铰链主体(B型)零件图.dwg
铰链主体(B型)零件图.dwg

铰链主体(B型)加工工艺编制及实体加工仿真设计【39张CAD图纸】【优秀】

收藏

压缩包内文档预览:
预览图
编号:295115    类型:共享资源    大小:1.53MB    格式:RAR    上传时间:2014-07-06 上传人:上*** IP属地:江苏
25
积分
关 键 词:
铰链主体 B型加工 工艺编制 实体仿真 设计 cad图纸
资源描述:

铰链主体(B型)加工工艺编制及实体加工仿真设计

40页 13000字数+说明书+答辩稿+工艺卡片+39张CAD图纸【详情如下】

外文文献--机械设计.doc

工艺卡片.dwg

铰链主体(B型)加工工艺编制及实体加工仿真设计答辩稿.ppt

铰链主体(B型)加工工艺编制及实体加工仿真设计论文.doc

铰链主体(B型)工艺卡片38张.dwg

铰链主体(B型)零件图.dwg

一、题目

   铰链主体(B型)加工工艺编制及实体加工仿真

二、指导思想和目的要求

   毕业设计(论文)是培养学生自学能力、综合应用能力、独立工作能力的重要教学实践环节。在毕业设计中,学生应独立承担一部分比较完整的工程技术设计任务。要求学生发挥主观能动性,积极性和创造性,在毕业设计中着重培养独立工作能力和分析解决问题的能力,严谨踏实的工作作风,理论联系实际,以严谨认真的科学态度,进行有创造性的工作,认真、按时完成任务。

三、主要技术指标

   1、零件图一张;

   2、工艺规程一本;

   3、实体加工仿真;

   4、说明书一份。

四、进度和要求

   1、分析并绘制零件图                     2周

   2、设计工艺路线及编制工艺规程           5周

   3、实体模型仿真                         4周

   4、编写说明书(论文)                   2周

五、主要参考书及参考资料

[1] 闫光明主编.《现代制造工艺基础》.西北工业大学出版社.2007.

[2] 哈工大李益民主编.《机械制造工艺设计简明手册》.机械工业出版社.1994.

[3] 于杰主编.《 数控加工工艺与编程》.国防工业出版社.2009.

摘 要

   铰链又称合页是用来连接两个固体,并允许两者之间做转动的机械装置。铰链可由可移动的组件构成,或者由可折叠的材料构成。最常见的是门窗上安装的铰链。一般铰链分类:按材质分类主要分为,不锈钢铰链和铁铰链;按底座类型分为,脱卸式和固定式两种;按臂身的类型又分为,滑入式和卡式两种。

   本文主要从某铰链主体(B型)的工艺规格设计和实体仿真方面,阐述了铰链的设计与制造的全过程。在工艺规程设计中,通过科学加工理论与实际结合,确定了毛坯的制造形式,选择了基面,制定了工艺路线;确定了机械加工余量、工序尺寸和毛坯尺寸;确定了切削用量及基本工时。详细介绍了该产品的整个加工方案的拟订过程和实体仿真。

   工艺设计中依据现有的条件,选用传统的机械加工方式与现代数控加工结合进行编制,但又根据零件自身的特点及其结构性能的要求,部分按照非常规的加工路线进行加工,更好的确保了产品的质量和技术性能要求,也体现产品的加工特点。在实体仿真的设计中,采用当前最为经济、有效的全方位PC级CAD/CAM软件系统Mastercam软件。

关键词:铰链,工艺路线,加工仿真, MasterCAM应用

ABSTRACT

   Also known as hinge hinge is used to connect two solid, and allow rotation between a mechanical device to do. Hinge components may be movable, or by folding the material. The most common is hinged doors and windows installed. General hinge Category: divided into categories according to the material, stainless steel hinges and iron hinges; divided by the base type, detachable and fixed two; by the type of arm is divided into the body, two slide-and cassette.

   This article from a hinge (B) of the simulation process and physical aspects of the design specification, describes the design and manufacture of the hinge of the whole process. In process planning, through the scientific process of theory and practice combine to determine the manufacture of the blank form, choose the base surface, developed a process route; determine the machining allowance, process size and blank size; identified and the basic cutting Working hours. Details of the product during the processing of program development and physical simulation.

   Process design based on existing conditions, use a conventional machining method in conjunction with the establishment of modern CNC machining, but according to its own characteristics and structure of part performance requirements, some of the processing line in accordance with conventional processing, better Ensure product quality and technical performance requirements, but also reflect the product's processing characteristics. In the physical design of the simulation, using the current most economical and effective all-round PC-class CAD / CAM software Mastercam software. 

