驱动装置A1.dwg
驱动装置A1.dwg

带式输送机设计(1200吨每小时)【5张CAD图纸】【优秀】

收藏

压缩包内文档预览:
预览图
编号:291924    类型:共享资源    大小:1.12MB    格式:RAR    上传时间:2014-06-13 上传人:上*** IP属地:江苏
45
积分
关 键 词:
带式 输送机 设计 cad图纸
资源描述:

带式输送机设计(1200吨每小时)

73页 26000字数+说明书+外文翻译+开题报告+5张CAD图纸

中期报告.doc

外文翻译--煤矿业带式输送机几种软起动方式的比较.doc

带式输送机设计(1200吨每小时)开题报告.doc

带式输送机设计(1200吨每小时)说明书.doc

总装配A0.dwg

机架A1.dwg

槽形托辊A2.dwg

轴A2.dwg

驱动装置A1.dwg

摘   要

   本次毕业设计是关于DTⅡ型固定式带式输送机的设计。首先对胶带输送机作了简单的概述;接着分析了胶带输送机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通型带式输送机由六个主要部件组成:传动装置,机尾或导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一个。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。

   本次带式输送机设计代表了设计的一般过程, 对今后的选型设计工作有一定的参考价值。                        

   关键词:带式输送机    传动装置   导回装置

Abstract

   The design is a graduation project about the belt conveyor. At first, it is introduction about the belt conveyor. Next, it is the principles about choose component parts of belt conveyor. After that the belt conveyor abase on the principle is designed. Then, it is checking computations about main component parts. The ordinary belt conveyor consists of six main parts: Drive Unit, Jib or Delivery End, Tail Ender Return End. Intermediate Structure, Loop Take-Up and Belt. At last, it is explanation about fix and safeguard of the belt conveyor. Today, long distance, high speed, low friction is the direction of belt conveyor’s development. Air cushion belt conveyor is one of them. At present, we still fall far short of abroad advanced technology in design, manufacture and using. There are a lot of wastes in the design of belt conveyor.

   Keywords: the belt conveyor   Drive Unit   Delivery End

目  录

前言1

1 绪论3

1.1 带式输送机发展概况3

1.2带式输送机的应用3

1.3带式输送机的分类4

1.4 各种带式输送机的特点5

1.5 矿用带式输送机发展方向6

2 固定式带式输送机8

2.1带式输送机的工作原理8

2.2带式输送机的结构和布置形式10

2.2.1 带式输送机的结构10

2.2.2 布置方式11

2.2.3 运行阻力的计算12

3 带式输送机的设计计算15

3.1 已知原始数据及工作条件15

3.2 计算步骤15

3.2.1 带速和槽角的确定:15

3.2.2  驱动装置18

3.2.3承载段运行阻力21

3.2.4最小张力点23

3.2.5输送点上各点张力的计算23

3.2.6用摩擦条件验算传动滚筒分离点与相遇点张力关系24

3.2.7输送带的强度验算25

3.2.8传动滚筒直径的确定和滚筒强度的验算27

3.2.9拉紧装置28

4 驱动装置的选用31

4.1 电机的选用31

4.2 减速器的选用32

4.2.1传动装置的总传动比32

4.2.2 液力偶合器32

4.2.3 联轴器33

5 带式输送机部件的选用38

5.1  输 送 带38

5.1.1 输送带的分类:38

5.1.2 输送带的连接40

5.2 传动滚筒41

5.2.1  传动滚筒的作用及类型41

5.2.2  传动滚筒的选型及设计42

5.2.3传动滚筒结构及设计43

5.2.4传动滚筒轴的结构设计46

5.3 托 辊49

5.3.1  托辊的作用与类型49

5.3.2 托辊的选型53

5.4  制 动 装 置55

5.4.1 制动装置的作用及种类55

5.4.2 制动装置的选型57

5.5 改 向 装 置58

6 其他部件的选用59

6.1 机架与中间架59

6.2 给 料 装 置61

6.2.1 对给料装置的基本要求61

6.2.2 装料点的缓冲62

6.3 卸料装置63

6.4  清 扫 装 置64

6.5 头部漏斗65

6.6 电气及安全保护装置66

总结67

致  谢68

参考文献69

(2)输送物料:煤;块度 ;

(3)输送量:;物流密度=1t/

(4)输送机长:;

(5)倾角:

