缸筒a3.dwg
缸筒a3.dwg

液压支架的运动仿真设计【带PROE三维+仿真动画】【8张CAD图纸】【优秀】

收藏

资源目录
跳过导航链接。
液压支架的运动仿真设计【带PROE三维+仿真动画】【8张CAD图纸】【优秀】.rar
缸筒a3.dwg---(点击预览)
缸底a3.dwg---(点击预览)
立柱A1.dwg---(点击预览)
液压支架的运动仿真设计论文.doc---(点击预览)
液压支架的运动仿真设计答辩稿.ppt---(点击预览)
液压支架的运动仿真设计开题报告.doc---(点击预览)
活塞杆a3.dwg---(点击预览)
掩护梁A1.dwg---(点击预览)
接头(A3).dwg---(点击预览)
总装配图A0.dwg---(点击预览)
底座A1.dwg---(点击预览)
外文翻译--液压系统.doc---(点击预览)
中期报告.wps---(点击预览)
PROE三维图+仿真动画
12_log.xml
acad_iso02w100.lsl.1
asm0001.asm.60
asm0002.asm.49
ASM0002.mpg
asm0003.asm.2
asm0004.asm.4
asm0005.asm.11
asm0006.asm.3
asm0007.asm.2
dwg.drw.1
error.chk
prt0001.prt.3
prt0002.prt.13
prt0002.prt.14
prt0003.prt.4
prt0004.prt.1
prt0005.prt.2
prt0006.prt.3
prt0007.prt.2
prt0008.prt.5
prt0009.prt.1
prt0010.prt.2
prt0011.prt.3
prt0012.prt.3
prt0013.prt.1
prt0014.prt.2
prt0014.prt.3
prt0015.prt.6
prt0016.prt.4
prt0017.prt.9
prt0017_log.xml
prt0017__out.log.1
prt0018.prt.2
prt0019.prt.6
prt0020.prt.3
prt0021.prt.2
prt0022.prt.2
prt0023.prt.3
prt0024.prt.1
prt0026.prt.2
reviewref.inf
std.err
std.out
trail.txt.1
trail.txt.2
trail.txt.3
trail.txt.4
trail.txt.5
trail.txt.6
trail.txt.7
压缩包内文档预览:
预览图
编号:295607    类型:共享资源    大小:8.85MB    格式:RAR    上传时间:2014-07-10 上传人:上*** IP属地:江苏
50
积分
关 键 词:
液压支架 运动仿真 设计 proe三维 仿真动画 cad图纸
资源描述:

液压支架的运动仿真设计

66页 24000字数+说明书+答辩稿+开题报告+PROE三维图+8张CAD图纸【详情如下】

PROE三维图

中期报告.wps

外文翻译--液压系统.doc

底座A1.dwg

液压支架的运动仿真设计开题报告.doc

总装配图A0.dwg

接头(A3).dwg

掩护梁A1.dwg

活塞杆a3.dwg

液压支架的运动仿真设计答辩稿.ppt

液压支架的运动仿真设计论文.doc

立柱A1.dwg

缸底a3.dwg

缸筒a3.dwg

摘要 

 当前,我国制造业已经全面完成电图版工程,我国二维CAD技术的普及结束了手工绘图的历史,对减轻工程人员的劳动强度,提高经济效益起到了很明显的作用。随着技术的发展,CAD技术正从二维CAD向三维CAD过度,三维建模技术是CAD技术的核心,建模技术的研究、发展和应用,代表了CAD技术的发展水平。三维CAD/CAE技术在产品的三维造型、虚拟装配、工程图生成、动态干涉检验、机构运动分析和动态仿真等方面带来了革命性的突破,极大地提高了设计效率和设计质量。

 Pro/E软件是目前国内外最为先进的基于特征的三维参数化设计系统之一。本论文较系统地阐述了利用Pro/E软件实现放顶煤液压支架三维实体建模和运动仿真分析的基本方法和技巧。并大体介绍了液压支架的选型原则、各部件尺寸设计及结构设计等内容。

 通过对液压支架进行运动仿真证明,设计支架尺寸合理,运动灵活,无运动干涉区域,顶梁前端一点的运动轨迹符合近似双纽线的要求。

关键词:Pro/E;液压支架;三维建模;仿真

Abstract  

   At present, Our country manufacturing industry has completed the project comprehensively of fling the chart board , and the popularization of two-dimensional CAD technology has finished the manual cartography history ,which plays a very obvious role in reducing the project personnel’s work and enhancing the economic benefit .With the development of technology ,the CAD is transiting from two-dimensional to three-dimensional . Three-dimensional modeling technology is the CAD’s core , and it’s research, development ,application on behalf of the CAD’s development. Three-dimensional CAD/CAE technology takes a revolutionary breakthrough at product’s three-dimensional modeling ,hypothesized assembly ,creating the engineering plat , dynamic interference examination ,organization movement analysis , dynamic simulation ,finite element analysis etc , which enormously enhances the efficiency and quality of design.