KEY WORDS:  hinge, process route, allowance, machining simulation, Master CAM

目 录

摘 要I

ABSTRACTII

第一章 概 述1

1.1铰链的作用与分类1

1.2目前铰链市场的概括及分析2

1.3机械加工工艺2

第二章 铰链(B型)的工艺分析3

2.1零件材料的选择4

2.2铰链的主要表面分析及加工方法4

2.3刀具的选择6

第三章 铰链(B型)工艺规程设计8

3.1机床的选择8

3.2定位基准的选择8

3.3加工路线的原则9

3.4制订铰链(B型)工艺路线10

第四章 铰链(B型)实体加工仿真23

4.1 Mastercam软件加工仿真的特点23

4.2 生成零件的刀具路径23

4.3 确定走刀顺序及走刀路线24

4.4 铰链(B型)实体加工仿真24

第五章 全文总结31

参考文献32

致 谢33

毕业设计小结34

附录35

1.1铰链的作用与分类

   铰链又称合页,是用来连接两个固体,并允许两者之间做转动的机械装置。铰链可由可移动的组件构成,或者由可折叠的材料构成。最常见的是门窗上安装的铰链:一物体A套在另一物体B的一部分C上,物体A的运动受到C的限制,但A可以饶C在平面或空间内(C为球形)转动,物体A与B就够成铰链。

   铰链分类:合页、弹簧铰链、大门铰链、其他铰链包括有台面铰链、翻门铰链、玻璃铰链、天线铰链等等。

   本篇论文铰链(B)型属于天线铰链。

1.2目前铰链市场的概括及分析

   随着国家工业化步伐的迈进,铰链这个传统的产品已经渗透到生活的各个角落。大到航空航天,小到民用家居,市场的需求使得铰链的品种不断增加,样式不断改革。

   入世的历史之门打开后对传统企业来的冲击和压力将是巨大的。加入世贸组织以后,铰链的进出口平均关税降到10%,配额将逐步减少,国产化率的鼓励措施将取消,全球采购数量越来越多,铰链生产企业属于传统的大批大量生产类型企业,讲究的是规模效益,但随着市场竞争的不断深化,顾客的需求不断变化,其生产方式也在向着多品种、中小批量生产方式转化,铰链企业要实现跨越性的发展,不仅需要在提高产品质量、不遗余力地采用新工艺、新技术,不断进行产品创新等方面下功夫,还要不断的更新观念,优化生产组织方式,积极主动地应对市场不断变化的需求,降低成本、提高效益,以保持在市场上的竞争优势。

1.3机械加工工艺

   在生产过程中,改变生产对象的形状、尺寸、相对位置和性质等使之成为成品或半成品的过程,称之为工艺过程。它包括毛坯制造、零件加工、部件或产品装配、检验和涂装、包装等。其中,采用机械加工的方法直接改变毛坯的形状、尺寸、表面质量和性能等,使其成为零件的过程,称之为加工工艺过程。

   机械加工工艺过成由若干个按顺序排列的工序组成,而工序又可以依次分为安装、工位、工步和走刀等几个层次。

   工序:一个或一组工人,在一个工作地对一个或同时对几个工件连续完成的那一部分工艺过程,称为工序。工序是组成工艺过程的基本单元。划分工序的依据是工作地点是否变动和工作过程是否连续,以及操作者和加工对象是否改变四个要素。

   安装:同一工序中,工件可能装夹一次,也可能是几次。工件经一次装夹后所完成的那一部分工艺过程,称为安装。

   工位:工件一次装夹后,在相对机床(或刀具)所占据的每一个工作位置中所完成的那一部分工艺过程,称之为一个工位。机床或夹具的工位有两个或两个以上的,称之为躲工位机床或多工位夹具。

   工步:工步在加工表面不变和加工工具不变以及切削用量中的切削速度和进给量不变的条件下,所连续完成的那一部分工序工艺过程称为一个工步。为了提高生产率,用几把刀具同时加工几个加工表面的工步,也可以看作一个工步,称为复合工步。

   走刀:在一个工步内,若需要切去的材料层较厚时,需要经几次切削才能完成,则每次切削所完成的工步内容,称之为走刀。因此在切削速度和进给量不变的前提下刀具完成一次进给运动称为一次走刀。2.1零件材料的选择