3.2 计算步骤

   3.2.1 带速和槽角的确定:

   按给定的工作条件,取原煤的堆积角为20°。

   带式输送机的最大运输能力计算公式为

   式中:——输送量(;

         ——带速(;

         ——物流密度;

   带速选择原则:

   (1)输送量大、输送带较宽时,应选择较高的带速。

  (2)较长的水平输送机,应选择较高的带速;输送机倾角愈大,输送距离愈短,则带速应愈低。

  (3)物料易滚动、粒度大、磨琢性强的,或容易扬尘的以及环境卫生条件要求较高的,宜选用较低带速。

  (4)一般用于给了或输送粉尘量大时,带速可取0.8m/s~1m/s;或根据物料特性和工艺要求决定。

   (5)人工配料称重时,带速不应大于1.25m/s。

   (6)采用犁式卸料器时,带速不宜超过2.0m/s。

  (7)采用卸料车时,带速一般不宜超过2.5m/s;当输送细碎物料或小块料时,允许带速为3.15m/s。

   (8)有计量秤时,带速应按自动计量秤的要求决定。

   (9)输送成品物件时,带速一般小于1.25m/s。

   带速与带宽、输送能力、物料性质、块度和输送机的线路倾角有关.当输送机向上运输时,倾角大,带速应低;下运时,带速更应低;水平运输时,可选择高带速.带速的确定还应考虑输送机卸料装置类型,当采用犁式卸料车时,带速不宜超过3.15m/s.

   考虑山上的工作条件取带速为2.5 m/s;    故所选的槽形物料断面面积  

   通过这一环节的训练,提高了以下能力:

(1) 、综合运用所学知识和技能,独立分析和解决实际问题的能力;

(2) 、综合运用各种基本技能,包括绘图、计算机应用、翻译、查阅及阅读文献等等的能力;

(3)、调动实验研究的积极性,技术经济分析和组织协作工作的能力,学习撰写科技论文和技术报告,正确运用国家标准和技术语言阐述理论和技术问题的能力;

   (4)、学会收集加工各种信息的能力,以及获取新知识的能力;

   (5)、培养创新意识和严肃认真的科学作风。

   毕业设计在我们的大学学习中占据着举足轻重的地位,我们应该抓紧这个机会认真学习并做好毕业设计。因为它对我们进入实践及将来参加工作有重要的意义,也是为我们这四年的大学学习画上一个圆满的句号,是检验我们学习成果的试金石,它将把我们过去的理论学习引向一个更高的层次,也就是联系实践,可以说我们在做一次实践性的实验。因此在思想和行动上我们都要对毕业设计表现出极大的重视,并努力认真去完成。

   在设计过程中,遇到了很多难题,一方面我们自己查阅相关资料、共同讨论,同时,还感谢多位老师和工厂工程师的大力支持,他们有问必答,耐心讲解,悉心指导,在此表示衷心的感谢。  

1 绪论

1.1 带式输送机发展概况

   带式输送机自1795年被发明以来,经过两个世纪的发展,已被电力、冶金、煤炭、化工、矿山、港口等各行各业广泛采用。特别是第三次工业革命带来了新材料、新技术的应用,使带式输送机的发展步入了一个新纪元。

   如今,无论从输送量、运距、经济效益等各方面来衡量,它已经可以和火车、汽车运输相抗衡,成为三足鼎立的局面,并成为各国争相发展的行业。带式输送机是以胶带、钢带、钢纤维带、塑料带和化纤做为传送物料和牵引工具的输送机械。其特点是承载物料的输送带也是传递动力的牵引力。承载带在托辊上运行,也可用气垫、磁垫代替托辊作为无阻力支撑承载带运行。带式输送机按承载断面可分为平形、槽形、双槽形、波纹挡边斗式、波纹挡边袋式、吊挂式圆管形、固定式和移动式圆管形等8大类。

   带式输送机是煤矿最理想的高效连接运输设备,它与其它运输设备(如机车类)相比,不仅具有长距离、大运量、连续输送等优点,而且运行可靠,易于实现自动化、集中化控制,特别是对高产高效矿井,带式输送机已成为煤炭高效开采机电一体化技术与装备的关键设备。目前,我国煤矿共用带式输送机约120万台,矿用带式机也正在往大运量、长距离、高带速方向发展。  

