设计说明封皮.doc

江淮帅铃汽车驱动桥设计【8张CAD图纸和毕业论文】【轻卡货车】【精品毕业论文】

收藏

压缩包内文档预览:
预览图 预览图 预览图
编号:288689    类型:共享资源    大小:1.83MB    格式:RAR    上传时间:2014-06-06 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
江淮 汽车 驱动 设计
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763


目  录


摘要 ...................................................................I

ABSTRACT....................................................................II

第1章 绪  论.........................................................1

 1.1 本课题的目的和意义..............................................1

 1.2 驱动桥的分类...................................................1

     1.2.1 非断开式驱动桥..............................................2

     1.2.2 断开式驱动桥................................................2

     1.2.3多桥驱动的布置..............................................3

   1.3 主要内容.................................................................3

第2章 驱动桥结构方案分析...........................................5

 2.1 主减速器的类型...................................................5

 2.2 设计驱动桥的基本要求...........................................5

 2.3非断开式驱动桥....................................................6

  2.4 断开式驱动桥..........................................................7

 2.5本章小结...................................................7

第3章 主减速器设计..................................................8

 3.1 主减速器的结构形式.............................................8

     3.1.1 主减速器的齿轮类型..........................................8

      3.1.2 主减速器的减速形式.......................................8

      3.1.3 主减速器主,从动锥齿轮的支撑形式..........................8

 3.2 主减速比的计算...............................9

      3.2.1 主减速器计算载荷的确定.....................................9

      3.2.2 主减速器基本参数的选择....................................10

      3.2.3主减速器圆弧锥齿轮几何尺寸计算............................12

      3.2.4 主减速器圆弧锥齿轮的强度计算..............................14

      3.2.5 主减速器轴承的计算........................................17

  3.3 本章小结..............................................................22

第4章 差速器设计...................................................23

 4.1 对称式圆锥行星齿轮差速器的结构............................23

 4.2 对称式圆锥行星齿轮差速器的设计................................23

     4.2. 1差速器齿轮的基本参数选择...................................24

     4.2.2 差速器齿轮的几何计算.......................................26

     4.2.3 差速器齿轮的强度计算.......................................28

  4.3本章小结...............................................................29

第5章 驱动半轴的设计...............................................30

 5.1 全浮式半轴计算载荷的确定........................................31

 5.2 全浮式半轴的杆部直径的初选......................................31

 5.3 全浮式半轴的强度计算.........................................32

 5.4半轴花键的强度计算.........................................32

  5.5 本章小结...............................................................33

第6章 驱动桥壳的设计...............................................34

 6.1 铸造整体式桥壳的结构..........................................34

 6.2 桥壳的受力分析与强度计算......................................35

     6.2.1 在不平路面冲击载荷作用下桥壳强度计算.......................36

     6.2.2 汽车以最大牵引力行驶时的桥壳强度计算.......................36

     6.2.3 汽车紧急制动时的桥壳强度计算...............................38

  6.3 本章小结...............................................................40

结论..................................................................41

致谢...............................................................42

参考文献..............................................................43

附录..................................................................44

附录A......................................................................44

附录B......................................................................49第1章 绪  论


1.1 本课题的目的和意义

  本课题是对江淮帅铃货车驱动桥的结构设计。通过此次毕业设计,训练学生的实际工作能力。掌握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。

  汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。

  对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在99KW,最大转矩也在350N·m以上,百公里油耗是一般都在30升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过

程中的损失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。

  目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。

1.2 驱动桥的分类

1.2.1 非断开式驱动桥

  普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种家庭乘用车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。

  驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。

  在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型家庭乘用车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。

1.2.2 断开式驱动桥

  断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。

  汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。

1.2.3 多桥驱动的布置

  为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有4×4、6×6、8×8等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对8×8汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。

  为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。

在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计(如汽车的变型)、制造和维修,都带来方便。

1.3 主要内容

  (1)驱动桥和主减速器、差速器、半轴、驱动桥桥壳的结构形式选择

  (2)主减速器的基本参数选择与设计计算

  (3)差速器的设计与计算

  (4)半轴的设计与计算

  (5)驱动桥桥壳的受力分析及强度计算

  (6)用CAD画装配图、零件图。


第2章 驱动桥结构方案分析


2.1 主减速器的类型

  由于要求设计的是江淮帅铃的驱动桥,要设计这样一个级别的驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。

驱动桥的结构形式有多种,基本形式有三种如下:

  (1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式, 在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承, 有差速锁装置供选用。

  (2)中央双级驱动桥。由于中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。

   (3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。

  综上所述,设计的驱动桥的传动比小于6。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势。

  单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看, 重型车产品在主减速比小于6的情况下,应尽量选用单级减速驱动桥。