   我所用的硬铝的型号是LY12-LZ,这是一种高强度硬铝,可进行热处理强化,在退火和刚淬火状态下塑性中等,点焊焊接性良好,用气焊和氩弧焊时有形成晶间裂纹的倾向;合金在淬火和冷作硬化后其可切削性能尚好,退火后可切削性低;抗蚀性不高,常采用阳极氧化处理与涂漆方法或表面加包铝层以提高其抗腐蚀能力。LY12为铝-铜-镁系中的典型硬铝合金,其成份比较合理,综合性能较好。

2.2铰链的主要表面分析及加工方法

   1、铰链主体主要由端面,外圆,内孔,台阶面,倒角,倒圆,小孔组成。

铰链主体共有两组加工基准表面,它们之间有一定的位置要求。现分述如下:

   ①以Φ20.5mm通孔为中心的加工表面

   这一组加工表面包括:铣上下面以及外型。上表面包括Φ23.5mm高40mm和Φ26mm高5mm圆柱及其倒角,下表面为斜面斜角6o阶梯型腔,如图2-2-1所示。   由以上分析可知,对于这两组加工基准表面而言,可以先加工其中一组表面,然后借助于专用夹具加工另一组表面,并且保证它们之间的位置精度要求。

   2、铰链的主要加工方案

   ①上、下表面及台阶面的粗糙度要求为3.2μm,可选择“粗铣—精铣”方案。

   ②零件孔的分析

   孔加工前,为便于钻头找正,先用中心钻加工中心孔,然后在钻孔。内孔表面的加工方案在很大程度上取决于内孔表面本身的尺寸精度和粗糙度。对于精度要求特别高、粗糙度值较小的表面,一般不能一次加工到规定尺寸,而要划分阶段逐步进行。该零件孔系加工方案的选择基本上为先用中心钻加工中心孔,然后再钻孔。

   3、主要技术条件

   ①铣面(所有的外表面)

   ②打孔(两个基准孔、外表面10个孔)

   ③挖槽(底面两个槽)

   ④倒角(零件顶端圆柱两个倒角、零件外表面12个倒角)

   ⑤电火花清根(底端深槽)

2.3刀具的选择

   一般优先采用标准刀具,必要时也可采用各种高生产率的复合刀具及其它一些专用刀具。此外,应结合实际情况,尽可能选用各种先进刀具,如可转位刀具,整体硬质合金刀具、陶瓷涂层刀具等。刀具的类型、规格和精度等级应符合加工要求,刀具材料应与工件材料相适应。数控加工所用刀具在刀具性能上应高于普通加工所用刀具。所以选择数控加工刀具时,还应考虑以下几个方面:

   1、切削性能好

   2、精度高

   3、可靠性高

   4、耐用度高  

   5、断屑及排屑性能好  

   6、零件上、下表面采用端铣刀加工,根据侧吃刀量选择端铣刀直径,使铣刀工作时有合理的切入/切出角;且铣刀直径应尽量包容工件整个加工宽度,以提高加工精度和效率,并减小相邻两次进给之间的接刀痕迹。

   7、台阶面及其轮廓采用立铣刀加工,铣刀半径R受轮廓最小曲率半径限制,取R=6mm。

   8、孔加工各工步的刀具直径根据加工余量和孔径确定。3.1机床的选择

   对于铰链主体零件精度、形状的特殊性,在加工过程中除了下料 、铣六面我们选择普通锯床和普通铣床进行粗加工,其余加工工序我们选择加工中心。加工中心是一种综合加工能力较强的数控加工机床。它是把铣削、镗削、钻削、攻螺纹和切削螺纹等功能集中在一台设备上,使其具有多种工艺手段。加工中心设置有刀库,刀库中存放着不同数量的各种刀具或检具,在加工过程中由程序自动选用或更换。

 1、加工中心的类型选择

   ①一般单工位(单面)加工的工件最好选用立式加工中心。

   ②加工两工位(双面)以上的工件或在四周呈径向辐射状排列的孔系、面的加工宜选择卧式加工中心。

   ③铰链B型在一次装夹中不能完成多工位加工时,则应选择四轴加工中心。

 2、刀库容量选择

   同一种规格的加工中心,通常都有2-3种不同容量的刀库,在选定刀库容量时,根据被加工件的工艺分析结果来确定所需数量,通常以满足一个零件在一次装夹中所需刀具数量确定刀库容量。从统计结果看,立式加工中心选用20把刀左右的刀库,卧式加工中心选用40把刀左右的刀库为宜。用于柔性制造单元或柔性制造系统中的加工中心,应选用大容量刀库,甚至配置可交换刀库。

 3、冷却功能选择

冷却方式有:大流量的喷淋式冷却、刀具内冷装置、气雾冷却等。根据工件和刀具的实际情况进行选择。

3.2定位基准的选择

基面选择是工艺规程设计中的重要设计之一,基面的选择正确与合理,可以使加工质量得到保证,生产率得到提高。否则,加工工艺过程会问题百出

参考文献

[1] 阎光明主编,侯忠滨.现代制造工艺基础.西安:西北工业大学出版社.2007.

