




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第21讲矩形、菱形、正方形,考点一,考点二,考点三,考点四,考点一矩形(高频),考点一,考点二,考点三,考点四,考点一,考点二,考点三,考点四,考点二菱形(高频),考点一,考点二,考点三,考点四,考点一,考点二,考点三,考点四,考点三正方形(高频),考点一,考点二,考点三,考点四,考点四平行四边形、矩形、菱形、正方形之间的关系,命题点1,命题点2,命题点3,命题点1矩形的性质,1.(2017安徽,10,4分)如图,矩形ABCD中,AB=5,AD=3.动点P满足SPAB=S矩形ABCD.则点P到A,B两点距离之和PA+PB的最小值为(D),命题点1,命题点2,命题点3,解析:设ABP中AB边上的高是h.,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在RtABE中,AB=5,AE=2+2=4,命题点1,命题点2,命题点3,命题点2矩形、菱形的性质综合应用2.(2015安徽,9,4分)如图,矩形ABCD中,AB=8,BC=4,点E在AB上,点F在CD上,点G,H在对角线AC上.若四边形EGFH是菱形,则AE的长是(C),命题点1,命题点2,命题点3,解析如图,连接EF交AC于点O,根据菱形性质有FEAC,OG=OH,易证OA=OC.由四边形ABCD是矩形,得B=90,根据勾股定理得,命题点1,命题点2,命题点3,命题点3正方形的性质与判定3.(2014安徽,10,4分)如图,正方形ABCD的对角线BD长为2,若直线l满足:点D到直线l的距离为;A,C两点到直线l的距离相等.则符合题意的直线l的条数为(B)A.1B.2C.3D.4,解析如图,连接AC与BD相交于O,同理,在点D的另一侧还有一条直线满足条件,故共有2条符合题意的直线l.故选B.,考法1,考法2,考法3,考法1矩形的相关证明与计算,例1(2018合肥行知学校模拟)如图,已知ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD=2,求AC的长.解:(1)证明:四边形ABCD是平行四边形,ABCD,AB=CD,BE=AB,BE=CD,四边形BECD是平行四边形.AD=BC,AD=DE,BC=DE,BECD是矩形.,考法1,考法2,考法3,(2)连接AC,CD=2,AB=BE=2.AD=4,ABD=90,考法1,考法2,考法3,方法总结1.矩形判定的一般思路首先判定是否为平行四边形,再找直角或者对角线的关系.若角度容易求,则证明其一角为90,便可判定是矩形;若对角线容易求,则证明其对角线相等即可判定其为矩形.2.应用矩形性质计算的一般思路(1)根据矩形的四个角都是直角,一条对角线将矩形分成两个直角三角形,用勾股定理或三角函数求线段的长.(2)矩形对角线相等且互相平分,矩形的两条对角线把矩形分成四个等腰三角形,在利用矩形性质进行相关的计算时,可利用面积法,建立等量关系.,考法1,考法2,考法3,对应练1(课本习题改编)下列命题,其中是真命题的为(D)A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形,考法1,考法2,考法3,对应练2(2017山东潍坊)如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD上,记为B,折痕为CE;再将CD边斜向下对折,使点D落在BC上,记为D,折痕为CG,BD=2,BE=BC.则矩形纸片ABCD的面积为15.,考法1,考法2,考法3,解析:由折叠可知BC=BC,CD=CD,又BD=2,故设BC=x,整理,得x2-7x+10=0,解得x1=5,x2=2(不合题意,舍去),矩形纸片ABCD的面积为BCCD=53=15.,考法1,考法2,考法3,对应练3(2018甘肃白银)已知矩形ABCD中,E是AD边上一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:BGFFHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.,考法1,考法2,考法3,解:(1)点F是BC边上的中点,BF=FC.点F,G,H分别BC,BE,CE的中点,GF,FH是BEC的中位线.,BGFFHC(SSS).(2)当四边形EGFH是正方形时,BEC=90,FG=GE=EH=FH.FG,FH是BEC的中位线,BE=CE.BEC是等腰直角三角形.,考法1,考法2,考法3,考法2菱形的相关证明及计算,例2(2017江苏扬州)如图,将ABC沿着射线BC方向平移至ABC,使点A落在ACB的外角平分线CD上,连接AA.(1)判断四边形ACCA的形状,并说明理由;(2)在ABC中,B=90,AB=24,cosBAC=,求CB的长.,考法1,考法2,考法3,解:(1)四边形ACCA为菱形.理由如下:ABC是由ABC平移得到的,AACC,且AA=CC.四边形ACCA是平行四边形,AAC=ACC.CD平分ACC,ACA=ACC.AAC=ACA,AC=AA.四边形ACCA为菱形.,考法1,考法2,考法3,方法总结1.菱形判定的一般思路:首先判定是平行四边形,然后根据邻边相等的平行四边形是菱形来判定,这是判定菱形的最常见思路.也可以考虑其他判定方法,例如若能证明对角线互相垂直平分,也能判定该四边形是菱形.2.应用菱形性质计算的一般思路:因菱形的四条边相等,菱形对角线互相垂直,故常借助对角线垂直和勾股定理来求线段长.