2.2 设计驱动桥的基本要求

  (1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。

  (2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。

  (3)齿轮及其他传动件工作平稳,噪声小。

  (4)在各种载荷和转速工况下有较高的传动效率。


内容简介:
SY-025-BY-2毕业设计(论文)任务书学生姓名赵建系部汽车与交通工程学院专业、班级车辆工程07-4指导教师姓名 臧杰职称教授从事专业汽车运用工程是否外聘是否题目名称江淮帅铃汽车驱动桥设计一、设计(论文)目的、意义汽车驱动桥是汽车的重要大总成,承载着汽车的满载簧上荷重及地面经车轮、车架或承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥的结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车行驶性能如动力性、经济性、平顺性、通过性、机动性和操作稳定性有直接影响。因此,驱动桥的结构型式选择、设计参数选取及设计计算对汽车的整车设计极其重要。通过驱动桥设计熟悉汽车总成和零部件的设计。通过设计掌握汽车驱动桥结构设计原则和方法。培养正确的研究方法、理论联系实际的工作作风、严肃求实的学习态度。课题综合运用了机械设计、工程材料、汽车设计、汽车构造、CAD绘图等知识。二、设计(论文)内容、技术要求(研究方法)1、设计的主要内容(1)驱动桥和主减速器、差速器、半轴、驱动桥桥壳的结构形式选择(2)主减速器的基本参数选择与设计计算(3)差速器的设计与计算(4)半轴的设计与计算(5)驱动桥桥壳的受力分析及强度计算(6)用CAD画装配图、零件图。 2、技术要求(研究方法)(1)通过文献资料收集,熟悉汽车驱动桥设计和CAD的有关理论知识,国内外驱动桥设计方法和汽车计算机辅助设计的发展状况。(2)实地到汽车厂等部门实习调查,了解汽车驱动桥设计方法。(3)编写课题研究大纲和开题报告。(4)确定各项参数,计算确定各总成参数和尺寸,完成有关CAD图纸。(5)按进度要求独立完成毕业设计,服从指导教师安排;完成的毕业设计格式规范;方案选择合理,具有可行性、经济性、适用性,设计思路清晰,符合实际,图纸正确符合制图标准,内容完整。设计和汽车计算机辅助设计的发展状况。三、设计(论文)完成后应提交的成果0号图纸1张,零件图5张;总图量3A0设计说明书1.5万字以上。四、设计(论文)进度安排(1)调研、资料收集,完成开题报告 第4周(3月20日3月24日)(2)参数选择方案确定,列文稿大纲 第4周(3月20日3月24日)(3)设计计算 第5、6周(3月28日4月11日)(4)完成设计说明书,完成图纸绘制 第7、13周(4月21日5月29日)(5)交稿,预答辩 第14周(5月30日6月5日)(6)毕业设计(论文)审核、修改 第15、16周(6月9日6月22日)(7)毕业设计(论文)答辩准备及答辩 第17周(6月23日6月29日)五、主要参考资料1臧杰,阎岩汽车构造北京:机械工业出版社,20052刘惟信.汽车设计.北京:清华大学出版社,20013王望予.汽车设计.第3版.北京:机械工业出版社,20004汽车工程手册编辑委员会.汽车工程手册.设计篇.北京:人民交通出版社,20015汽车工程手册编辑委员会.汽车工程手册.制造篇.北京:人民交通出版社,20016余志生.汽车理论.第3 版.北京:机械工业出版社,20007张洪欣.汽车底盘设计.北京:机械工业出版社,19988陈宏钧.实用机械加工工艺手册.北京:机械工业出版社,20039龚溎义.机械设计课程设计图册.北京:高等教育出版社,198910成大先机械设计手册之第一篇常用设计资料、第二篇机械制图.极限与配合、第三篇常用工程材料、第四篇联接与紧固、第六篇轴承、第十篇润滑与密封化学工业出版社,2004,1六、备注指导教师签字:年 月 日教研室主任签字: 年 月 日毕业论文指导教师评分表学生姓名赵健院系汽车与交通工程学院专业、班级车辆工程07-4班指导教师姓名臧杰职称教授从事专业车辆工程交通工程是否外聘是否题目名称江淮帅铃汽车驱动桥设计序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;选题的理论意义或实际价值103查阅文献资料能力;综合运用知识能力154研究方案的设计能力;研究方法和手段的运用能力;外文应用能力255文题相符程度;写作水平156写作规范性;篇幅;成果的理论或实际价值;创新性157科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少规范性: 好 较好 一般 较差 很差成果质量(研究方案、研究方法、正确性):好 较好 一般 较差 很差其他: 指导教师签字: 2011 年 6 月 14 日毕业设计指导教师评分表学生姓名赵健院系汽车与交通工程学院专业、班级车辆工程07-4班指导教师姓名臧杰职称教授从事专业车辆工程交通工程是否外聘是否题目名称江淮帅铃汽车驱动桥设计序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力205计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)106插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)58科学素养、学习态度、纪律表现;毕业论文进度10得 分 X= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)工作态度: 好 较好 一般 较差 很差研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 指导教师签字: 2011 年 6 月 14 日 毕业设计评阅人评分表学生姓名赵健专业班级车辆工程07-4班指导教师姓名臧杰职称教授题目江淮帅铃汽车驱动桥设计评阅组或预答辩组成员姓名出席人数序号评 价 项 目满分得分1选题与专业培养目标的符合程度,综合训练情况;题目难易度102题目工作量;题目与工程实践、社会实际、科研与实验室建设等的结合程度103综合运用知识能力(设计涉及学科范围,内容深广度及问题难易度);应用文献资料能力154设计(实验)能力;计算能力(数据运算与处理能力);外文应用能力255计算机应用能力;对实验结果的分析能力(或综合分析能力、技术经济分析能力)156插图(图纸)质量;设计说明书撰写水平;设计的实用性与科学性;创新性207设计规范化程度(设计栏目齐全合理、SI制的使用等)5得 分 Y= 评 语:(参照上述评价项目给出评语,注意反映该论文的特点)回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 评阅人或预答辩组长签字: 2011 年 6 月 8 日注:毕业设计(论文)评阅可以采用2名评阅教师评阅或集体评阅或预答辩等形式。毕业设计答辩评分表学生姓名赵健专业班级车辆工程07-4班指导教师臧杰职 称教授题目江淮帅铃汽车驱动桥设计答辩时间月 日 时答辩组成员姓名出席人数序号评 审 指 标满分得分1选题与专业培养目标的符合程度,综合训练情况,题目难易度、工作量、与实际的结合程度102设计(实验)能力、对实验结果的分析能力、计算能力、综合运用知识能力103应用文献资料、计算机、外文的能力104设计说明书撰写水平、图纸质量,设计的规范化程度(设计栏目齐全合理、SI制的使用等)、实用性、科学性和创新性155毕业设计答辩准备情况56毕业设计自述情况207毕业设计答辩回答问题情况30总 分 Z= 答辩过程记录、评语:自述思路与表达能力:好 较好 一般 较差 很差回答问题: 正确 基本正确 基本不正确 不能回答所提问题研究能力或设计能力:强 较强 一般 较弱 很弱工作量: 大 较大 适中 较少 很少说明书规范性: 好 较好 一般 较差 很差图纸规范性: 好 较好 一般 较差 很差成果质量(设计方案、设计方法、正确性)好 较好 一般 较差 很差其他: 答辩组长签字: 2011 年 6 月 20 日毕业设计(论文)成绩评定表学生姓名赵健性别男院系汽车与交通工程学院专业车辆工程班级07-4班设计(论文)题目江淮帅铃汽车驱动桥设计平时成绩评分(开题、中检、出勤)指导教师姓名职称指导教师评分(X)评阅教师姓名职称评阅教师评分(Y)答辩组组长职称答辩组评分(Z)毕业设计(论文)成绩百分制五级分制答辩委员会评语:答辩委员会主任签字(盖章): 院系公章: 2011 年 6 月 23 日注:1、平时成绩(开题、中检、出勤)评分按十分制填写,指导教师、评阅教师、答辩组评分按百分制填写,毕业设计(论文)成绩百分制=W+0.2X+0.2Y+0.5Z 2、评语中应当包括学生毕业设计(论文)选题质量、能力水平、设计(论文)水平、设计(论文)撰写质量、学生在毕业设计(论文)实施或写作过程中的学习态度及学生答辩情况等内容的评价。优秀毕业设计(论文)推荐表题 目江淮帅铃汽车驱动桥设计类别学生姓名赵健院(系)、专业、班级汽车与交通工程学院 车辆工程07-4班指导教师臧杰职 称教授设计成果明细:答辩委员会评语:答辩委员会主任签字(盖章): 院、系公章: 年 月 日备 注: 注:“类别”栏填写毕业论文、毕业设计、其它毕业设计(论文)过程管理材料题 目江淮帅铃汽车驱动桥设计学生姓名赵 健系部名称汽车与交通工程学院专业班级车辆工程07-4指导教师臧 杰职 称教 授教研室车辆工程起止时间2011年2月28日2011年6月24日教 务 处 制毕业设计(论文)开题报告设计(论文)题目: 江淮帅铃汽车驱动桥设计 院 系 名 称: 汽车与交通工程学院 专 业 班 级: 车辆工程07-4班 学 生 姓 名: 赵 健 导 师 姓 名: 臧 杰 开 题 时 间: 3月1日 指导委员会审查意见: 签字: 年 月 日毕业设计(论文)开题报告学生姓名赵 健系部汽车与交通工程学院专业、班级车辆工程07-4指导教师姓名臧 杰职称教授从事专业车辆工程是否外聘是否题目名称江淮帅铃汽车驱动桥设计一、 课题研究现状、选题目的和意义1、课题研究现状驱动桥处于动力传动系的末端,其基本功能是:将万向传动装置传来的发动机转矩通过主减速胎、差速器、半轴等传到驱动车轮,实现降速增大转矩;通过主减速器圆锥齿轮副改变转矩的传递方向;通过差速器实现两侧车轮差速作用,保证内、外侧车轮以不同转速转向。4通过桥壳体和车轮实现承载及传力作用。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。同时装配质量对汽车的使用性能和使用寿命的影响也是很巨大的,如果装配不当,即使所有零件都合格,也难以获得符合质量要求的产品;反之,如果零件的质量不是很好,往往可以通过采用适当的装配方法使产品合格。所以装配质量对汽车的使用性能和使用寿命的影响是十分巨大的。 目前国产驱动桥在国内市场占据了绝大部分份额,但仍有一定数量的车桥依赖进口,国产车桥与国际先进水平仍有一定差距。国内车桥长的差距主要体现在设计和研发能力上,目前有研发能力的车桥厂家还不多,一些厂家仅仅停留在组装阶段。实验设备也有差距,比如工程车和牵引车在行驶过程中,齿轮啮合接触区的形状是不同的,国外先进的实验设备能够摸清这种状态,而我国现状还在摸索中。 在具体工艺细节方面,我国和世界水平的差距还比较大,近年来出现了一些新的变化。在结构方面,单级驱动桥的使用比例越来越高;技术方面,轻量化、舒适性的要求将逐步提高。总体而言,现在汽车向节能、环保、舒适等方面发展的趋势,要求车桥向轻量化、大扭矩、低噪声、款速比、寿命长和低生产成本。近十几年来,我国汽车工业发展迅猛,特别是在我国加入世贸后的这两三年时间里,乘用车的发展非常的快速。汽车工业的发展带动了零部件及相关产业的发展,作为汽车关键零部件之一的车桥系统也得到相应的发展,各生产厂家基本上形成了专业化、系列化、批量化生产的局面。综合分析,虽然汽车科技发展迅速,但在目前的状态下车桥的结构并没有多大的变化,为了适应市场的需要,适应国际法律、法规的需要,车桥技术的发展主要是:改变桥壳的制造工艺以提高制造的效率、增加车桥附加的技术含量以提高车辆行驶安全性、提高车桥的自润滑能力以提高车桥的使用寿命、增加电子技术在车桥上的应用以减少人工操纵的疲劳、减少维修费用、提高服务质量、降低车桥成本以提高车桥的竞争力等方面开发车桥,从最大限度上满足车桥高速、重载、智能发展的需要,以生产出具有本企业特色、适合市场需要的车桥。