1.2带式输送机的应用

   带式输送机是连续运输机的一种,连续运输机是固定式或运移式起重运输机中主要类型之一,其运输特点是形成装载点到装载点之间的连续物料流,靠连续物料流的整体运动来完成物流从装载点到卸载点的输送。在工业、农业、交通等各企业中,连续运输机是生产过程中组成有节奏的流水作业运输线不可缺少的组成部分。

  连续运输机可分为:

   (1)具有挠性牵引物件的输送机,如带式输送机,板式输送机,刮板  输送机,斗式输送机、自动扶梯及架空索道等;

   (2)不具有挠性牵引物件的输送机,如螺旋输送机、振动输送机等;

   (3)管道输送机(流体输送),如气力输送装置和液力输送管道.

   其中带输送机是连续运输机中是使用最广泛的, 带式输送机运行可靠,输送量大,输送距离长,维护简便,适应于冶金煤炭,机械电力,轻工,建材,粮食等各个部门。

1.3带式输送机的分类

   带式输送机分类方法有多种,按运输物料的输送带结构可分成两类,一类是普通型带式输送机,这类带式输送机在输送带运输物料的过程中,上带呈槽形,下带呈平形,输送带有托辊托起,输送带外表几何形状均为平面;另外一类是特种结构的带式输送机,各有各的特点.其简介如下:

1.4 各种带式输送机的特点

  ⑴ QD80轻型固定式带输送机   QD80轻型固定式带输送机与TDⅡ型相比,其带较薄、载荷也较轻,运距一般不超过100m,电机容量不超过22kw.

  ⑵    它属于高强度带式输送机,其输送带的带芯中有平行的细钢绳,一台运输机运距可达几公里到几十公里.

  ⑶ U形带式输送机   它又称为槽形带式输送机,其明显特点是将普通带式输送机的槽形托辊角由提高到使输送带成U形.这样一来输送带与物料间产生挤压,导致物料对胶带的摩擦力增大,从而输送机的运输倾角可达25°.

  ⑷ 管形带式输送机   U形带式输送带进一步的成槽,最后形成一个圆管状,即为管形带式输送机,因为输送带被卷成一个圆管,故可以实现闭密输送物料,可明显减轻粉状物料对环境的污染,并且可以实现弯曲运行.

  ⑸ 气垫式带输送机   其输送带不是运行在托辊上的,而是在空气膜(气垫)上运行,省去了托辊,用不动的带有气孔的气室盘形槽和气室取代了运行的托辊,运动部件的减少,总的等效质量减少,阻力减小,效率提高,并且运行平稳,可提高带速.但一般其运送物料的块度不超过300mm.增大物流断面的方法除了用托辊把输送带强压成槽形外,也可以改变输送带本身,把输送带的运载面做成垂直边的,并且带有横隔板,一般把垂直侧挡边作成波状,故称为波状带式输送机,这种机型适用于大倾角,倾角在30°以上,最大可达90°.

  (6)压带式带输送机   它是用一条辅助带对物料施加压力.这种输送机的主要优点是:输送物料的最大倾角可达90°,运行速度可达6m/s,输送能力不随倾角的变化而变化,可实现松散物料和有毒物料的密闭输送.其主要缺点是结构复杂、输送带的磨损增大和能耗较大。

  ⑺ 钢绳牵引带式输送机   它是无际绳运输与带式运输相结合的产物,既具有钢绳的高强度、牵引灵活的特点,又具有带式运输的连续、柔性的优

1.5 矿用带式输送机发展方向

  (1)大型化、提高运输能力

   为了适应高产高效集约化生产的需要,带式输送机的输送能力要加大,长距离、高带速、大运量、大功率是将来发展的必要。在今后10 年内输送能力要提高到3000 ~10000 t/h,带速提高至5~8m / s,输送长度对于可伸缩带式输送机输送距离要达到6000m以上,对于钢绳芯强力带式输送机须达到14000m以上,单台电机功率要达到1000~2500kW 以上,输送带抗拉强度大于6000N /mm(钢绳芯)和3150N /mm (整芯) 。

  (2) 提高元部件性能和可靠性

   整体设备的性能和可靠性主要取决于元部件的性能和可靠性,我国现在的矿用带式输送机的元部件基本上都是各自厂家生产,还没有出现专业化、大规模的元部件生产厂家。除了进一步完善和提高现有元部件的性能和可靠性,还要不断研究新的技术和开发新的元部件。

