【温馨提示】 购买原稿文件请充值后自助下载。
[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。
预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。
有疑问可以咨询QQ:414951605或1304139763
摘 要
驱动桥是汽车的重要总成部件,也是汽车总成中的重要承载件,所以驱动桥的好坏直接影响着汽车整体的性能和零件的使用寿命等。驱动桥由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是降速增扭,把发动机的动力传递给左右车轮,并使汽车在转向时保证左右车轮的差速功能,此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。
本设计首先论述了驱动桥的总体结构,在分析了驱动桥的结构形式及优缺点后确定总体设计方案:主减速器采用螺旋锥齿轮的单级主减速器,差速器采用圆锥行星齿轮差速器,半轴采用全浮式半轴,桥壳采用整体式桥壳。本设计主要完成了单级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的计算和校核及材料选取等工作。
关键词:整体式;驱动桥;主减速器;差速器;半轴;桥壳
ABSTRACT
Drive axle assembly is an important vehicle components and an important bearing in the vehicle assembly parts, so drive axle of a direct impact on overall vehicle performance and component life.Drive axle from the final drive, differential, axle and axle housing of four parts, the basic skills by using a spin-down twist, the engine's power passed to the left and right wheels, and to ensure the car when the steering wheel left and right differential function, in addition, but also act on the road and bear the car frame or between the vertical force, vertical force and lateral force.Discusses the design of the first drive axle of the overall structure of the analysis of the drive axle of the structure and determine the advantages and disadvantages of design options: with integral drive axle, main reducer reducer reducer type single stage, the main spiral bevel gear reducer gears, planetary gear differential with conical differential, axle with full floating type, with cast axle Integral axle.The design was completed for a single-stage reducer, planetary gear differential cone, full floating axle half shaft design and Check and material selection and so on.
Keywords: Integral; Drive Axle; Final Drive; Differential; Axle; Drive Axle Housing
目 录
摘要I
AbstractII
第1章 绪论1
1.1 设计目的及意义1
1.2 国内外驱动桥研究状况1
1.3 设计主要内容3
第2章 驱动桥的总体方案确定4
2.1驱动桥的种类结构和设计要求4
2.1.1汽车车桥的种类4
2.1.2驱动桥的种类4
2.1.3驱动桥结构组成4
2.1.4 驱动桥设计要求5
2.2 设计车型主要参数5
2.3主减速器结构方案的确定5
2.3.1 主减速器的齿轮类型及选择5
2.3.2 主减速器的减速形式及选择7
2.3.3 主减速器主从动锥齿轮的支承形式及安装方法8
2.4 差速器结构方案的确定9
2.5半轴的分类及方案的确定10
2.6 桥壳的分类及方案的确定10
2.7本章小结11
第3章 主减速器设计12
3.1概述12
3.2主减速器齿轮参数的选择与强度计算12
