述32
4.2对称式圆锥行星齿轮差速器原理32
4.3 对称式圆锥行星齿轮差速器的结构33
4.4对称圆锥行星锥齿轮差速器的设计34
4.4.1 差速器齿轮的基本参数选择34
4.4.2 差速器齿轮的几何尺寸计算36
4.4.3 差速器齿轮的强度计算37
4.4.4 差速器齿轮的材料39
4.5 本章小结39
第5章 半轴及驱动桥桥壳的设计40
5.1概述40
5.2半轴的设计与计算40
5.2.1全浮式半轴的计算载荷的确定40
5.2.2半轴杆部直径的初选42
5.2.3 全浮式半轴强度计算42
5.2.4 全浮式半轴花键强度计算43
5.2.5 半轴材料与热处理44
5.3桥壳的受力分析及强度计算44
5.3.1桥壳的静弯曲应力计算45
5.3.2在不平路面冲击载荷作用下桥壳的强度46
5.3.3 汽车以最大牵引力行驶时的桥壳的强度计算46
5.3.4汽车紧急制动时的桥壳强度计算48
5.3.5汽车受最大侧向力时桥壳强度计算48
5.4 本章小结51
结论52
参考文献53
致谢54
附录A55
附录B58
1.1 选题背景目的及意义
根据中国轻型货车行业市场深度调研及中期发展预测报告表明:2008年中国轻型货车行业发展迅速,产品产出持续扩张,国家产业政策鼓励轻型货车产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对轻型货车行业的关注越来越密切,这使得轻型货车行业的发展研究需求增大。2009-2012年是中国轻型货车行业发展的关键时期,也是我国从“十一五”迈向“十二五”的过渡期,在全球金融危机风暴大环境及国内严峻经济形势下,一系列新的政策将会陆续出台,对轻型货车行业的发展必将产生重大影响;一批国家重大工程项目陆续开工建设,对轻型货车行业需求市场必将产生极大的拉动作用。
作为汽车关键零部件之一的汽车驱动桥也得到相应的发展,各生产厂家在研发和生产过程中基本上形成了专业化、系列化、批量化的局面,汽车驱动桥是汽车的重要总成,承载着汽车车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。因此,设计出结构简单、工作可靠、造价低廉的驱动桥,具有一定的实际意义[1]。
1.2 国内外驱动桥研究状况
1、国内研究现状
我国驱动桥制造企业的开发模式主要由测绘、引进、自主开发三种组成。主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题。一些企业技术力量相对要好些的企业,测绘的是从国外引进的原装桥,并且这些企业一般具有较为完善的开发体系和流程,也具有较完善的试验手段,但是开发过程属于对国外的仿制,对其逆向研究后结合自我情况生产。
总之,我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、纺制、再加上自己改进的基础上了取得的。个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发展起来,并跟上世界先进的汽车零部件设计制造技术水平。
2、国外研究现状
国外轻型货车驱动桥开发技术已经非常的成熟,建立新的驱动桥开发模式成为国内外驱动桥开发团体的新目标。驱动桥设计新方法的应用使得其开发周期缩短,成本降低,可靠性增加。国外的最新开发模式和驱动桥新技术包括:
(1)并行工程开发模式
并行工程开发模式是对在一定范围内的不同功能或相同功能不同性能、不同规格的机械产品进行功能分析的基础上,划分并设计出一系列功能模块,然后通过模块的选择和组合构成不同产品的一种设计方法,能够缩短新产品的设计时间、降低成本、提升质量、提高市场竞争力,以DANA为代表的意大利企业多已采用了该类设计方法, 优点是: 减少设计及工装制造的投入, 减少了零件种类, 提高规模生产程度, 降低制造费用, 提高市场响应速度等。
(2)模态分析
模态分析是对工程结构进行振动分析研究的最先进的现代方法与手段之一。它可以定义为对结构动态特性的解析分析(有限元分析)和实验分析(实验模态分析),其结构动态特性用模态参数来表征。模态分析技术的特点与优点是在对系统做动力学分析时,用模态坐标代替物理学坐标,从而可大大压缩系统分析的自由度数目,分析精度较高。驱动桥的振动特性不但直接影响其本身的强度,而且对整车的舒适性和平顺性有着至关重要的影响。因此,对驱动桥进行模态分析,掌握和改善其振动特性,是设计中的重要方面。
(3)驱动桥壳的有限元分析方法
有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题。目前,有限元法己经成为求解数学、物理、力学以及工程问题的一种有效的数值方法,也为驱动桥壳设计提供了强有力的工具。
(4)高性能制动器技术