  (3) 扩大功能,一机多用

   带式输送机是一种理想的连续运输设备,并且目前还不能完全发挥其全部作用。可以将带式输送机结构作适当修改,采取一定的安全措施,就可拓展运人、运料或双向运输等功能,做到一机多用,使其发挥最大经济效益。

  (4) 开发专用机型

   我国煤矿的地质条件差异很大,在运输系统的布置上经常会出现一些特殊要求,为了满足特殊要求,比如水平拐弯、大倾角(>25o)直至垂直提升等,这些场合常规的带式输送机是无法胜任的。为了满足煤矿的某些特殊要求,应开发特殊型带式输送机,如弯曲带式输送机、大倾角或垂直提升输送机等。

参考文献

  [1] 程居山.矿山机械.徐州:中国矿业大学出版社,1997;

 [2] 机械设计手册编写组.机械设计手册.化学工业出版社,1987;

 [3] 方慎权.煤矿机械.徐州:中国矿业学院出版社,1986;

 [4] 潘英.通用机械设计.徐州:中国矿业大学出版社,2002;

 [5] 孔庆华,刘传绍.极限测量与测试技术基础.同济大学出版社,2002;

 [6] 唐大放,冯晓宁.杨现卿.机械设计工程学.徐州:中国矿业大学出版社,2001;

 [7] 机械电子工业部编.机械产品目录8.机械工业出版社,1991;

 [8] 中国纺织大学工程图学教研室.画法几何及工程制图.上海科技出版社,2000;

 [9] 焦作矿业学院,煤矿机械传动设计,煤炭工业出版社,1979;

 [10] 候志学,矿山运输机械,冶金工业出版社,1996;