为适应不断完善社会主义市场经济体制的要求以及加入世贸组织后国内外汽车产业发展的新形势,推进汽车产业结构调整和升级,全面提高汽车产业国际竞争力,满足消费者对汽车产品日益增长的需求,促进汽车产业健康发展,特制定汽车产业发展政策。通过该政策的实施,使我国汽车产业发展成国民经济的支柱产业,为实现全面建设小康社会的目标做出更大的贡献。随着我国基础设施建设投资的不断加大以及水电、矿业、油田、公路、城市交通运输和环保工程建设等项目的增加,加大了社会对汽车的需要,为我国汽车的发展创造了广阔的市场空间。乘用车近年来生产总量呈直线上升,2001年全国乘用型汽车比上年同期增长91.67%,2002年为60.9%,2003年为3.22%,乘用型汽车的经济型、舒适性、动力性不断向更好的趋势发展。目前我国在设计驱动桥时全部采用传统的二维制图。根据二维图纸去加工实物时经常发现结构上有许多不合格之处,并重新修正,浪费了时间、人力、物力、财力,要提高效率最好的办法是直接设计出三维实体图,并进行各种模拟分析,达到省时、省力、省钱的目的。而实现这种功能的软件也相当多,如:I-DEAS,UG,PRO/E,SOLIDWORK等等。在看看国外的情况吧!国外一些汽车零部件生产企业已经用参数化设计技术研制出一些实用的产品开发软件系统(如英国Locus集团采用的制动器设计系统),使制动器的设计周期大大缩短。各种软件的开发,使得汽车零部件的质量和性能得到很大地改善,并大幅度地节省了开发时间和成本。虽然我们还不能对他们的产品有更多的了解,但至少说明开发这种产品的实用性、可行性和迫切性。随着我国公路条件的改善和物流业对车辆性能要求的变化,汽车驱动桥技术已呈现出向单级化发展的趋势。单级桥有主减速器,一级减速。桥包尺寸大,离地间隙小,相对双级桥而言,其通过性较差,主要用于公路运输车辆。双极桥有主减速器减速、轮边减速器减速,形成二级减速。由于是二级减速,主减速器减速速比小,主减速器总成相对较小,桥包相对减小,因此离地间隙加大,通过性好。该系列桥总成主要用于公路运输,以及石油、工矿、林业、野外作业和部队等领域。单级减速驱动桥产品的优势在于单级减速驱动桥是驱动桥中结构最简单的一种,制造工艺简单,成本较低,是驱动桥的基本类型,在重型汽车上占有重要地位。汽车发动机向低速大转矩发展的趋势,使得驱动桥的传动比同小速比发展。随着公路状况的改善,特别是高速公路的迅猛发展,汽车使用条件对汽车通过性的要求降低,因此,汽车不必像过去一样,采用复杂的结构提高通过性。与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件少,可靠性提高。单级桥产品的优势为单级桥的发展拓展了广阔的前景。目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果变速器除了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益。目前国内研究的重点在于:从桥壳的制造技术上寻求制造工艺先进、制造效率高、成本低的方法;从齿轮减速形势上将传统的中央级减速器发展到现在的中央及轮边双极减速或双极主减速器结构;从齿轮的加工形势上车桥内部的主从动齿轮、行星齿轮及圆柱齿轮逐渐采用精磨加工,以满足汽车高速行驶要求及法规对于噪声的控制要求。2、课题研究目的和意义驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形势及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构形式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。驱动桥的结构形式与驱动车轮的悬挂形式密切相关。当驱动车轮采用非独立悬挂时,都是采用非断开式驱动桥;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。与非断开式驱动桥相比较,断开式驱动桥能显著减少汽车簧下质量,从而改善汽车行驶平顺性,提高了平均行驶速度;减小了其策划行驶时作用于车轮和车桥上的动载荷,提高了零部件的使用寿命;增加了汽车的离地间隙;由于驱动车轮与路面的接触情况及对各种地形的适应性较好,增强了车轮的抗侧滑能力;若与之配合的独立悬架导向机构设计合理,可增加汽车的不足转向效应,提高汽车的操纵稳定性。但其结构复杂。成本较高。断开式驱动桥在乘用车和部分越野汽车上应用广泛。非断开式驱动桥结构简单,成本低,工作可靠,但由于其簧下质量较大,对汽车的行驶平顺性和降低动载荷有不利的影响。汽车驱动桥是汽车的重要大总成,承载着汽车的满载簧上荷重及地面经车轮、车架或承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥的结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车行驶性能如动力性、经济性、平顺性、通过性、机动性和操作稳定性有直接影响。因此,驱动桥的结构型式选择、设计参数选取及设计计算对汽车的整车设计极其重要。通过驱动桥设计熟悉汽车总成和零部件的设计。通过设计掌握汽车驱动桥结构设计原则和方法。培养正确的研究方法、理论联系实际的工作作风、严肃求实的学习态度。二、设计(论文)的基本内容、拟解决的主要问题 1、设计的主要内容(1)驱动桥和主减速器、差速器、半轴、驱动桥桥壳的结构形式选择(2)主减速器的基本参数选择与设计计算(3)差速器的设计与计算(4)半轴的设计与计算(5)驱动桥桥壳的受力分析及强度计算(6)用CAD画装配图、零件图。 2、拟解决的主要问题(1)驱动桥设计以及形式的选择(2)主减速器、差速器、半轴、桥壳的设计以及计算 (3)主减速器、差速器、半轴、桥壳的校核三、技术路线(研究方法)针对具体车型的具体参数,从网络、教材、书刊、论文等方面搜集材料,确定相关参数,进行计算、校核。针对该汽车驱动桥研究实际生产尺寸及工艺。以理论联系实际,比较设计课题与实际应用中的不同,进行相应改进。使设计课题具有实际意义。 四、进度安排(1)调研、资料收集,完成开题报告 第4周(3月20日3月24日)(2)参数选择方案确定,列文稿大纲 第4周(3月20日3月24日)(3)设计计算 第5、6周(3月28日4月11日)(4)完成设计说明书,完成图纸绘制 第7、13周(4月21日5月29日)(5)交稿,预答辩 第14周(5月30日6月5日)(6)毕业设计(论文)审核、修改 第15、16周(6月9日6月22日)(7)毕业设计(论文)答辩准备及答辩 第17周(6月23日6月29日)五、参考文献1臧杰,阎岩汽车构造M北京:机械工业出版社,20052刘惟信.汽车设计M.北京:清华大学出版社,20013王望予.汽车设计M.第3版.北京:机械工业出版社,20004汽车工程手册编辑委员会.汽车工程手册M.设计篇.北京:人民交通出版社,20015汽车工程手册编辑委员会.汽车工程手册M.制造篇.北京:人民交通出版社,20016余志生.汽车理论M.第3 版.北京:机械工业出版社,20007尹国臣,浅析汽车驱动桥主减速器的装配与调整J.科学教育家,2007,(10)8肖文颖,王书翰.普通锥齿轮差速器行星齿轮的力学分析J.科技资讯,2007,(11).9安晓娟,郝春光.主减速器齿轮的失效分析J.科学教育家,2007,(8) 10彭彦宏,吕晓霞,陆有.差速器圆锥齿轮的失效分析J.金属热处理,2006,(4) 11陈珂,殷国富.汽车驱动桥差速器齿轮结构设计优化研究J.机械传动,2008(4) 12付建红.汽车驱动桥半轴的技术改进J.新余高专学报,2006,(2) 13Li-Ping,Jeong Kim,Beom-Soo Kang.Analysis and design of hydroforming proess for automobile rear axle housing by FEMJ.Internation Journal of Machine Tools & Manufacture,2000,(4). 14周小平.避免驱动桥半轴扭断的工艺改进J.新余高专学报,2005,(10) 15杨朝会,王丰元.基于有限元法驱动桥壳分析J.农业装备与车辆工程,2006,(10)六、备注指导教师意见:签字: 年 月 日黑龙江工程学院本科生毕业设计摘 要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于各种汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右车轮,另外还承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,还对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操作稳定性等有直接影响。本设计参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本设计首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。本设计不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为一个课题继续研究下去。关键字:驱动桥;驱动桥;单级减速器;锥齿轮;半轴 ABSTRACTDrive axle is the one of automobile four important assemblies. It performance directly influence on the entire automobile,especially for the heavy truck .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded, high efficiency, high benefit todayheavy truck, single reduction final drive axle is.Driving axle in power transmission, the basic function of the end of the drive shaft or transmission increases is by the torque,and from the power of the reasonable assigned to the right and left the drive wheels, also take effect on the pavement and frame or bo dy between the vertical and lateral and longitudinal strength and power. Generally by the reducer drive,differential and wheel transmission device and driving axle shell etc.car driving axle is the major car assembly, carrying a full load and reed car wheels.frame, and the ground monocoque body the suspension of the lead to vertical force, longitudinal force, transverse force and torque,and impact load; Driving axle also passed the transmission of the maximum torque, bridge is under adverse effect moment shell.car driving axle structure and design parameters in addition to the rellability of the parameters in addition to the reliablilty of the automobile and durability has a significant effect on the outside , also for the automobile driving performance such as power, economy smooth, through the sex,mobility and exercise has a direct impact on the dynamic stability, ectThis design following the traditional designing method of the drive axle. First ,make up the main partsstructure and the key designing parameters; thus reference to the similar driving axle structure , decide the entire designing project ; fanially check the strength of the axle drive bevel pinion ,bevel gear wheel , the differentional planetary pinion, differential side gear , full-floating axle shaft and the banjo axle housing , and the life expection of carrier bearing . The designing take the spiral bevel gear for the tradional hypoid gear ,as the gear type of heavy trucks final drive,with the expection of the question being discussed, further .Key words: Drive Axle; Rrducer; Differential; Automotive Design; Half ShaftIII黑龙江工程学院本科生毕业设计第1章 绪 论1.1 本课题的目的和意义本课题是对江淮帅铃货车驱动桥的结构设计。