在发达国家驱动桥产品中, 已出现了自循环冷却功能的湿式制动器桥、带散热风送的盘式制动器桥、适于ABS的蹄、鼓式和盘式制动器桥、带自动补偿间隙的盘式制动器等配置高性能制动器桥, 同时制动器的布置位置也出现了从桥臂处分别向桥包总成和轮边端部转移的趋势。前种处理方式易于散热, 后种处理方式为了降低成本, 甚至有厂商把制动器的壳体与桥壳铸为一体, 既易于散热,又利于降低材料成本, 但这对铸造技术、铸造精度和加工精度都提出了极高的要求。
(5)电子智能控制技术进入驱动桥产品
电子智能控制技术已经在汽车业得到了快速发展,如,现代汽车上使用的ABS(制动防抱死控制)、ASR(驱动力控制系统)等系统。
1.3 设计主要内容
1、驱动桥结构形式及布置方案的确定。
2、驱动桥零部件尺寸参数确定及校核:
(1)完成主减速器的基本参数选择与设计计算;
(2)完成差速器的设计与计算;
(3)完成半轴的设计与计算;
(4)完成驱动桥桥壳的受力分析及强度计算。
3、完成驱动桥驱动桥装配图和主要部分零件。
第2章 驱动桥的总体方案确定
2.1 驱动桥的种类、结构、设计要求及主要参数
2.1.1 汽车车桥的种类
汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连,它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。
根据悬架结构的不同,车桥分为整体式和断开式两种。当采用非独立悬架时,车桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式结构,与独立悬架配用。在绝大多数的载货汽车和少数轿车上,采用的是整体式非断开式。断开式驱动桥两侧车轮可独立相对于车厢上下摆动。
根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥或中后两桥为驱动桥[2]。
2.1.2 驱动桥的种类
驱动桥位于传动系末端,其基本功用首先是增扭、降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并合理的分配给左、右驱动车轮,其次,驱动桥还要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩。
驱动桥分为断开式和非断开式两种。驱动桥的结构型式与驱动车轮的悬挂型式密切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥,其桥壳是一根支撑在左右驱动车轮上的刚性空心梁,主减速器、差速器和半轴等所有的传动件都装在其中;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。
2.1.3 驱动桥结构组成
在多数汽车中,驱动桥包括主减速器、差速器、驱动车轮的传动装置(半轴)及桥壳等部件如图1.1所示。
2.1.4 驱动桥设计要求
1、选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。
2、外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。
3、齿轮及其他传动件工作平稳,噪声小。
4、在各种载荷和转速工况下有较高的传动效率。
5、具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和
力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。
6、与悬架导向机构运动协调。
7、结构简单,加工工艺性好,制造容易,维修,调整方便。
2.1.5设计车型主要参数
设计车型主要参数表2.1参考数据
表2.1参考数据
序号项 目数 据单 位
1车身长度5185mm
2车身宽度1720mm
3车身高度1710mm
4车 重1720kg
5轴 距3025mm
6前轮距1435mm
7后轮距1440mm
8轮胎规格215/75 R15 —
9排 量2.0L
10最大功率/转速68/4000kw/ rpm
11最大转矩/转速200/2000N.m/ rpm
12最高车速120km/h
13离地间隙220mm
2.2 主减速器结构方案的确定
2.2.1主减速比的计算
主减速比io对主减速器的结构形式、轮廓尺寸、质量大小影响很大。当变速器处于最高档位时io对汽车的动力性和燃料经济性都有直接影响。的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择io值,可是汽车获得最佳的动力性和燃料经济性。2.3 差速器结构方案的确定