[2] 甘登岱主编.Auto CAD机械制图教程.北京:人民邮电出版社.2003.

[3] 刘军营,马兰主编.机械制图.北京:机械工业出版社.2006.

[4] 张煜主编.机械制图.苏州:苏州大学出版社.2004.

[5] 赵长明,刘万菊主编.数控加工工艺及设备.北京:高等教育出版社.2003.

[6] 许祥泰,刘艳芳.数控加工编程实用技术.北京:机械工业出版社.2001.

[7] 孙德茂著.数控机床铣削加工直接编程技术.北京:机械工业出版社.2004.

[8] 孟少龙主编.机械加工工艺手册.北京:机械工业出版社.1992.

[9] 王志平主编.数控编程与操作.北京:高等教育出版社.2003.

[10]华茂发主编.数控机床加工工艺.北京:机械工业出版社.2000.


内容简介:
科技外文翻译学 院:西北工业大学明德学院专 业:机械设计制造及自动化 班 级: 姓 名: 学 号: 指导老师: Mechanical Design A machine is a combination of mechanisms and other components which transforms, transmits. Examples are engines, turbines, vehicles, hoists, printing presses, washing machines, and movie cameras. Many of the principles and methods of design that apply to machines also apply to manufactured articles that are not true machines. The term mechanical design is used in a broader sense than machine design to include their design. the motion and structural aspects and the provisions for retention and enclosure are considerations in mechanical design. Applications occur in the field of mechanical engineering, and in other engineering fields as well, all of which require mechanical devices, such as switches, cams, valves, vessels, and mixers. Designing starts with a need real.Existing apparatus may need improvements in durability, efficiency, weight, speed, or cost. New apparatus may be needed to perform a function previouslydone by men, such as computation, assembly, or servicing. With the objective wholly or partly In the design preliminary stage, should allow to design the personnel fully to display the creativity, not each kind of restraint. Even if has had many impractical ideas, also can in the design early time, namely in front of the plan blueprint is corrected. Only then, only then does not send to stops up the innovation the mentality. Usually, must propose several sets of design proposals, then perform the comparison. Has the possibility very much in the plan which finally designated, has used certain not in plan some ideas which accepts. When the general shape and a few dimensions of the several components become apparent, analysis can begin in earnest. The analysis will have as its objective satisfactory or superior performance, plus safety and durability with minimum weight, and a competitive cost. Optimum proportions and dimensions will be sought for each critically loaded section, together with a balance between the strengths of the several components. Materials and their treatment will be chosen. These important objectives can be attained only by analysis based upon the principles of mechanics, such as those of static for reaction forces and for the optimum utilization of friction; of dynamics for inertia, acceleration, and energy; of elasticity and strength of materials for stress and deflection; of physical behavior of materials; and of fluid mechanics for lubrication and hydrodynamic drives. The analyses may be made by the same engineer who conceived the arrangement of mechanisms, or, in a large company, they may be made by a separate analysis division or research group. Design is a reiterative and cooperative process, whether done formally or informally, and the analyst can contribute to phases other than his own. Product design requires much research and development. Many Concepts of an idea must be studied, tried, and then either used or discarded. Although the content of each engineering problem is unique, the designers follow the similar process to solve the problems. Product liability suits designers and forced in material selection, using the best program. In the process of material, the most common problems for five (a) dont understand or not use about the latest application materials to the best information, (b) failed to foresee and consider the reasonable use material may (such as possible, designers should further forecast and consider due to improper use products. In recent years, many products liability in litigation, the use of products and hurt the plaintiff accused manufacturer, and won the decision), (c) of the materials used all or some of the data, data, especially when the uncertainty long-term performance data is so, (d) quality control method is not suitable and unproven, (e) by some completely incompetent persons choose materials. Through to the above five questions analysis, may obtain these questions is does not have the sufficient reason existence the conclusion. May for avoid these questions to these questions research analyses the appearance indicating the direction. Although uses the best choice of material method not to be able to avoid having the product responsibility lawsuit, designs the personnel and the industry carries on the choice of material according to the suitable procedure, may greatly reduce the lawsuit the quantity. May see from the above discussion, the choice material people should to the material nature, the characteristic and the processing method have comprehensive and the basic understanding. Finally, a design based upon function, and a prototype may be built. If its tests are satisfactory, the initial design will undergo certain modifications that enable it to be manufactured in quantity at a lower cost. During subsequent years of manufacture and service, the design is likely to undergo changes as new ideas are conceived or as further analyses based