通过此次毕业设计,训练学生的实际工作能力。掌握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在99KW,最大转矩也在350Nm以上,百公里油耗是一般都在30升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机传动轴驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。1.2 驱动桥的分类1.2.1 非断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种家庭乘用车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型家庭乘用车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。1.2.2 断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。1.2.3 多桥驱动的布置为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有44、66、88等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对88汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计(如汽车的变型)、制造和维修,都带来方便。1.3 主要内容(1)驱动桥和主减速器、差速器、半轴、驱动桥桥壳的结构形式选择(2)主减速器的基本参数选择与设计计算(3)差速器的设计与计算(4)半轴的设计与计算(5)驱动桥桥壳的受力分析及强度计算(6)用CAD画装配图、零件图。第2章 驱动桥结构方案分析2.1 主减速器的类型由于要求设计的是江淮帅铃的驱动桥,要设计这样一个级别的驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。驱动桥的结构形式有多种,基本形式有三种如下:(1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式, 在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承, 有差速锁装置供选用。(2)中央双级驱动桥。由于中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。(3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。综上所述,设计的驱动桥的传动比小于6。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势。单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看, 重型车产品在主减速比小于6的情况下,应尽量选用单级减速驱动桥。2.2 设计驱动桥的基本要求(1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。(2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。(3)齿轮及其他传动件工作平稳,噪声小。(4)在各种载荷和转速工况下有较高的传动效率。(5)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。(6)与悬架导向机构运动协调。(7)结构简单,加工工艺性好,制造容易,维修,调整方便。驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。2.3 非断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上。在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支撑在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。驱动桥的轮廓尺寸主要取决于主减速器的形式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级别结构,在双级主减速器中,通常把两级减速器齿轮放在一个主减速壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方:公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方:有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。在少数具有高速发动机得大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用涡轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。2.4 断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥成为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横梁或车厢地板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野车上,且后者多属于轻型一下的越野汽车或多桥驱动的重型越野汽车。由于非断开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,参照国内相关货车的设计,最后本课题选用非断开式驱动桥。2.5 本章小结本章主要针对给定的汽车进行分析和布置方案的确定以及主减速器的结构的确定,为下面的设计过程做铺垫。第3章 主减速器设计3.1 主减速器的结构形式主减速器的结构形式主要是根据其齿轮的类型,主动齿轮和从动齿轮的安置方法以及减速形式的不同而异。3.1.1 主减速器的齿轮类型主减速器的齿轮有弧齿锥齿轮,双曲面齿轮,圆柱齿轮和蜗轮蜗杆等形式。在此选用弧齿锥齿轮传动,其特点是主、从动齿轮的轴线垂直交于一点。由于轮齿端面重叠的影响,至少有两个以上的轮齿同时啮合,因此可以承受较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐渐有齿的一端连续而平稳的地转向另一端,所以工作平稳,噪声和振动小。3.1.2 主减速器的减速形式由上段分析设定采用i6小传动比,采用单级主减速器,单级减速驱动桥产品的优势:单级减速驱动车桥是驱动桥中结构最简单的一种,制造工艺较简单,成本较低,是驱动桥的基本型,在重型汽车上占有重要地位;3.1.3 主减速器主,从动锥齿轮的支承形式作为一个4吨级的驱动桥,传动的转矩很大,所以主动锥齿轮采用骑马式支承。装于轮齿大端一侧轴颈上的轴承,多采用两个可以预紧以增加支承刚度的圆锥滚子轴承,其中位于驱动桥前部的通常称为主动锥齿轮前轴承,其后部紧靠齿轮背面的那个齿轮称为主动锥齿轮后轴承;当采用骑马式支承时,装于齿轮小端一侧轴颈上的轴承称为导向轴承。导向轴承都采用圆柱滚子式,并且内外圈可以分离(有时不带内圈),以利于拆装。 3.2 主减速比的计算主减速比对主减速器的结构形式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择值,可是汽车获得最佳的动力性和燃料经济性。为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大10%25%,即按下式选择: =0.377=4.444 式中:车轮的滚动半径=0.5(m) 最大功率时的发动机转速3000r/min;汽车的最高车速85km/h; 变速器最高挡传动比1; 分动器传动比1.223。3.2.1 主减速器计算载荷的确定1.按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩ce (3.1)式中: 传动系的最低挡传动比,在此取9.01;发动机的输出的最大转矩350;传动系上传动部分的传动效率,在此取0.9;该汽车的驱动桥数目在此取1;1.0 由以上各参数可求=13612.7 (3.2)2.按驱动轮打滑转矩确定从动锥齿轮的计算转矩 (3.3)式中:汽车满载时一个驱动桥给水平地面的最大负荷, 取40000N轮胎对地面的附着系数,对于安装一般轮胎的公路用车,取=0.85;车轮的滚动半径,轮胎型号为12.00R20,滚动半径为 0.527m;,分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取0.9, 取1.0 所以=19908.93.按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续的转矩根据所谓的平均牵引力的值来确定: (3.4)式中:汽车满载时的总重量,此取802000N;所牵引的挂车满载时总重量,0N,但仅用于牵引车的计算;道路滚动阻力系数,对于载货汽车可取0.0150.020;在此取0.018汽车正常行驶时的平均爬坡能力系数,对于载货汽车可取0.050.09在此取0.07汽车的性能系数,取0;,n见式(3.1),(3.3)下的说明。所以 =41326.2式(3.1)式(3.4)参考汽车车桥设计1式(3.10)式(3.12)。3.2.2 主减速器基本参数的选择1.主、从动锥齿轮齿数和选择主、从动锥齿轮齿数时应考虑如下因素:(1)为了磨合均匀,之间应避免有公约数。(2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于40。(3)为了啮合平稳,噪声小和具有高的疲劳强度对于商用车一般不小于6。(4)主传动比较大时,尽量取得小一些,以便得到满意的离地间隙。(5)对于不同的主传动比,和应有适宜的搭配。根据以上要求参考汽车车桥设计1中表3-12 表3-13取=9 =40 2.从动锥齿轮大端分度圆直径和端面模数对于单级主减速器,增大尺寸会影响驱动桥壳的离地间隙,减小又会影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。可根据经验公式初选,即 (3.5)直径系数,一般取13.016.0 从动锥齿轮的计算转矩,为Tce和Tcs中的较小者,所以在此取=13612.7=(13.016.0)=(310.4382)初选=370 则=/=370/40=9.25有参考机械设计手册2表23.4-3中选取9 , 则=360根据=来校核=9选取的是否合适,其中=(0.30.4)此处,=(0.30.4)=(7.169.55),因此满足校核。