 [11] 纪名贵,机械设计,高等教育出版社,2004。


内容简介:
河南理工大学万方科技学院本科毕业设计(论文)中期检查表指导教师: 韩晓明 职称: 副教授 所在院(系): 机械与动力工程系 教研室(研究室): 机械教研室 题 目带式输送机设计学生姓名杨 超专业班级07机设1班学号0720150068一、 选题质量:1、本题目符合机械设计专业的培养目标,能够充分锻炼和培养分析问题和实际操作能力,能够体现综合训练的要求。2、设计任务难易程度和工作量适中,符合本科毕业设计要求,能在规定的时间内完成。3、所选题目带式输送机设计与实际贴合比较紧密,在实际的应用中比较广泛。在设计过程中,对机器的零件的设计和计算对我来说是以往所学知识的总结和应用,所以能够满足综合训练的要求。带式输送机在设计过程中,对于我来说还是具有很大的难度,对于这方面的了解不是很多,且这方面的资料也是比较少,所以这对我来说是一个挑战。二、开题报告完成情况: 根据自己在各方面资料的收集和整理,通过对可行性的分析,结合老师给的题目的选择,我完成了这次设计的选题。在选题结束之后,通过自己认真查阅相关的资料,最后结合本身的实际情况和设计的时间任务完成了开题报告。三、阶段性成果: 1. 通过对带式输送机的了解,再加上老师对我们的讲解,算是对带式输送机有了一个大概的了解。前期阶段主要是对有关于带式输送机的各方面的文献和资料进行搜集,为以后的设计做了必要的准备。 2. 中期阶段主要是依据带式输送机设计手册和参考资料,从上面找到一些关于关于带式输送机的信息,首先对其零部件有了大致的了解,其次是已有了大概的设计方法,并开始了一些基本的结构设计。 3. 正在进行装配图的CAD画图和设计说明书。四、存在主要问题: 1、这次设计对我来说是个巨大挑战,以往从没这样自己进行设计过,在设计的方法和时间把握上估计有点欠缺。 2、带式输送机设计对我是个新题,并且在搜索资料方面发现,关于带式输送机的资料的缺少。 3、设计过程中关于自己所设计的方面不是太明确,导致了自己的很大被动。五、指导教师对学生在毕业实习中,劳动、学习纪律及毕业设计(论文)进展等方面的评语 指导教师: (签名) 年 月 日2A Comparison of Soft Start Mechanisms for Mining Belt ConveyorsINTRODUCTIONThe force required to move a belt conveyor must be transmitted by the drive pulley via friction between the drive pulley and the belt fabric. In order to transmit power there must be a difference in the belt tension as it approaches and leaves the drive pulley. These conditions are true for steady state running, starting, and stopping. Traditionally, belt designs are based on static calculations of running forces. Since starting and stopping are not examined in detail, safety factors are applied to static loadings (Harrison, 1987). This paper will primarily address the starting or acceleration duty of the conveyor. The belt designer must control starting acceleration to prevent excessive tension in the belt fabric and forces in the belt drive system (Suttees, 1986). High acceleration forces can adversely affect the belt fabric, belt splices, drive pulleys, idler pulleys, shafts, bearings, speed reducers, and couplings. Uncontrolled acceleration forces can cause belt conveyor system performance problems with vertical curves, excessive belt take-up movement, loss of drive pulley friction, spillage of materials, and festooning of the belt fabric. The belt designer is confronted with two problems, The belt drive system must produce a minimum torque powerful enough to start the conveyor, and controlled such that the acceleration forces are within safe limits. Smooth starting of the conveyor can be accomplished by the use of drive torque control equipment, either mechanical or electrical, or a combination of the two (CEM, 1979).SOFT START MECHANISM EVALUATION CRITERION What is the best belt conveyor drive system? The answer depends on many variables. The best system is one that provides acceptable control for starting, running, and stopping at a reasonable cost and with high reliability (Lewdly and Sugarcane, 1978). Belt Drive System For the purposes of this paper we will assume that belt conveyors are almost always driven by electrical prime movers (Goodyear Tire and Rubber, 1982). The belt drive system shall consist of multiple components including the electrical prime mover, the electrical motor starter with control system, the motor coupling, the speed reducer, the low speed coupling, the belt drive pulley, and the pulley brake or hold back (Cur, 1986). It is important that the belt designer examine the applicability of each system component to the particular application. For the purpose of this paper, we will assume that all drive system components are located in the fresh air, non-permissible, areas of the mine, or in non-hazardous, National Electrical Code, Article 500 explosion-proof, areas of the surface of the mine. Belt Drive Component Attributes Size. Certain drive components are available and practical in different size ranges. For this discussion, we will assume that belt drive systems range from fractional horsepower to multiples of thousands of horsepower. Small drive systems are often below 50 horsepower. Medium systems range from 50 to 1000 horsepower. Large systems can be considered above 1000 horsepower. Division of sizes into these groups is entirely arbitrary. Care must be taken to resist the temptation to over motor or under motor a belt flight to enhance standardization. An over motored drive results in poor efficiency and the potential for high torques, while an under motored drive could result in destructive overspending on regeneration, or overheating with shortened motor life (Lords, et al., 1978).Torque Control. Belt