upon tests and experience indicate alterations. Sales appeal.Some Rules for Design In this section it is suggested that, applied with a creative attitude, analyses can lead to important improvements and to the conception and perfection of alternate, perhaps more functional, economical,and durable products. To stimulate creative thought, the following rules are suggested for the designer and analyst. The first six rules are particularly applicable for the analyst.1. A creative use of need of physical properties and control process.2. Recognize functional loads and their significance.3. Anticipate unintentional loads.4. Devise more favorable loading conditions.5. Provide for favorable stress distribution and stiffness with minimum weight.6. Use basic equations to proportion and optimize dimensions.7. Choose materials for a combination of properties.8. Select carefully, stock and integral components.9. Modify a functional design to fit the manufacturing process and reduce cost.10. Provide for accurate location and noninterference of parts in assembly. Machinery design covers the following contents.1. Provides an introduction to the design process , problem formulation ,safety factors.2. Reviews the material properties and static and dynamic loading analysis ,Including beam , vibration and impact loading. 3. Reviews the fundamentals of stress and defection analysis. 4. Introduces fatigue-failure theory with the emphasis on stress-life approaches to high-cycle fatigue design, which is commonly used in the design of rotation machinery. 5. Discusses thoroughly the phenomena of wear mechanisms, surface contact stresses ,and surface fatigue. 6. Investigates shaft design using the fatigue-analysis techniques. 7. Discusses fluid-film and rolling-element bearing theory and application 8. Gives a thorough introduction to the kinematics, design and stress analysis of spur gears , and a simple introduction to helical ,bevel ,and worm gearing. 9. Discusses spring design including compression ,extension and torsion springs. 10. Deals with screws and fasteners including power screw and preload fasteners. 11. Introduces the design and specification of disk and drum clutches and brakes.Machine Design The complete design of a machine is a complex process. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineerig material, materials mechanics and machine manufacture technology has the deep elementary knowledge. One of the first steps in the design of any product is to select the material from which each part is to be made. Numerous materials are available to todays designers. The function of the product, its appearance, the cost of the material, and the cost of fabrication are important in making a selection. A careful evaluation of the properties of a. material must be made prior to any calculations. Careful calculations are necessary to ensure the validity of a design. In case of any part failures, it is desirable to know what was done in originally designing the defective components. The checking of calculations (and drawing dimensions) is of utmost importance. The misplacement of one decimal point can ruin an otherwise acceptable project. All aspects of design work should be checked and rechecked. The computer is a tool helpful to mechanical designers to lighten tedious calculations, and provide extended analysis of available data. Interactive systems, based on computer capabilities, have made possible the concepts of computer aided design (CAD) and computer-aided manufacturing (CAM). How does the psychologist frequently discuss causes the machine which the people adapts them to operate. Designs personnels basic responsibility is diligently causes the machine to adapt the people. This certainly is not an easy work, because certainly does not have to all people to say in fact all is the most superior operating area and the operating process. Another important question, project engineer must be able to carry on the exchange and the consultation with other concerned personnel. In the initial stage, designs the personnel to have to carry on the exchange and the consultation on the preliminary design with the administrative personnel, and is approved. This generally is through the oral discussion, the schematic diagram and the writing material carries on. If front sues, the machine design goal is the production can meet the human need the product. The invention, the discovery and technical knowledge itself certainly not necessarily can bring the advantage to the humanity, only has when they are applied can produce on the product the benefit. Thus, should realize to carries on before the design in a specific product, must first determine whether the people do need this kind of product Must regard as the machine design is the machine design personnel carries on using creative ability the product design, the system analysis and a formulation product manufacture technology good opportunity. Grasps the project elementary knowledge to have to memorize some data and the formula is more important than. The merely service data and the formula is insufficient to the completely decision which makes in a good design needs. On the other hand, should be earnest precisely carries on all operations. For example, even if places wrong a decimal point position, also