3.主,从动锥齿轮齿面宽和对于从动锥齿轮齿面宽,推荐不大于节锥的0.3倍,即,而且应满足,对于汽车主减速器圆弧齿轮推荐采用: =0.155428=55.9 在此取60一般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大20%较为合适,在此取=804.中点螺旋角螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端螺旋角最小,弧齿锥齿轮副的中点螺旋角是相等的,选时应考虑它对齿面重合度,轮齿强度和轴向力大小的影响,越大,则也越大,同时啮合的齿越多,传动越平稳,噪声越低,而且轮齿的强度越高,应不小于1.25,在1.52.0时效果最好,但过大,会导致轴向力增大。汽车主减速器弧齿锥齿轮的平均螺旋角为3540,而商用车选用较小的值以防止轴向力过大,通常取35。5.螺旋方向 主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受的轴向力的方向,当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋,从锥顶看为顺时针,驱动汽车前进。6.法向压力角 加大压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一般对于“格里森”制主减速器螺旋锥齿轮来说,规定重型载货汽车可选用22.5的压力角。3.2.3 主减速器圆弧锥齿轮的几何尺寸计算表3.1 主减速器圆弧锥齿轮的几何尺寸计算用表序 号项 目计 算 公 式计 算 结 果1主动齿轮齿数92从动齿轮齿数403端面模数94齿面宽=80 =625工作齿高80.46全齿高=99.757法向压力角=22.58轴交角=909分度圆直径=86=380序 号项 目计 算 公 式计 算 结 果10节锥角arctan=90-=12.68=77.3211节锥距A=A=245.9712周节t=3.1416 t=37.6913齿顶高=10.214齿根高=12.46 15径向间隙c=c=2.25616齿根角=2.899 17面锥角=15.581=80.21718根锥角=9.783=74.41919齿顶圆直径=127.902=484.47920节锥顶点止齿轮外缘距离=237.76=44.0521理论弧齿厚 =27.38mm=10.32mm22齿侧间隙B=0.3050.4060.4mm23螺旋角=353.2.4 主减速器圆弧锥齿轮的强度计算1 主减速器圆弧齿螺旋锥齿轮的强度计算(1)单位齿长上的圆周力 在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即 (3.6)式中:P作用在齿轮上的圆周力,按发动机最大转矩Temax和最大附着力矩 两种载荷工况进行计算,N; 从动齿轮的齿面宽,在此取80mm. 按发动机最大转矩计算时: (3.7)式中:发动机输出的最大转矩,在此取350;变速器的传动比;主动齿轮节圆直径,在此取108mm.按上式 =730Nmm (3.8) (2)轮齿的弯曲强度计算 汽车主减速器锥齿轮的齿根弯曲应力为 N/ (3.9) 式中:该齿轮的计算转矩,Nm;超载系数;在此取1.0尺寸系数当时,在此0.829载荷分配系数,当两个齿轮均用骑马式支承型式时,1.001.1;质量系数,对于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度高时,可取1.0;计算齿轮的齿面宽,mm;计算齿轮的齿数;端面模数,mm;计算弯曲应力的综合系数,它综合考虑了齿形系数。载荷作用点的位置、载荷在齿间的分布、有效齿面宽、应力集中系数及惯性系数等对弯曲应力计算的影响。计算弯曲应力时本应采用轮齿中点圆周力与中点端面模数,今用大端模数,而在综合系数中进行修正。按图2-1选取小齿轮的0.225,大齿轮0.195.按上式173 N/ 210.3 N/ =199.6 N/3076.9 h=所以轴承符合使用要求。对于从动齿轮的轴承C,D的径向力计算公式见式(2.18)和式(2.19)已知F=25450N,=9662N,=20202N,a=410mm,b=160mm.c=250mm所以,轴承C的径向力: =10401.3N 轴承D的径向力: =23100.5N轴承C,D均采用圆锥滚子轴承32218,其额定动载荷Cr为134097N(3)对于轴承C,轴向力A=9662N,径向力R=10401.3N,并且=0.93e,在此e值为1.5tana约为0.402,由机械设计6中表18.7可查得X=0.4,Y=0.4cota=1.6所以Q=1.2(0.496621.610401.3)=24608.256N =28963 h所以轴承C满足使用要求。(4)对于轴承D,轴向力A=0N,径向力R=23100.5N,并且=.4187e 由机械设计6中表18.7可查得X=0.4,Y=0.4cota=1.6 所以Q=1.2(1.623100.5)=44352.96N =4064.8 h 所以轴承D满足使用要求。此节计算内容参考了汽车车桥设计1和汽车设计3关于主减速器的有关计算。3.3 本章小结本章首先根据所学的汽车理论的知识计算出主减速器的传动比,确定齿轮的参数,介绍了齿轮变为系数的选择原则,并根据各项参数计算齿轮的参数,简单介绍了齿轮材料的选择原则,对齿轮进行了校核。第4章 差速器设计差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器有多种形式,在此设计普通对称式圆锥行星齿轮差速器。 4.1 对称式圆锥行星齿轮差速器的结构普通的对称式圆锥齿轮差速器由差速器左右壳,两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成。如图3-2所示。其广泛用于各类车辆上。图3-2 普通的对称式圆锥行星齿轮差速器1,12-轴承;2-螺母;3,14-锁止垫片;4-差速器左壳;5,13-螺栓;6-半轴齿轮垫片;7-半轴齿轮;8-行星齿轮轴;9-行星齿轮;10-行星齿轮垫片;11-差速器右壳4.2 对称式圆锥行星齿轮差速器的设计由于在差速器壳上装着主减速器从动齿轮,所以在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器的轮廓尺寸也受到主减速器从动齿轮轴承支承座及主动齿轮导向轴承座的限制。4.2.1 差速器齿轮的基本参数的选择1.行星齿轮数目的选择载货汽车采用4个行星齿轮。2.行星齿轮球面半径的确定圆锥行星齿轮差速器的结构尺寸,通常取决于行星齿轮的背面的球面半径,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥距,因此在一定程度上也表征了差速器的强度。 球面半径可按如下的经验公式确定: mm (4.1) 式中:行星齿轮球面半径系数,可取2.522.99,对于有4个行星齿轮的载货汽车 取小值; T计算转矩,取Tce和Tcs的较小值,T =13612.7Nm.根据上式=2.6=62mm 所以预选其节锥距A=62mm3.行星齿轮与半轴齿轮的选择为了获得较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少。但一般不少于10。半轴齿轮的齿数采用1425,大多数汽车的半轴齿轮与行星齿轮的齿数比/在1.52.0的范围内。差速器的各个行星齿轮与两个半轴齿轮是同时啮合的,因此,在确定这两种齿轮齿数时,应考虑它们之间的装配关系,在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数,之和必须能被行星齿轮的数目所整除,以便行星齿轮能均匀地分布于半轴齿轮的轴线周围,否则,差速器将无法安装,即应满足的安装条件为: (4.2)式中:,左右半轴齿轮的齿数,对于对称式圆锥齿轮差速器来说,=行星齿轮数目;任意整数。 在此=18,=12 满足以上要求。4.差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定首先初步求出行星齿轮与半轴齿轮的节锥角, =29.05 =90-=60.95 再按下式初步求出圆锥齿轮的大端端面模数m m=6.78 由于强度的要求在此取m=8mm 得=80mm =818=144mm5.压力角目前,汽车差速器的齿轮大都采用22.5的压力角,齿高系数为0.8。最小齿数可减少到10,并且在小齿轮(行星齿轮)齿顶不变尖的条件下,还可以由切向修正加大半轴齿轮的齿厚,从而使行星齿轮与半轴齿轮趋于等强度。由于这种齿形的最小齿数比压力角为20的少,故可以用较大的模数以提高轮齿的强度。在此选22.5的压力角。6.行星齿轮安装孔的直径及其深度L行星齿轮的安装孔的直径与行星齿轮轴的名义尺寸相同,而行星齿轮的安装孔的深度就是行星齿轮在其轴上的支承长度,通常取: (4.3)式中:差速器传递的转矩,Nm;在此取13612.7Nm行星齿轮的数目;在此为4行星齿轮支承面中点至锥顶的距离,mm, 0.5d, d为半轴齿轮齿面宽中点处的直径,而d0.8; 支承面的许用挤压应力,在此取69 MPa根据上式 =144mm =0.5144=72mm 25mm 28mm4.2.2 差速器齿轮的几何计算表4.1汽车差速器直齿锥齿轮的几何尺寸计算用表序号项目计算公式计算结果1行星齿轮齿数10,应尽量取最小值=122半轴齿轮齿数=1425,且需满足式(4-1)=183模数=5mm4齿面宽b=(0.250.30)A;b10m15mm 续表 序号项目计算公式计算结果5工作齿高=16mm6全齿高17.9317压力角22.58轴交角=909分度圆直径; 10节锥角,=29.05,11节锥距=102.97mm12周节=3.1416=31.42mm13齿顶高;=12.3mm=5.6mm14齿根高=1.788-;=1.788-=7.32mm;=12.44mm15径向间隙=-=0.188+0.051=1.931mm16齿根角=;=1.067; =6.86817面锥角;=35.94=65.0218根锥角;=24.98=54.0619外圆直径;mmmm20节圆顶点至齿轮外缘距离mmmm续表序号项目计算公式计算结果21理论弧齿厚 =17.38 mm=14.05 mm22齿侧间隙=0.2450.330 mm=0.250mm23弦齿厚=17.13mm=13.88mm24弦齿高=11.22mm=5.58mm4.2.3 差速器齿轮的强度计算差速器齿轮的尺寸受结构限制,而且承受的载荷较大,它不像主减速器齿轮那样经常处于啮合状态,只有当汽车转弯或左右轮行驶不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动。因此对于差速器齿轮主要应进行弯曲强度校核。轮齿弯曲强度为 = MPa (4.4) 式中:差速器一个行星齿轮传给一个半轴齿轮的转矩,其计算式 在此为1547.25 Nm;差速器的行星齿轮数;半轴齿轮齿数;、见式(2.9)下的说明;计算汽车差速器齿轮弯曲应力用的综合系数,由图3.1可查得=0.225图4.2 弯曲计算用综合系数根据上式=201.7 MPa210.9 MPa所以,差速器齿轮满足弯曲强度要求。此节内容图表参考了汽车车桥设计1中差速器设计一节。4.3 本章小结本章主要针对差速器进行了设计和校核,确定其结构、尺寸。对差速器中的齿轮进行了计算和校核。第5章 驱动半轴的设计驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器的半轴齿轮传给驱动车轮。在一般的非断开式驱动桥上,驱动车轮的传动装置就是半轴,半轴将差速器的半轴齿轮与车轮的轮毂联接起来,半轴的形式主要取决半轴的支承形式:普通非断开式驱动桥的半轴,根据其外端支承的形式或受力状况不同可分为半浮式,3/4浮式和全浮式,在此由于是载重汽车,采用全浮式结构。设计半轴的主要尺寸是其直径,在设计时首先可根据对使用条件和载荷工况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对它进行强度校核。计算时首先应合理地确定作用在半轴上的载荷,应考虑到以下三种可能的载荷工况:(1)纵向力(驱动力或制动力)最大时,其最大值为,附着系数在计算时取0.8,没有侧向力作用;(2)侧向力最大时,其最大值为(发生于汽车侧滑时),侧滑时轮胎与地面的侧向附着系数在计算时取1.0,没有纵向力作用;(3)垂向力最大时(发生在汽车以可能的高速通过不平路面时),其值为,其中为车轮对地面的垂直载荷,为动载荷系数,这时不考虑纵向力和侧向力的作用。 