designers try to limit the starting torque to no more than 150% of the running torque (CEMA, 1979; Goodyear, 1982). The limit on the applied starting torque is often the limit of rating of the belt carcass, belt splice, pulley lagging, or shaft deflections. On larger belts and belts with optimized sized components, torque limits of 110% through 125% are common (Elberton, 1986). In addition to a torque limit, the belt starter may be required to limit torque increments that would stretch belting and cause traveling waves. An ideal starting control system would apply a pretension torque to the belt at rest up to the point of breakaway, or movement of the entire belt, then a torque equal to the movement requirements of the belt with load plus a constant torque to accelerate the inertia of the system components from rest to final running speed. This would minimize system transient forces and belt stretch (Shultz, 1992). Different drive systems exhibit varying ability to control the application of torques to the belt at rest and at different speeds. Also, the conveyor itself exhibits two extremes of loading. An empty belt normally presents the smallest required torque for breakaway and acceleration, while a fully loaded belt presents the highest required torque. A mining drive system must be capable of scaling the applied torque from a 2/1 ratio for a horizontal simple belt arrangement, to a 10/1 ranges for an inclined or complex belt profile.Thermal Rating. During starting and running, each drive system may dissipate waste heat. The waste heat may be liberated in the electrical motor, the electrical controls, the couplings, the speed reducer, or the belt braking system. The thermal load of each start Is dependent on the amount of belt load and the duration of the start. The designer must fulfill the application requirements for repeated starts after running the conveyor at full load. Typical mining belt starting duties vary from 3 to 10 starts per hour equally spaced, or 2 to 4 starts in succession. Repeated starting may require the dreading or over sizing of system components. There is a direct relationship between thermal rating for repeated starts and costs. Variable Speed. Some belt drive systems are suitable for controlling the starting torque and speed, but only run at constant speed. Some belt applications would require a drive system capable of running for extended periods at less than full speed. This is useful when the drive load must be shared with other drives, the belt is used as a process feeder for rate control of the conveyed material, the belt speed is optimized for the haulage rate, the belt is used at slower speeds to transport men or materials, or the belt is run a slow inspection or inching speed for maintenance purposes (Hager, 1991). The variable speed belt drive will require a control system based on some algorithm to regulate operating speed. Regeneration or Overhauling Load. Some belt profiles present the potential for overhauling loads where the belt system supplies energy to the drive system. Not all drive systems have the ability to accept regenerated energy from the load. Some drives can accept energy from the load and return it to the power line for use by other loads. Other drives accept energy from the load and dissipate it into designated dynamic or mechanical braking elements. Some belt profiles switch from motoring to regeneration during operation. Can the drive system accept regenerated energy of a certain magnitude for the application? Does the drive system have to control or modulate the amount of retarding force during overhauling? Does the overhauling occur when running and starting? Maintenance and Supporting Systems. Each drive system will require periodic preventative maintenance. Replaceable items would include motor brushes, bearings, brake pads, dissipation resistors, oils, and cooling water. If the drive system is conservatively engineered and operated, the lower stress on consumables will result in lower maintenance costs. Some drives require supporting systems such as circulating oil for lubrication, cooling air or water, environmental dust filtering, or computer instrumentation. The maintenance of the supporting systems can affect the reliability of the drive system. Cost. The drive designer will examine the cost of each drive system. The total cost is the sum of the first capital cost to acquire the drive, the cost to install and commission the drive, the cost to operate