3.2.1 主减速器计算载荷的确定12
3.2.2 主减速器齿轮参数的选择13
3.2.3 主减速器齿轮强度计算16
3.2.4 主减速器轴承计算21
3.3主减速器齿轮材料及热处理27
3.4主减速器的润滑28
3.5 本章小结28
第4章 差速器设计29
4.1概述29
4.2对称式圆锥行星齿轮差速器原理29
4.3 对称式圆锥行星齿轮差速器的结构30
4.4对称圆锥行星锥齿轮差速器的设计31
4.4.1 差速器齿轮的基本参数选择31
4.4.2 差速器齿轮的几何尺寸计算33
4.4.3 差速器齿轮的强度计算34
4.4.4 差速器齿轮的材料35
4.5 本章小结36
第5章 半轴设计37
5.1概述37
5.2半轴的设计与计算37
5.2.1全浮式半轴的计算载荷的确定37
5.2.2半轴杆部直径的初选38
5.2.3 全浮式半轴强度计算39
5.2.4 全浮式半轴花键强度计算39
5.2.5 半轴材料与热处理40
5.3 本章小结41
第6章 驱动桥桥壳的设计42
6.1概述42
6.2桥壳的受力分析及强度计算42
6.2.1 桥壳的静弯曲应力计算42
6.2.2 在不平路面冲击载荷作用下桥壳的强度44
6.2.3 汽车以最大牵引力行驶时的桥壳的强度计算44
6.2.4 汽车紧急制动时的桥壳强度计算46
6.2.5 汽车受最大侧向力时桥壳强度计算47
6.3 本章小结51
结论52
参考文献53
致谢54
附录A55
附录B…………………………………………………………………………………………………59
第1章 绪 论
1.1 设计目的及意义
近几年,我国驱动桥总成市场发展迅速,产品产出持续扩张,国家产业政策鼓励驱动桥总成产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对驱动桥总成市场的关注越来越密切,这使得驱动桥总成市场的发展研究需求增大。
作为汽车关键零部件之一的汽车驱动桥也得到相应的发展,各生产厂家在研发和生产过程中基本上形成了专业化、系列化、批量化的局面,汽车驱动桥是汽车的重要总成,承载着汽车车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以基于北京BJ1041C4DG轻型货车设计一款结构优良的整体式驱动桥具有一定的实际意义。
1.2 国内外驱动桥研究状况
1、国外研究现状
国外整体式驱动桥开发技术已经非常的成熟,建立新的驱动桥开发模式成为国内外驱动桥开发团体的新目标。驱动桥设计新方法的应用使得其开发周期缩短,成本降低,可靠性增加。国外的最新开发模式和驱动桥新技术包括:
(1) 并行工程开发模式
并行工程开发模式是对在一定范围内的不同功能或相同功能不同性能、不同规格的机械产品进行功能分析的基础上,划分并设计出一系列功能模块,然后通过模块的选择和组合构成不同产品的一种设计方法,能够缩短新产品的设计时间、降低成本、提升质量、提高市场竞争力,以DANA为代表的意大利企业多已采用了该类设计方法, 优点是: 减少设计及工装制造的投入, 减少了零件种类, 提高规模生产程度, 降低制造费用, 提高市场响应速度等。
(2) 模态分析
模态分析是对工程结构进行振动分析研究的最先进的现代方法与手段之一。它可以定义为对结构动态特性的解析分析(有限元分析)和实验分析(实验模态分析),其结构动态特性用模态参数来表征。模态分析技术的特点与优点是在对系统做动力学分析时,用模态坐标代替物理学坐标,从而可大大压缩系统分析的自由度数目,分析精度较高。驱动桥的振动特性不但直接影响其本身的强度,而且对整车的舒适性和平顺性有着至关重要的影响。因此,对驱动桥进行模态分析,掌握和改善其振动特性,是设计中的重要方面。
(3) 驱动桥壳的有限元分析方法
有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题。目前,有限元法己经成为求解数学、物理、力学以及工程问题的一种有效的数值方法,也为驱动桥壳设计提供了强有力的工具。
(4) 高性能制动器技术
在发达国家驱动桥产品中, 已出现了自循环冷却功能的湿式制动器桥、带散热风送的盘式制动器桥、适于ABS的蹄、鼓式和盘式制动器桥、带自动补偿间隙的盘式制动器等配置高性能制动器桥, 同时制动器的布置位置也出现了从桥臂处分别向桥包总成和轮边端部转移的趋势。前种处理方式易于散热, 后种处理方式为了降低成本, 甚至有厂商把制动器的壳体与桥壳铸为一体, 既易于散热,又利于降低材料成本, 但这对铸造技术、铸造精度和加工精度都提出了极高的要求。
(5) 电子智能控制技术进入驱动桥产品
电子智能控制技术已经在汽车业得到了快速发展,如,现代汽车上使用的ABS(制动防抱死控制)、ASR(驱动力控制系统)等系统[1]。
2、国内研究现状
我国驱动桥制造企业的开发模式主要由测绘、引进、自主开发三种组成。主要存在技术含量低,开发模式落后,技术创新力不够,







![零件图[8张].gif](https://www.renrendoc.com/ueditor_s/net/upload/2018-1/23/6365232044315976103123656_1.gif)