由于车轮承受的纵向力,侧向力值的大小受车轮与地面最大附着力的限制,即有 故纵向力最大时不会有侧向力作用,而侧向力最大时也不会有纵向力作用。5.1 全浮式半轴计算载荷的确定 全浮式半轴只承受转矩,其计算转矩可有求得,其中,的计算,可根据以下方法计算,并取两者中的较小者。 若按最大附着力计算,即 (5.1)式中:轮胎与地面的附着系数取0.8;汽车加速或减速时的质量转移系数,可取1.21.4在此取1.3。根据上式=260000 N 若按发动机最大转矩计算,即 (5.2)式中:差速器的转矩分配系数,对于普通圆锥行星齿轮差速器取0.6;发动机最大转矩,Nm;汽车传动效率,计算时可取1或取0.9;传动系最低挡传动比;轮胎的滚动半径,m。上参数见式(3.1)下的说明。根据上式=14359.9 N在此14359.9 N =14359.9 Nm5.2 全浮式半轴的杆部直径的初选全浮式半轴杆部直径的初选可按下式进行 (5.3)根据上式=(40.8352.99)mm根据强度要求在此取43mm。5.3 全浮式半轴的强度计算 首先是验算其扭转应力: (5.4)式中:半轴的计算转矩,Nm在此取14359.9Nm;半轴杆部的直径,mm。根据上式384.9 MPa =(490588) MPa所以满足强度要求。5.4 半轴花键的强度计算在计算半轴在承受最大转矩时还应该校核其花键的剪切应力和挤压应力。半轴花键的剪切应力为 (5.5)半轴花键的挤压应力为 (5.6)式中:半轴承受的最大转矩,Nm ,在此取14359.9Nm;半轴花键的外径,mm,在此取51mm;相配花键孔内径,mm,在此取42.6mm;花键齿数;在此取16花键工作长度,mm,在此取130mm;花键齿宽,mm,在此取3.925mm;载荷分布的不均匀系数,计算时取0.75。根据上式可计算得=56.3 MPa =47.3 MPa 根据要求当传递的转矩最大时,半轴花键的切应力不应超过71.05 MPa,挤压应力不应超过196 MPa,以上计算均满足要求。 此节的有关计算参考了汽车车桥设计中关于半轴的计算的内容。5.5 本章小结本章主要针对驱动桥上的半轴进行了计算和校核,并对半轴的形式进行了确定以及校核的半轴是否满足使用要求。第6章 驱动桥壳的设计驱动桥壳的主要功用是支承汽车质量,并承受有车轮传来的路面反力和反力矩,并经悬架传给车身,它同时又是主减速器,差速器和半轴的装配体。驱动桥壳应满足如下设计要求:(1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力;(2)在保证强度和刚度的情况下,尽量减小质量以提高行驶的平顺性;(3)保证足够的离地间隙;(4)结构工艺性好,成本低;(5)保护装于其中的传动系统部件和防止泥水浸入;(6)拆装,调整,维修方便。考虑的设计的是载货汽车,驱动桥壳的结构形式采用铸造整体式桥壳。6.1 铸造整体式桥壳的结构通常可采用球墨铸铁、可锻铸铁或铸钢铸造。在球铁中加入1.7%的镍,解决了球铁低温(-41C)冲击值急剧降低的问题,得到了与常温相同的冲击值。为了进一步提高其强度和刚度,铸造整体式桥壳的两端压入较长的无缝钢管作为半轴套筒,并用销钉固定。如图5.1所示,每边半轴套管与桥壳的压配表面共四处,由里向外逐渐加大配合面的直径,以得到较好的压配效果。钢板弹簧座与桥壳铸成一体,故在钢板弹簧座附近桥壳的截面可根据强度要求铸成适当的形状,通常多为矩形。安装制动底板的凸缘与桥壳住在一起。桥壳中部前端的平面及孔用于安装主减速器及差速器总成,后端平面及孔可装上后盖,打开后盖可作检视孔用。另外,由于汽车的轮毂轴承是装在半轴套管上,其中轮毂内轴承与桥壳铸件的外端面相靠,而外轴承则与拧在半轴套管外端的螺母相抵,故半轴套管有被拉出的倾向,所以必须将桥壳与半轴套管用销钉固定在一起。图6.1 铸造整体式驱动桥结构铸造整体式桥壳的主要优点在于可制成复杂而理想的形状,壁厚能够变化,可得到理想的应力分布,其强度及刚度均较好,工作可靠,故要求桥壳承载负荷较大的中、重型汽车,适于采用这种结构。尤其是重型汽车,其驱动桥壳承载很重,在此采用球铁整体式桥壳。除了优点之外,铸造整体式桥壳还有一些不足之处,主要缺点是质量大、加工面多,制造工艺复杂,且需要相当规模的铸造设备,在铸造时质量不宜控制,也容易出现废品,故仅用于载荷大的重型汽车。6.2 桥壳的受力分析与强度计算选定桥壳的结构形式以后,应对其进行受力分析,选择其端面尺寸,进行强度计算。汽车驱动桥的桥壳是汽车上的主要承载构件之一,其形状复杂,而汽车的行驶条件如道路状况、气候条件及车辆的运动状态又是千变万化的,因此要精确地计算出汽车行驶时作用于桥壳各处的应力大小是相当困难的。在通常的情况下,在设计桥壳时多采用常规设计方法,这时将桥壳看成简支梁并校核某些特定断面的最大应力值。我国通常推荐:计算时将桥壳复杂的受力状况简化成三种典型的计算工况,即当车轮承受最大的铅锤力(当汽车满载并行驶与不平路面,受冲击载荷)时;当车轮承受最大切应力(当汽车满载并以最大牵引力行驶和紧急制动)时;以及当车轮承受最大侧向力(当汽车满载侧滑)时。只要在这三种载荷计算工况下桥壳的强度特征得到保证,就认为该桥壳在汽车各种行驶条件下是可靠的。在进行上述三种载荷工况下桥壳的受力分析之前,还应先分析一下汽车满载静止于水平路面时桥壳最简单的受力情况,即进行桥壳的静弯曲应力计算。6.2.1 在不平路面冲击载荷作用下的桥壳强度计算当汽车在不平路面上高速行驶时,桥壳除承受静止状态下那部分载荷外,还承受附加的冲击载荷。在这两种载荷总的作用下,桥壳所产生的弯曲应力为 (6.1)式中:动载荷系数,对于载货汽车取2.5;桥壳在静载荷下的弯曲应力 ,MPa。根据上式 MPa6.2.2 汽车以最大牵引力行驶时的桥壳强度计算为了使计算简化,不考虑侧向力,仅按汽车作直线行驶的情况进行计算,另从安全系数方面作适当考虑。如图5-4所示为汽车以最大牵引力行驶的受力简图。图6.1 汽车以最大牵引力行驶的受力简图作用在左右驱动车轮的转矩所引起的地面对于左右驱动车轮的最大切向反作用力共为 N (6.2)根据上式可计算得=23933.1N由于设计时某些参数未定而无法计算出汽车加速行驶时的质量转移系数值,而对于载货汽车的后驱动桥可在1.11.3范围内选取,在此取1.2。 此时后驱动桥桥壳在左、右钢板弹簧座之间的垂向弯矩为 Nm (6.3)式中:,见式(5.1)下的说明。根据上式=17202.9 Nm由于驱动车轮所承受的地面对其作用的最大切向反作用力,使驱动桥壳也承受着水平方向的弯矩,对于装有普通圆锥齿轮差速器的驱动桥,由于其左、右驱动车轮的驱动转矩相等,故有 (6.4)所以根据上式=4966.1Nm桥壳还承受因驱动桥传递驱动转矩而引起的反作用力矩,这时在两钢板弹簧座间桥壳承受的转矩为 = (6.5) 式中:发动机最大转矩,在此为350Nm;传动系的最低传动比;传动系的传动效率,在此取0.9。根据上式可计算得=6306.4Nm所以在钢板弹簧座附近的危险断面处的弯曲应力和扭转应力分别为 (6.6) (6.7)式中:分别为桥壳在两钢板弹簧座之间的垂向弯矩和水平弯矩,见式(6.3),和式(6.4);分别为桥壳在危险断面处的垂向弯曲截面系数,水平弯曲截面系数和扭转截面系数。根据上式可以计算得=27.4+9.2=36.6 MPa =5.6 MPa由于桥壳的许用弯曲应力为300500 MPa,许用扭转应力为150400MPa,所以该设计的桥壳满足这种条件下的强度要求。6.2.3 汽车紧急制动时的桥壳强度计算这时不考虑侧向力,图6.2为汽车在紧急制动时的受力简图。图6.2 汽车在紧急制动时的受力简图由于设计时一些参数是未知的,所以后驱动桥计算用的汽车紧急制动时的质量转移系数不可计算,一般对于载货汽车后驱动桥取0.750.95。图6.2为汽车紧急制动时后驱动桥壳的受力分析简图,此时作用在左右驱动车轮上除了有垂向反作用力外,尚有切向反力,即地面对驱动轮的制动力,因此可求得紧急制动时桥壳在两钢板弹簧座之间的垂向弯矩及水平方向的弯矩分别为 (6.8) = (6.9)式中:,见式(6.1)下的说明;汽车制动时的质量转移系数,计算后驱动桥时=0.85;驱动车轮与路面的附着系数,计算时可取0.750.80,在此取0.8;根据上式可以计算得=12185.4 Nm =9748.3 Nm 图6.3 汽车紧急制动时后驱动桥的受力简图桥壳在两钢板弹簧座的外侧部分处同时还承受制动力所引起的转矩,对于后驱动桥: (6.10)根据上式=14370.2 Nm所以可根据式(6.8),(6.9)计算出在钢板弹簧座附近危险断面的弯曲应力和扭转应力分别为 =37.5 MPa =12.7 MPa由于桥壳的许用弯曲应力为300500 MPa,许用扭转应力为150400 MPa,所以该设计的桥壳满足这种条件下的强度要求。6.3 本章小结本章是对选择的桥壳进行强度校核以及受力分析并确定桥壳能否在实际生活中使用和所注意的桥壳保养的问题。结 论本设计根据传统驱动桥设计方法,并结合现代设计方法,确定了驱动桥的总体设计方案,先后进行主减速器 ,差速器,半轴以及驱动桥壳的结构设计和强度校核,并运用AutoCAD软件绘制出主要零部件的工程图并设计出了4吨级的驱动桥,该驱动桥适用于轻型载货汽车。完成的主要内容如下(1)对驱动桥的整体结构分析与设计(2)对主减速器、差速器、半轴、桥壳的设计计算与校核(3)利用Auto CAD 完成了二维的装配图和零件图货车一般采用的是单级主减速器,采用单级主减速器即可满足汽车动力性的要求。而且单级主减速器结构简单、体积小、重量轻和传动效率高,所以单级主减速器应用非常的广泛。但对速比较大的主减速器,主动锥齿轮容易发生根切现象,从而降低齿轮的强度。我认为对驱动桥的研究应该以怎么样保证不降低主减速器齿轮的强度为中心目标为以后的大方向。致 谢为期三个多月的毕业设计就要结束了,我也顺利的完成了我的课题设计,在此之际我要衷心的感谢在设计过程中一直帮助我支持我的老师。我要感谢指导老师,老师在整个设计过程中对我的影响很大,设计过程中的很多个难点都是在老师的悉心指导下才克服的,还有老师大亲切和善也是我在整个设计过程中感受最深的。也因为这样,和老师之间存在着师生心理障碍一下全无,我也就大方的有问题就问,有想法就提,这也使得我能更多的发现设计中存在的问题,并解决问题。老师严谨的治学态度,渊博的专业知识,诲人不倦教学精神,在学术上和为人上都是我们的楷模和榜样。同时我还要感谢跟我一起参与设计的同学,虽然我们课题不同,但是都能在讨论中发现各自的问题,并互相提出解决的方法,设计能够顺利完成,也因为他们的帮助。结束代表着新的开始,新的征程,本次的毕业设计将会成为我今后工作,学习生活中的一份坚实的基础和保证。从中吸取的经验教训也将成为我们在今后生活道路上的一笔财富,挫折永远是前进道路上所必须面对的,相信我们的未来会走的更好,也可以让我们大学的老师放心。真心的感谢在大学帮助过我的老师和同学们,再次感谢你们!参考文献1 刘惟信 编著.汽车车桥设计 .北京:清华大学出版社,20042 徐颢 主编.机械设计手册(第3,4卷).北京:机械工业出版社,19913 吉林大学 王望予 主编.汽车设计(第四版).北京:机械工业出版社,20044 吉林大学 陈家瑞 主编.汽车构造(下册).北京:机械工业出版社,20055 朱孝录 主编.齿轮传动设计手册.北京:化学工业出版社,20056 邱宣怀 主编.机械设计.北京:高等教育出版社,19977 廖念钊等编 .互换性与技术测量(第四版).北京:中国计量出版社,20008 王明珠 主编 .工程制图学及计算机绘图 .北京:国防工业出版社,19989 戴少度 主编.材料力学. 北京:国防工业出版社,200210 第二汽车制造厂 何敏. EQ1141G后驱动桥.汽车运输,1992(11)11 丹东汽车制造厂 刘凤君.浅谈DD321 20系列后驱动桥的开发.1997(4)12 重载汽车驱动桥的基本结构形式.13 单级桥:重型车桥的发展方向.刘利军.14 王望予汽车设计M北京:机械工业出版社,200515 刘惟信.汽车设计M.北京:清华大学出版社,2001.16 成大先.机械设计手册M.北京:化学工业出版社,2004,1.17 周开勤.机械零件手册M.北京:高等教育出版社,2001.18 温芳,黄华梁.基于模糊可靠度约束的差速器行星齿轮传动优化设计J.2004.6.19 成大先机械设计手册(14册)M.