the drive, and the cost to maintain the drive. The cost for power to operate the drive may vary widely with different locations. The designer strives to meet all system performance requirements at lowest total cost. Often more than one drive system may satisfy all system performance criterions at competitive costs.Complexity. The preferred drive arrangement is the simplest, such as a single motor driving through a single head pulley. However, mechanical, economic, and functional requirements often necessitate the use of complex drives. The belt designer must balance the need for sophistication against the problems that accompany complex systems. Complex systems require additional design engineering for successful deployment. An often-overlooked cost in a complex system is the cost of training onsite personnel, or the cost of downtime as a result of insufficient training. SOFT START DRIVE CONTROL LOGIC Each drive system will require a control system to regulate the starting mechanism. The most common type of control used on smaller to medium sized drives with simple profiles is termed Open Loop Acceleration Control. In open loop, the control system is previously configured to sequence the starting mechanism in a prescribed manner, usually based on time. In open loop control, drive-operating parameters such as current, torque, or speed do not influence sequence operation. This method presumes that the control designer has adequately modeled drive system performance on the conveyor. For larger or more complex belts, Closed Loop or Feedback control may he utilized. In closed loop control, during starting, the control system monitors via sensors drive operating parameters such as current level of the motor, speed of the belt, or force on the belt, and modifies the starting sequence to control, limit, or optimize one or wore parameters. Closed loop control systems modify the starting applied force between an empty and fully loaded conveyor. The constants in the mathematical model related to the measured variable versus the system drive response are termed the tuning constants. These constants must be properly adjusted for successful application to each conveyor. The most common schemes for closed loop control of conveyor starts are tachometer feedback for speed control and load cell force or drive force feedback for torque control. On some complex systems, It is desirable to have the closed loop control system adjust itself for various encountered conveyor conditions. This is termed Adaptive Control. These extremes can involve vast variations in loadings, temperature of the belting, location of the loading on the profile, or multiple drive options on the conveyor. There are three common adaptive methods. The first involves decisions made before the start, or Restart Conditioning. If the control system could know that the belt is empty, it would reduce initial force and lengthen the application of acceleration force to full speed. If the belt is loaded, the control system would apply pretension forces under stall for less time and supply sufficient torque to adequately accelerate the belt in a timely manner. Since the belt only became loaded during previous running by loading the drive, the average drive current can be sampled when running and retained in a first-in-first-out buffer memory that reflects the belt conveyance time. Then at shutdown the FIFO average may be use4 to precondition some open loop and closed loop set points for the next start. The second method involves decisions that are based on drive observations that occur during initial starting or Motion Proving. This usually involves a comparison In time of the drive current or force versus the belt speed. if the drive current or force required early in the sequence is low and motion is initiated, the belt must be unloaded. If the drive current or force required is high and motion is slow in starting, the conveyor must be loaded. This decision can be divided in zones and used to modify the middle and finish of the start sequence control. The third method involves a comparison of the belt speed versus time for this start against historical limits of belt acceleration, or Acceleration Envelope Monitoring. At start, the belt speed is measured versus time. This is compared with two limiting belt speed curves that are retained in control system memory. The first curve profiles the empty belt when accelerated, and the second one the fully loaded belt. Thus, if the