can cause the correct design to turn wrongly. A good design personnel should dare to propose the new idea, moreover is willing to undertake the certain risk, when the new method is not suitable, use original method. Therefore, designs the personnel to have to have to have the patience, because spends the time and the endeavor certainly cannot guarantee brings successfully. A brand-new design, the request screen abandons obsoletely many, knows very well the method for the people. Because many person of conservativeness, does this certainly is not an easy matter. A mechanical designer should unceasingly explore the improvement existing product the method, should earnestly choose originally, the process confirmation principle of design in this process, with has not unified it after the confirmation new idea. The machine design is through designs the new product or improves the old product to meet the human need the application technical science. It involves the project technology each domain, mainly studies the product the size, the shape and the detailed structure basic idea, but also must study the product the personnel which in aspect the and so on manufacture, sale and use question. Carries on each kind of machine design work to be usually called designs the personnel or machine design engineer. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineerig material, materials mechanics and machine manufacture technology has the deep elementary knowledge. If front sues, the machine design goal is the production can meet the human need the product. The invention, the discovery and technical knowledge itself certainly not necessarily can bring the advantage to the humanity, only has when they are applied can produce on the product the benefit. Thus, should realize to carries on before the design in a specific product, must first determine whether the people do need this kind of product Must regard as the machine design is the machine design personnel carries on using creative ability the product design, the system analysis and a formulation product manufacture technology good opportunity. Grasps the project elementary knowledge to have to memorize some data and the formula is more important than. The merely service data and the formula is insufficient to the completely decision which makes in a good design needs. On the other hand, should be earnest precisely carries on all operations. For example, even if places wrong a decimal point position, also can cause the correct design to turn wrongly. A good design personnel should dare to propose the new idea, moreover is willing to undertake the certain risk, when the new method is not suitable, use original method. Therefore, designs the personnel to have to have to have the patience, because spends the time and the endeavor certainly cannot guarantee brings successfully. A brand-new design, the request screen abandons obsoletely many, knows very well the method for the people. Because many person of conservativeness, does this certainly is not an easy matter. A mechanical designer should unceasingly explore the improvement existing product the method, should earnestly choose originally, the process confirmation principle of design in this process, with has not unified it after the confirmation new idea. Newly designs itself can have the question occurrence which many flaws and has not been able to expect, only has after these flaws and the question are solved, can manifest new goods come into the market the product superiority. Therefore, a performance superior product is born at the same time, also is following a higher risk. Should emphasize, if designs itself does not request to use the brand-new method, is not unnecessary merely for the goal which transform to use the new method. In the design preliminary stage, should allow to design the personnel fully to display the creativity, not each kind of restraint. Even if has had many impractical ideas, also can in the design early time, namely in front of the plan blueprint is corrected. Only then, only then does not send to stops up the innovation the mentality. Usually, must propose several sets of design proposals, then perform the comparison. Has the possibility very much in the plan which finally designated, has used certain not in plan some ideas which accepts. How does the psychologist frequently discuss causes the machine which the people adapts them to operate. Designs personnels basic responsibility is diligently causes the machine to adapt the people. This certainly is not an easy work, because certainly does not have to all people to say in fact all is the most superior operating area and the operating process. Another important question, project engineer must be able to carry on the exchange and the consultation with other concerned personnel. In the initial stage, designs the personnel to have to carry on the exchange and the consultation on the preliminary design with the administrative personnel, and is approved. This generally is through the oral discussion, the schematic diagram and the writing material carries on. In order to carry on the effective exchange, needs to solve the following problem: (1) designs whether this product truly does need for the people? Whether there is competitive ability (2) does this product