也可以根据菱形既是轴对称图形,又是中心对称图形,结合它的对称性得出的一些结论来计算.,考法1,考法2,考法3,对应练4(原创题)菱形不具备的性质是(C)A.四条边都相等B.四条边对边平行C.对角线一定相等D.对角线互相垂直,对应练5(2018安庆四中模拟)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,添加下列条件,不能判定四边形ABCD是菱形的是(B)A.AB=ADB.AC=BDC.ACBDD.ABO=CBO,对应练6(2017北京)如图,在四边形ABCD中,BD为一条对角线,ADBC,AD=2BC,ABD=90,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分BAD,BC=1,求AC的长.,考法1,考法2,考法3,考法1,考法2,考法3,(1)证明:E为AD中点,AD=2BC,BC=ED.ADBC,四边形BCDE是平行四边形.ABD=90,E为AD中点.BE=ED,四边形BCDE是菱形.(2)解:ADBC,AC平分BAD,BAC=DAC=BCA,BA=BC=1.AD=2BC=2,考法1,考法2,考法3,考法3正方形的相关证明及计算,例3(2018湖北十堰)已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.,考法1,考法2,考法3,解:(1)结论:DMEM,DM=EM.(2)如图1中,结论不变.DMEM,DM=EM.理由:如图2中,延长EM交DA的延长线于H.四边形ABCD是正方形,四边形EFGC是正方形,ADE=DEF=90,AD=CD,ADEF,MAH=MFE.AM=MF,AMH=FME,AMHFME.MH=ME,AH=EF=EC,DH=DE.EDH=90,DMEM,DM=ME.,考法1,考法2,考法3,(3)如图2中,作MRDE于R.,DM=ME,DMME,又MRDE,考法1,考法2,考法3,方法总结对于与正方形性质相关的计算问题,要合理应用其性质及由性质得到的一些结论:(1)四角相等均为90以及四边相等.(2)对角线垂直且相等.(3)对角线平分一组对角得到45角.,考法1,考法2,对应练7(2012安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2B.3a2C.4a2D.5a2,考法3,解析:图案中间的阴影部分是正方形,面积是a2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a的正方形的一半,它的面积用对角线积的一半来计算.,考法1,考法2,考法3,对应练8(2018安徽名校模拟卷)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”如图(1),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3,若正方形EFGH的边长为2,则S1+S2+S3=12.,考法1,考法2,考法3,解析:图中的八个直角三角形全等,设每个三角形的面积为S,则S1-S2=4S,S2-S3=4S,S1-S2=S2-S3,S1+S3=2S2=222=8,S1+S2+S3=8+4=12.,考法1,考法2,考法3,对应练9(2018安徽第五次联考)如图1,已知正方形ABCD和正方形QMNP,点M是正方形ABCD的对称中心,MN交AB于点F,QM交AD于点E.(1)猜想:ME与MF的数量关系,不用证明;,考法1,考法2,考法3,(2)如图2,若将原题中的“正方形”改为“菱形”,且EMF=ABC,其他条件不变,探索线段ME与线段MF的数量关系,并加以证明;,考法1,考法2,考法3,(3)如图3,若将原题中的“正方形”改为“矩形”,且ABBC=12,其他条件不变,探索线段ME与线段MF的数量关系,并加以证明.,考法1,考法2,考法3,解:(1)ME=MF.(2)ME=MF.证明:如图1,过点M作MHAD于点H,MGAB于点G.M是菱形ABCD的对称中心,M是菱形ABCD对角线的交点,AM平分BAD,MH=MG.EMF=ABC,EMF+BAD=180.又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年部编人教版小学二年级数学上册全册教案
- 人教版八年级英语上册Unit2标准检测卷(含答案)
- 新解读《GB-T 18507-2014城镇土地分等定级规程》
- 重庆地道果酒知识培训课件
- 重大危险源监督管理
- 老年人的情绪与情感课件
- 《创新创业概论》课程简介与教学大纲
- 《商务英语阅读2》课程简介与教学大纲
- 老年人才专业知识培训课程课件
- 醉人的五月风课件
- 2023-2025年中考语文试题分类汇编:记叙文阅读(辽宁专用)解析版
- 学校食堂从业人员食品安全知识培训考试试题(含答案)
- 电影艺术概述-设计艺术-人文社科-专业资料
- 2025年教科版新教材科学三年级上册全册教案设计(含教学计划)
- 医院药品采购与质量控制规范
- 支部纪检委员课件
- 从+“心”+出发遇见更好的自己-开学第一课暨心理健康教育主题班会-2025-2026学年高中主题班会
- 2025版仓储库房租赁合同范本(含合同生效条件)
- 2025年人伤保险理赔试题及答案
- 2025年全国招标采购专业技能大赛(央企组)历年参考题库含答案详解(5卷)
- 医院药学带教课件
评论
0/150
提交评论