current speed versus time is lower than the loaded profile, it may indicate that the belt is overloaded, impeded, or drive malfunction. If the current speed versus time is higher than the empty profile, it may indicate a broken belt, coupling, or drive malfunction. In either case, the current start is aborted and an alarm issued.CONCLUSION The best belt starting system is one that provides acceptable performance under all belt load Conditions at a reasonable cost with high reliability. No one starting system meets all needs. The belt designer must define the starting system attributes that are required for each belt. In general, the AC induction motor with full voltage starting is confined to small belts with simple profiles. The AC induction motor with reduced voltage SCR starting is the base case mining starter for underground belts from small to medium sizes. With recent improvements, the AC motor with fixed fill fluid couplings is the base case for medium to large conveyors with simple profiles. The Wound Rotor Induction Motor drive is the traditional choice for medium to large belts with repeated starting duty or complex profiles that require precise torque control. The DC motor drive, Variable Fill Hydrokinetic drive, and the Variable Mechanical Transmission drive compete for application on belts with extreme profiles or variable speed at running requirements. The choice is dependent on location environment, competitive price, operating energy losses, speed response, and user familiarity. AC Variable Frequency drive and Brush less DC applications are limited to small to medium sized belts that require precise speed control due to higher present costs and complexity. However, with continuing competitive and technical improvements, the use of synthesized waveform electronic drives will expand.煤矿业带式输送机几种软起动方式的比较简介 运行带式运送机的动力必须由驱动滑轮产生,通过滑轮和传送带之间的摩擦力来传递。为了传递能量,传送带上面的张力在接近滑轮部分和离开滑轮部分必定存在着差别。这种差别在稳定运行、启动和停止时刻都是真实存在的。传统传送带结构的设计,都是根据稳定运行情况下传送带的受力情况。因为设计过程中没有详尽研究传送带启动和停止阶段的受力情况,所有的安全措施都集中在稳定运行阶段(Harrison 1987)。本文主要集中讲述传送机启动和加速阶段的特性。传送带设计者在设计时必须考虑控制启动阶段的加速状况,以免使传送带和传送机驱动系统产生过大的张力和动力(Suttees,1986)。大加速度产生的动力会给传送带的纹理、传送带结合处、驱动滑轮、轴承、减速器以及耦合器带来负面影响。毫无控制的加速度产生的动力能够引起带式传送机系统产生诸多不良问题,比如上下曲线运动、过度传送带提升运动、滑轮和传送带打滑、运输原料的溢出和传送带结构。传送带的设计需要面对两个问题:第一,传送带驱动系统必须能够产生启动带式传送机的最小转动力矩;第二,控制加速度产生动力在安全界限内。可以通过驱动力矩控制设备来完成,控制设备可以是电子手段也可以是机械手段,也可以是两者的组合(CEM,1979)。 本文主要阐述输送机的开始和加速的过程。传送带设计师必须控制开始加速度防止过度张紧在传送带织品和力量在皮带传动系统. 强加速度力量可能有害地影响传送带织品,传送带接合,驱动皮带轮,更加无所事事的滑轮, 轴, 轴承, 速度还原剂, 并且联结。未管制的加速度力量可能造成皮带输送机有垂直的曲线的系统性能问题,传送带紧线器运动, 驱动皮带轮摩擦损失, 材料溢出, 并且做成花彩传送带织品。传送带设计员与二个问题被面对, 皮带传动系统必须导致极小的扭矩足够强有力开始传动机, 和控制了这样加速度强制是在安全限额内。光滑开始传动机可能由对驱动器扭矩控制设备的用途, 或机械或电子, 或组合的二完成(CEM 1979) 。软起动结构评估标准 什么是最佳的皮带输送机驱动系统? 答案取决于许多变量。最佳的系统是一个为开始, 运行, 和终止提供可接受的控制在合理的费用和以及高可靠性。皮带传动系统为本文我们考虑的设计方案, 皮带输送机被电子头等搬家工人几乎总驱动。传送带驱动系统 将包括多个要素包括电子原动力、电子马达起始者以控制系统, 马达联结、速度还原剂、低速联结、皮带传动滑轮、和滑轮闸 (Cur 1986) 。它重要, 传送带设计员审查各个系统要素的适用性对特殊申请。为本文的目的, 我们假设, 所有驱动系统要素设置矿的新鲜空气, 非允许, 面积,全国电子编码, 条款500 防爆, 矿的表面的面积。皮带传动要素归因于范围。某些驱动器要素是可利用和实用的用不同的范围。为这论述, 我们假设那皮带传动系统范围从分数马力对千位的多个马力。小驱动系统经常是在50 马力以下。中型系统范围从50 到1000 马力。大型系统可能被考虑在1000 马力之上。范围分部入这些组是整个地任意的。必须被保重抵抗诱惑对超出马达或在马达之下传送带飞行提高标准化。驱动器结果在粗劣的效率和在高扭矩的潜在, 当驱动器能导致破坏性超速在再生, 或过度加热以变短的马达寿命。扭矩控制。传送带设计员设法限制开始的扭矩到没有比150% 运行中。限额在应用的开始的扭矩经常是传送带胴体肉、传送带接合、滑轮绝热材料,轴偏折评级。在更大的传送带和传送带以优化大小的要素, 扭矩限额110% 至125% 是公用。除扭矩限额之外, 传送带起始者必需限制会舒展围绕和会导致旅行的波浪的扭矩增量。一个理想的开始的控制系统会适用于资格整个传送带的扭矩传送带休息由问题的脱离决定, 或运动, 然后扭矩相等与传送带的运动需求以负荷加上恒定的扭矩从休息加速系统要素的惯性对最终奔跑速度。这使系统临时强制和传送带舒展。不同的驱动系统陈列变化的能力控制扭矩的申请对传送带休息和以不同的速度。并且, 传动机陈列装载二个极端。一条空传送带正常存在最小的必需的扭矩为脱离和加速度, 当一条充分地被装载的传送带存在最高的必需的扭矩。开采驱动系统必须是能称应用的扭矩从一个2/1 比率为一个水平的简单传送带安排, 对一个10/1 范围为一个倾斜、复杂传送带配置文件。 热量评级 在开始和运行期间, 各个驱动系统也许消散废热。废热也许被解放在电子马达、电子控制、, 联结、速度还原剂, 或传送带制动系统。各个起始时间热量负荷依靠相当数量传送带负荷和起始时间的期限。设计员必须履行被重复的起始时间的申请需求在运行传动机以后在全负荷。典型的开采传送带开始的责任变化从3到10 个起始时间每时数等隔,或2到4 个起始时间在连续。被重复的开始也许要求减税或系统要素。有一个直接关系在热量评级为被重复的起始时间和费用之间。可变速度。一些皮带传动系统是适当的为控制开始的扭矩和速度, 但只运行以恒定的速度。一些传送带申请会要求一个驱动系统能运行延长的期间以较不比最高速度。这是有用的当驱动器负荷必须与其它驱动器被共享,传送带被使用当处理饲养者为被表达的物料的费率控制, 传送带速度被优选为货车使用费费率,传送带被使用以慢速运输人工或材料, 或传送带运行缓慢的检验或移动速度为维护目的。可变速度皮带传动将要求一个控制系统根据某一算法调控操作速度。再生或翻修负荷。一些传送带配置文件存在翻修传送带系统用品能量对驱动系统的负荷的潜在。没有所有驱动系统有能力接受被重新生成的能量从负荷。一些驱动器可能接受能量从负荷和退回它到输电线供其它负荷使用。其它驱动器接受能量从负荷和消散它入选定的动态或机械刹车的要素。一些传送带描出切换从开汽车对再生在运算期间。驱动系统可能接受有些巨大的被重新生成的能量为申请吗? 驱动系统控制或必须调整相当数量减速的强制在翻修期间吗?翻修发生当运行和开始? 维护和支持系统。各个驱动系统将要求定期预防维护。可替换的项目会包括马达画笔、轴承、闸填充、散逸电阻器、油, 和凉水。如果驱动
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:带式输送机设计(1200吨每小时)【5张CAD图纸】【优秀】
链接地址:https://www.renrendoc.com/p-291924.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!