已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010-2011学年第1学期概率论试题(A卷)考试类型:(闭卷)考试考试时间:120分钟,一.填空题(本大题共8小题,每小题3分,共24分),1.事件A在4次独立重复试验中至少成功一次的概率为80/81,则事件A在一次试验中概率为_.,设每次试验成功的概率为p,依题意,成功的次数X,B(4,p),由至少成功一次的概率为,PX1,=1-PX=0,=1-C40p0(1-p)4,=1-(1-p)4,即,解得,解,2.三个人独立地破译一个密码,他们能译出的概率分别是0.2、1/3、0.25则密码被破译的概率为_.,解,设事件A,B,C分别表示三人破译该密码,依题意,事件A,B,C相互独立.,则密码被破译的概率为,(习题1、P2724.),P(AUBUC),方法1,独立性,=1-(1-0.2)(1-1/3)(1-0.25),=0.6.,P(AUBUC),方法2,P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC),独立性,P(A)+P(B)+P(C)P(A)P(B)P(A)P(C)P(B)P(C)+P(A)P(B)P(C),=0.6.,0.6,3.设随机变量X的分布函数,解,则PX=1=_.,方法1,公式法.(从F(x)的表达式入手),由PX=x=,PXx-PX0),则k=_时,PkX0),由PkX0,则下式成立的为()(A)P(A)P(A|B)(D)P(A)P(A|B),解,由AB,得,P(A)=P(AB),A=AB,所以,=P(B)P(A|B),又0Y=,=0.288X0.027+0.432X(0.027+0.189)+0.216X(0.027+0.189+0.441),PX=1,Y=0+PX=2,Y=0+PX=2,Y=1+PX=3,Y=0+PX=3,Y=1+PX=3,Y=2,0.243.,习题2、P497.,解,这是古典概型问题.,(1),基本事件总数n=A包含的基本事件数nA=,设A=试验成功一次,1.,所以,P(A)=,(2),假设他是猜对的,由(1)知,他每次猜对的概率为1/70,连续试验10次,则猜对的次数X,3.16X10-4.,猜对3次的概率为,B(10,1/70).,PX=3=,这个概率很小.,根据小概率原理(也称实际推断原理),可以认为他确有区分的能力.,概率很小的事件在一次试验中可以看作是不可能发生的称为小概率原理,也称实际推断原理.,习题2、P498.,解,(1),依题意,长度为t的时间间隔内收到的紧急呼救的次数X,P(t/2).,X的分布律为,所以所求的概率为,PX=0,=e-1.5.,(2),PX1,=1-PX=0,=1-e-2.5.,t=3,所以所求的概率为,t=5,习题2、P5012.,解,(1),由F(+)=1,得,=a,=1.,由连续型随机变量的分布函数连续知,即a+b=0,所以b=-1.,从而,(2),X的密度函数为,f(x)=,F(x),(3),方法1,(3),方法2,习题2、P5013.(1),解,利用分布函数的定义,当x1时,,=0,当1x2时,,当x2时,,=1,综上所述,得X的分布函数为,习题2、P5013.(2),解,利用分布函数的定义,当x0时,,=0,当0x0时,,FY(y)=PX2y=,总之,Y的分布函数为,或,或者,P52习题2、24.(3),两边求导,得Y的概率密度函数为,又X的密度函数为,则Y=X2的概率密度为,P52习题2、25.(1),Y的分布函数为,FY(y),=PYy,=P2lnXy,解,(1),或,X的密度函数为,即,或,两边求导,得Y的概率密度函数为,P102习题4、13.,解,由相互独立的服从正态分布的随机变量的线性组合仍然服从正态分布知,2X-Y服从正态分布,由服从正态分布的随机变量的线性函数仍服从正态分布知,2X-Y+3服从正态分布,又,E(2X-Y+3)=D(2X-Y+3)=,2E(X)-E(Y)+3,因X和Y相互独立,4D(X)+D(Y),=2X1-0+3,=5,=4X2+1,=9,所以Z=2X-Y+3,N(5,9),故Z=2X-Y+3的密度函数为,P82习题13,18.,解,如图.,当x1时,从而fX(x)=0.,当0x1时,所以,f(x,y)=0,=2.4x2(2-x),当y1时,从而fY(y)=0.,f(x,y)=0,所以,当0y1时,=2.4y(3-4y+y)2,因为fX(x)f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何养育男孩读书分享
- 温州安全生产3030计划讲解
- 甘肃省兰州市城关区第一中学2026届化学高一第一学期期中联考模拟试题含解析
- 2025年质量管理知识竞赛题库及答案
- 2025年度全国安全生产网络知识竞赛试题库及答案
- 2025年康复辅助技术咨询师考试及答案
- 2025年呼吸内科实习生出科考试试题及答案(A)
- 2026届嘉峪关市重点中学化学高一第一学期期末预测试题含解析
- 全民健身面试题及答案
- 青海考试面试题及答案
- 叉车儿童课件
- 《体育场馆运营管理课件》课件
- 2024-2025北师大版(三起)小学英语六年级上册期末考试测试卷及参考答案(共5套)
- 砂石料场租赁协议
- 第15届全国海洋知识竞赛参考试指导题库(含答案)
- 收养申请书模板
- 干部人才培养与医院管理
- 公共基础知识复习资料梳理版
- 《SEM基础知识培训》课件
- 农村耕地承包权永久转让合同
- 【MOOC】数字逻辑与数字系统设计-中国矿业大学 中国大学慕课MOOC答案
评论
0/150
提交评论