compare with other companies existing similar products? (3) produces this kind of product is whether economical? (4) product service is whether convenient? (5) product whether there is sale? Whether may gain?Only has the time to be able to produce the correct answer to above question. But, the product design, the manufacture and the sale only can in carry on to the above question preliminary affirmation answer foundation in. Project engineer also should through the detail drawing and the assembly drawing, carries on the consultation together with the branch of manufacture to the finally design proposal.Usually, can have some problem in the manufacture process. Possibly can request to some components size or the common difference makes some changes, causes the components the production to change easily. But, in the project change must have to pass through designs the personnel to authorize, guaranteed cannot damage the product the function. Sometimes, when in front of product assembly or in the packing foreign shipment experiment only then discovers in the design some kind of flaw. These instances exactly showed the design is a dynamic process. Always has a better method to complete the design work, designs the personnel to be supposed unceasingly diligently, seeks these better method. Recent year, the engineerig material choice already appeared importantly. In addition, the choice process should be to the material continuously the unceasing again appraisal process. The new material unceasingly appears, but some original materials can obtain the quantity possibly can reduce. The environmental pollution, material recycling aspect and so on use, workers health and security frequently can attach the new limiting condition to the choice of material. In order to reduce the weight or saves the energy, possibly can request the use different material. Comes from domestic and international competition, to product service maintenance convenience request enhancement and customers aspect the and so on feedback pressure, can urge the people to carry on to the material reappraises. Because the material does not select when created the product responsibility lawsuit, has already had the profound influence. In addition, the material and between the material processing interdependence is already known by the people clearly. Therefore, in order to can and guarantees the quality in the reasonable cost under the premise to obtain satisfaction the result, project engineer makes engineers all to have earnestly carefully to choose, the determination and the use material. Makes any product the first step of work all is designs. Designs usually may divide into several explicit stages: (a) preliminary design; (b) functional design; (c) production design. In the preliminary design stage, the designer emphatically considered the product should have function. Usually must conceive and consider several plans, then decided this kind of thought is whether feasible; If is feasible, then should makes the further improvement to or several plans. In this stage, the question which only must consider about the choice of material is: Whether has the performance to conform to the request material to be possible to supply the choice; If no, whether has a bigger assurance all permits in the cost and the time in the limit develops one kind of new material. In the functional design and the engineering design stage, needs to make a practical feasible design. Must draw up the quite complete blueprint in this stage, chooses and determines each kind of components the material. Usually must make the prototype or the working model, and carries on the experiment to it, the appraisal product function, the reliability, the outward appearance and the service maintenance and so on. Although this kind of experiment possibly can indicate, enters in the product to the production base in front of, should replace certain materials, but, absolutely cannot this point take not earnestly chooses the material the excuse. Should unify the product the function, earnestly carefully considers the product the outward appearance, the cost and the reliability. Has the achievement very much the company when manufacture all prototypes, selects the material should the material which uses with its production in be same, and uses the similar manufacture technology as far as possible. Like this has the advantage very much to the company. The function complete prototype if cannot act according to the anticipated sales volume economically to make, or is prototypical and the official production installment has in the quality and the reliable aspect is very greatly different, then this kind of prototype does not have the great value. Project engineer is best can completely complete the material in this stage the analysis, the choice and the determination work, but is not remains it to the production design stage does. Because, is carries on in the production design stage material replacement by other people, these people are inferior to project engineer to the product all functions understanding. In the production design stage, is should completely determine with the material related main question the material, causes them to adapt with the existing equipment, can use the existing equipment economically to