北京:化学工业出版社,199320 Ford Motor Company Arup Gangopadhyay, Sam Asaro, Michael Schroder, Ron Jensen and Jagadish Sorab. Fuel Economy Improvement Through Frictional Loss Reduction in Light Duty Truck Rear Axle.SAE,200221 Dirk Spindler Georg von Petery INA-Schaeffler KG. Angular Contact Ball Bearings for a Rear Axle Differential.SAE ,2003附 录附录ADriver introductions Bridge1. Features: Drive Bridge at the end of powertrain, and the basic function of which is to increase came from the drive shaft or transmission of torque, and a reasonable distribution of power to the left and right driving wheel, and also bear in the role of the frame or the road and Legislative body between the vertical, horizontal and vertical of power. Driven by the general bridge reducer, differential, wheels, transmission and drive axle housings and other components.2. The bridge design driver:(1)Drive bridge design should meet the following basic requirements:(1). Choice of the reduction ratio should be able to guarantee that vehicles have the power and the best fuel economy.(2). Dimensions small to ensure that the necessary ground clearance.(3). Transmission gears and other pieces of work stable and noise.(4). Under various load and speed with high transmission efficiency.(5). Guarantee sufficient strength, rigidity conditions, should strive for quality small, particularly unsprung mass should be as small as possible to improve vehicle ride comfort.(6). Oriented suspension and coordination of movement, to the drive axle, and the steering mechanism should be coordinated with campaigns.(7). Simple structure, and processing of, and easy to manufacture, enables easy adjustment.3. Drive Bridge Category 3.1 non-driving axle-disconnect Disconnect-general non-driving axle, simple structure, low cost, reliable, widely used in a variety of truck, bus and the bus, in the majority of off-road vehicles and some cars also adopt this structure. Their specific structure, in particular the shell structure while the bridge is not the same, but there is one common characteristic is that Shell is a bridge support in the drive wheel about the rigid hollow beam, and the half-axle gear transmission components, such as installation of one of them. Then the whole drive axle, drive shaft driven wheel and some are in unsprung mass, larger vehicles unsprung mass, which is one of its shortcomings. Drive Axle size depends primarily on the outline of the main types reducer. In the tire size and drive underneath the minimum ground clearance has been determined by circumstances, it defines the diameter of the driven gear reducer size. Ratio of a given condition, if the single-stage reducer can not meet the requirements of ground clearance, with the dual-class structure. In the two-stage reducer, the two usually on a main gear reducer shell reducer, can also slow gear as a second-class round-reducer. The round-reducer: In order to improve cross-country motor vehicle ground clearance, can be a spur gear consisting of round-gear reducer initiatives under its follower of the vertical top gear; buses to reduce vehicle height and the center of mass of train floors height, so as to enhance stability and the convenience of the passengers get on and off, can be round-gear reducer initiatives under its vertical driven gear beneath some double-decker bus in order to further reduce the compartment floor height in a round-Gear reducer At the same time, the main reducer and differential assembly also moved to the drivers side wheel. In a few large-scale high-speed bus engine, multi-bridge drive vehicle and ultra-heavy laden car, and sometimes used for the worm reducer, it not only has the quality of small, compact size of circumstances can be large and transmission ratio Smoothing the merits of silent work, and the overall layout of the car is very convenient.3.2-drive axle disconnect Disconnect-drive axle different from the non-driving axle-disconnect the obvious characteristics of a connection is that the former does not drive the wheels about the rigidity of the overall casing or beam. Disconnect drive bridge is the bridge sub-shell, and can be done between the relative motion, such as off-the bridge. In addition, it always match with independent suspension, it is also known as the independent suspension bridge driver. The middle of this bridge, the main reducer and differential, are mounting in the frame beams inside or on the floor, or backbone of the frame. Lord reducer, and the driveshaft and differential wheel drive part of the quality of transmission quality on all spring. As both sides of the drive wheel independent suspension can be used to the site relative to each other frame for the upper and lower compartments or swing, with a corresponding demand on the drive wheel and the gear casing or casing for the corresponding swing. The hoisting of the type of vehicle assembly and elastic damping device components and characteristics of the work is to determine vehicle ride comfort of the main factors, and the quality of auto parts spring the size of their ride also have a marked impact. Disconnect-drive axle unsprung mass smaller, independent suspension with the match, which drive the wheels of contact with the ground and on all-terrain better adaptability, which can greatly reduce car running on uneven road vibration and the tilt train, travelling to the vehicles ride and the average driving speed, reducing the wheels and axles on the dynamic load and parts, increasing its reliability and service life. However, due to disconnect the drive Bridge and