根据汽车行驶运动学的要求和实际的车轮、道路以及它们之间的相互联系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别的。例如,拐弯时外侧车轮行驶总要比内侧长。另外,即使汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求
车轮行程不等。在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传给左右车轮,则会由于左右车轮的转速虽然相等而行程却又不同的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。这不仅会是轮胎过早磨、无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。
差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。
差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的[5]。
本次设计选用:普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。
2.4 半轴形式的确定
驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。其结构型式与驱动桥的结构型式密切相关,在断开式驱动桥和转向驱动桥中,驱动车轮的传动装置包括半轴和万向接传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半铀齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。如图2.5所示,根据半轴外端支撑形式分为半浮式,3/4浮式,全浮式。
半浮式半轴以其靠近外端的轴颈直接支撑在置于桥壳外端内孔中的轴承上,而端部则以具有圆锥面的轴颈及键与轮毂相固定。具有结构简单、质量小、尺寸紧凑、造价低廉等优点。主要用于质量较小,使用条件好,承载负荷也不大的轿车和轻型载货汽车。
3/4浮式半轴的结构特点是半轴外端仅有一个轴承并装在驱动桥壳半轴套管的端部,直接支撑着轮毂,而半轴则以其端部与轮毂想固定,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,所以未得到推广。
全浮式半轴的外端和以两个轴承支撑于桥壳的半轴套管上的轮毂相联接,由于其工作可靠,广泛应用于轻型及以上的各类汽车上。
根据相关车型及设计要求,本设计采用全浮半轴。
2.5 桥壳形式的确定
桥壳的结构型式大致分为可分式,组合式整体式三种。
1、可分式桥壳
可分式桥壳的整个桥壳由一个垂直接合面分为左右两部分,每一部分均由一个铸件壳体和一个压入其外端的半轴套管组成。半轴套管与壳体用铆钉联接。在装配主减速器及差速器后左右两半桥壳是通过在中央接合面处的一圈螺栓联成一个整体。其特点是桥壳制造工艺简单、主减速器轴承支承刚度好。但对主减速器的装配、调整及维修都很不方便,桥壳的强度和刚度也比较低。过去这种所谓两段可分式桥壳见于轻型汽车,由于上述缺点现已很少采用。
2、组合式
组合式桥壳又称为支架式桥壳,对加工精度要求较高,刚度较差,通常用于微型汽车、轿车、轻型以下载货汽车。
3、整体式桥壳
整体式桥壳的特点是将整个桥壳制成一个整体,桥壳犹如一整体的空心粱,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好以后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在一起。使主减速器和差速器的拆装、调整、维修、保养等都十分方便。
整体式桥壳按其制造工艺的不同又可分为铸造整体式、钢板冲压焊接式和钢管扩张成形式三种。
钢板冲压焊接整体式桥壳是由钢板冲压焊接成的桥壳主体、两端再焊上带凸缘的半轴套管及钢板弹簧座组成。其制造工艺简单、材料利用率高、废品率低生产率高极、及制造成本低等优点外,还有足够的强度和刚度,特别是其质量小,但是比有些铸造桥壳可靠,由于钢板冲压焊接整体式桥壳有一系列优点,近年来不但应用于轿车,轻型货车、中型载货车上得到了广泛的应用。本次设计驱动桥壳就选用钢板冲压焊接式整体桥壳。
2.6 本章小结
本章首先确定了主减速比,用以确定其它参数。对主减速器型式确定中主要从主减速器齿轮的类型、主减速器的减速形式、主减速器主动锥齿轮的支承形式及安装方式的选择、从动锥齿轮的支承方式和安装方式的选择,从而确定逐步给出驱动桥各个总成的基本结构,分析了驱动桥各总成结构组成。基本确定了驱动桥四个组成部分主减速器、差速器、半轴、桥壳的结构。