carry on the processing, moreover the material quantity can quite be easy to guarantee the supply. In the manufacture process, inevitably can appear to uses the material to make some changes the situation. The experience indicated that, may use certain cheap materials to take the substitute. However, in the majority situation, in will carry on the production later to change the material to have in to start before the production to change the price which the material will spend to have to be higher than. Completes the choice of material work in the design stage, may avoid the most such situations. Started after the production manufacture to appear has been possible to supply the use the new material is replaces the material the most common reason. Certainly, these new materials possibly reduce the cost, the improvement product performance. But, must carry on the earnest appraisal to the new material, guarantees its all performance all to answer the purpose. Must remember that, the new material performance and the reliable very few pictures materials on hand such understood for the people. The majority of products expiration and the product accident caused by negligence case is because in selects the new material to take in front of substitution material, not truly understood their long-term operational performance causes. The product responsibility lawsuit forces designs the personnel and the company when the choice material, uses the best procedure. In the material process, five most common questions are: (a) did not understand or cannot use about the material application aspect most newly the best information paper; (b) has not been able to foresee and to consider the dusk year possible reasonable use (for example to have the possibility, designs the personnel also to be supposed further to forecast and the consideration because product application method not when creates consequence. ecent years many products responsibilities lawsuit case, because wrongly uses the plaintiff which the product receives the injury to accuse produces the factory, and wins the decision); (c) uses the material data not entire perhaps some data are indefinite, works as its long-term performance data is the like this time in particular; (d) the quality control method is not suitable and not after the confirmation; (e) the personnel which completely is not competent for the post by some chooses the material. Through to the above five questions analysis, may obtain these questions is does not have the sufficient reason existence the conclusion. May for avoid these questions to these questions research analyses the appearance indicating the direction. Although uses the best choice of material method not to be able to avoid having the product responsibility lawsuit, designs the personnel and the industry carries on the choice of material according to the suitable procedure, may greatly reduce the lawsuit the quantity. May see from the above discussion, the choice material people should to the material nature, the characteristic and the processing method have comprehensive and the basic understanding.机械设计 机器是由机械装置和其它组件组成的。它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。术语中的“机械装置设计” 的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要求的,则再将对初步设计进行某些修改,使它能够在制造成本上有所降低。产品的设计需要不断探索和发展。许多方案必须被研究、试验、完善,然后决定使用还是放弃。虽然每个工程学问题的内容是独特的,但是设计师可以按照类似的步骤来解决问题。产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序。在材料过程中,五个最常见的问题为:(a)不了解或者不会使用关于材料应用方面的最新最好的信息资料;(b)未能预见和考虑材料的合理用途(如有可能,设计人员还应进一步预测和考虑由于产品使用方法不当造成的后果。在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的原告控告生产厂家,并且赢得判决);(c)所使用的材料的数据不全或是有些数据不确定,尤其是当其性能数据长期不更新;(d)质量控制方法不适当和未经验证;(e)由一些完全不称职的人员选择材料。通过对上述五个问题的分析,可以得出这些问题是没有充分理由而存在的结论。对这些问题的研究分析可以为避免这些问题的出现而指明方向。尽管采用最好的材料选择方法也不能避免发生产品责任诉讼,设计人员和工业界按照适当的程序进行材料选择,可以大大减少诉讼的数量。从以上的讨论可以看出,选择材料的人们应该对材料的性质,特点和加工方法有一个全面而基本的了解。在随后生产和售后服务的几年中,要接受新观念的变化,或者由试验和经验为基础,进一步分析并改进。一些设计规则在本节中,建议要运用创造性的态度来替代和改进。也许会创造出更实用、更经济、更耐用的产品。为了激发创造性思维,下列是设计和分析的建议规则。前六个规则对设计者来说特别适用。1. 要有创造性的利用所需要的物理性质和控制过程。2. 认识负载产生的影响及其意义。3. 预测没有想到的负载。4. 创造出对载荷更为有利的条件。5. 提供良好的应力分布和最小的刚度条件。6. 运用最简单的方程来优化体积和面积。7. 选择组合材料。8. 仔细选择所备的原料和不可缺少的组件。9. 调整有效的设计方案,以适应生产过程和降低成本。10. 规定好准确的位置条件为了使组件安装时不干涉。机械设计包括一下内容:1. 对设计过程、设计所需要公式以及安全系数进行介绍。2. 回顾材料特性、静态和动态载荷分析,包括梁、振动和冲击载荷。3. 回顾应力的基本规律和失效分析。4. 介绍静态失效理论和静态载荷下机械断裂分析。5. 介绍疲劳失效理论并强调在压力条件下接近高循环的疲劳设计,这通常用在旋转机械的设计中。6. 深入探讨机械磨损机理、表面接触应力和表面疲劳现象。7. 使用疲劳分析技术校核轴的设计。8. 讨论润滑油膜与滚动轴承的理论和应用。9. 深入介绍直齿圆柱齿轮的动力学、设计和应力分析,并简单介绍斜齿轮、锥齿轮和涡轮有关方面的问题。10. 讨论弹簧设计、螺杆等紧固件的设计,包括传动螺杆和预紧固件。11. 介绍盘式和鼓式离合器以及制动器的设计和技术说明。机械设计一台完整机器的设计是一个复杂的过程。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。任何产品在设计时第一步就是选择产品每个部分的构成材料。许多的材料被今天的设计师所使用。对产品的功能,它的外观、材料的成本、制造的成本作出必要的选择是十分重要的。对材料的特性必须事先作出仔细的评估。仔细精确的计算是必要的,以确保设计的有效性。在任何失败的情况下,最好知道在最初设计中有有缺陷的部件。计算(图纸尺寸)检查是非常重要的。一个小数点的位置放错,就可以导致一个本可以完成的项目失败。设计工作的各个方面都应该检查和复查。计算机是一种工具,它能够帮助机械设计师减轻繁琐的计算,并对现有数据提供进一步的分析。互动系统基于计算机的能力,已经使计算机辅助设计(CAD)和计算机辅助制造(CAM)成为了可能。心理学家经常谈论如何使人们适应他们所操作的机器。设计人员的基本职责是努力使机器来适应人们。这并不是一项容易的工作,因为实际上并不存在着一个对所有人来说都是最优的操作范围和操作过程。另一个重要问题,设计工程师必须能够同其他有关人员进行交流和磋商。在开始阶段,设计人员必须就初步设计同管理人员进行交流和磋商,并得到批准。这一般是通过口头讨论,草图和文字材料进行的。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为 所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:铰链主体(B型)加工工艺编制及实体加工仿真设计【39张CAD图纸】【优秀】
链接地址:https://www.renrendoc.com/p-295115.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!