the independent suspension with the match of the complex structure, this structure is mainly seen on the ride comfort of the higher part of sedans and some off-road vehicle, and the latter more than a light following riders Bridge drive vehicles or heavy-duty off-road vehicle.3.3 Bridge over drive layout In order to improve loading and adoption of some medium - and heavy-duty vehicles and all over the use of off-road vehicles are driven more bridge, and often used 4,6 4 8 such as 6,8-driven type. Multi-Bridge driver in the circumstances, the driving force at the drive actuator pass in the way the two bridges. The two corresponding power transmission, the Multi-Bridge drive vehicle driving axle layout patterns into non-hollow and hollow. The former in order to force the pass at the drive actuator bridge to the actuator from the drive axle by its own dedicated power transmission drive shaft, not only to increase the number of drive shaft, and the cause of the drive axle Bridge parts in particular Shell, and other major parts Semiaxle not universal. On the 8 8 vehicle, this non-drive-through bridge is even more inappropriate, but also a difficult layout. In order to solve the above problems, modern bridges are used in cars driven through the drive axle-type layout.In the drive-through layout of the bridge, the bridge driveshaft layout in the same vertical longitudinal plane, and were not the driving axle drive shaft and use their own sub-actuator directly connected, but in front of the actuator or the back of the two adjacent bridge driveshaft is the tandem arrangement. The two ends of the car after driving axle impetus by the actuator and transmission through the middle of the bridge. The advantage is not only reduce the number of drive shaft, but also increase the driving axle parts of the mutual general, and to simplify the structure, reducing the size and quality. This vehicle design (such as car variant), manufacturing and maintenance, convenient4. Drive axle components Driven mainly by the main bridge reducer, differential, half-axle and drive axle housings and other components. 1. Lord reducer Reducer to change the general direction of transmission, reduce speed and increase torque to ensure that there are sufficient vehicles and the driving force of the appropriate speed Paper. Reducer more main types, single-stage, two-stage, two-speed, such as round-reducer. (1) single-stage main reducer By achieving a gear reducer deceleration devices, known as a single-stage reducer. Its structure is simple, light weight, Dongfeng BQl090 type light, widely used on medium-duty truck.( 2) Two-stage main reducer Some of the larger truck load for a slowdown than larger, single-level main reducer drive, moving from the diameter of gear must be increased, it will affect the drive axle ground clearance, a two-reducer . Often referred to as the two-stage reducer. There are two double-reducing gear reducer, to the two-twisting by deceleration. To enhance the meshing of gears cone smooth and strength, the first vice-gear reducer is spiral bevel gears. Two helical gear is the result of Vice gear.Active bevel gear rotation, led a round-driven rotary gear, thus completing a slowdown. Second-class deceleration initiative Gear Driven and bevel gear and a rotating coaxial, and driven gear driven rotary cylinder, a second-class deceleration. Driven by cylindrical gear installed in the differential case, therefore, when the follower cylinder gear rotates, and through the half axle differential rotation that drive the wheels. 2. Differential About half axle differential to connect, to enable both sides of the wheels at different angular velocity of rotation torque transmission. Guarantee the normal wheels rolling. Some bridges-driven cars, in the actuator or in the hollow shaft of the transmission are available differential, known as bridge between differential. Its role in the automotive turn or uneven traffic on the road, before and after the drive wheel differential between role. At present domestic cars and other types of vehicles in the basic use of the symmetrical cone ordinary differential gear. Symmetric bevel gear from the planetary gear differential, half axle gear, planetary gear shaft (axle or a direct cross-axis) and differential shell components.Most car-use planetary gear differential, ordinary differential bevel gear cone by two or four planetary gears, gear shaft, the two conical about half axle differential gear and shell components. 3. Semiaxle Semi-axle differential is the torque came to pass wheels, rotating wheel drive, and promote car travelling solid shaft. Since the installation of wheels different structures, and the force Semiaxle also different. Therefore, Semiaxle divided into floating, semi-floating, 3 / 4 floating three types. (1) Full-floating Semiaxle Generally large and medium-sized cars are used all floating structures. Semiaxle end of the spline and with the half-axle differential gear connected to the outer end Semiaxle forging a flange, with bolts and wheels connected. Wheel through two further away from the text of Tapered Roller Bearings for the half axle casing. Semiaxle bridge shell casing pressure and a
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:江淮帅铃汽车驱动桥设计【8张CAD图纸和毕业论文】【轻卡货车】【精品毕业论文】
链接地址:https://www.renrendoc.com/p-288689.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!