   Pro/E is at present one of the most advanced 3Dparameter CAD soft wares that based on the features. It is introduced in a systematic way the method and technique for the 3D parameter solid model and simulation of the hydraulic support with Pro/E.

   After the movement simulation analysis support ,it is proved that this hydraulic support have a reasonable size ,flexible movement and no movement interferes region ,the movement path of one point at the front of top-beam reaches request of similarly double turns the line .

Key words: Pro/E ; hydraulic support ; modeling ; simulation

目录

1绪  论……………………………………………………………………1

1.1 国内外液压支架的研究现状及发展………………………………1

1.2 本课题的研究目的和意义…………………………………………3

2章液压支架基本理论分析………………………………………………5

2.1 液压支架的工作原理………………………………………………5

2.2 液压支架的类型和结构……………………………………………8

2.3 对液压支架的基本要求……………………………………………10

2.4支架的选型设计……………………………………………………11

3章液压支架的整体结构设计 …………………………………………15

3.1支架高度、中心距的确定…………………………………………15

3.2底座长度的确定……………………………………………………16

3.3四连杆机构的设计…………………………………………………17

3.4顶梁长度计算………………………………………………………24

4章支架主要部件的设计…………………………………………………26

4.1支架主要部件的设计要求…………………………………………26

4.2顶梁的设计…………………………………………………………27

4.3底座的设计…………………………………………………………28

4.4支架技术参数和立柱的设计………………………………………29

4.5力柱柱窝位置和受力计算…………………………………………35

4.6千斤顶技术参数的确定……………………………………………38

5章 三维参数化建模           ………………………………………44

  5.1 液压支架建模与装配的目的…………………………………  44

  5.2 液压支架的三维实体建模………………………………………45

  5.3 液压支架的整机装配……………………………………………47

6章液压支架的运动仿真………………………………………………  52

  6.1 液压支架运动仿真的一般过程…………………………………52

  6.2 仿真结果分析………………………………………………    55

结论………………………………………………………………………   59

致谢………………………………………………………………………   60

参考文献………………………………………………………………    61

1.1国内外液压支架的研究现状及发展

 地下开采的煤产量主要是利用由液压支架配套的综采设备产出的。综采设备的研制和广泛的运用,对煤炭工业革新技木装备不仅有着重大的作用,而且对采煤工艺各个环节技术水平的发展和提高,是强有力的促进因素。

 加速现代化进程,必须加速煤炭工业企业的建设、改造和革新技术装备的进程,增加地下开采和露天开采的煤产量。地下开采方法是最复杂和闲难的方法,但是,这种方法在工业发达国家和以煤作为—次能源的地区,仍然普遍应用。而且,开采优质煤,包括炼焦煤,都是采用地下开采方法。

 综合机械化采煤是煤炭工业的一次技术革命,从根本上改变了煤炭工业的面貌,综合机械化采煤是20世纪人类科技发展的重要成果。 综合机械化采煤技术在我国的研究试验、使用、发展,彻底改变了我国煤炭工业的面貌,降低了工人的劳动强度,提高了产量、劳动生产率和企业效益,满足了国民经济建设对煤炭的需求,合理的集中生产简化了生产系统,提高了生产安全性。我国综采技术发展的30多年,使我国的煤炭生产技术水平跨进了世界先进行列,综放技术跃居世界领先地位。

   工作面支护问题始终是困扰煤矿生产安全、产量和效率的重要问题。以液压支架为主要设备的综合机械化采煤(以下简称综采)的诞生和发展是煤矿生产发展史上的一次重大革命。不仅从根本上改善了劳动和安全条件,也为工作面产量和效率的迅速提高奠定了基础。但是综采设备初期投资高,特别是液压支架占综采设备总投资约60%,因此液压支架的合理选用特显重要。

   30多年来在液压支架技术不断发展中,形成了以煤科总院专业研究所和骨干支架制造厂设计所为主的支架研究设计队伍,采用计算机CAD进行各种类型支架的设计,用有限元计算软件等进行计算,并普及计算机绘图。我国制订的缓倾斜工作面顶板分类及其它研究成果为支架设计、选型和使用提供了有力的指导依据。制造方面形成以原部属专业制造厂为主、机械工业部及船舶制造总公司等专业厂为辅的制造体系,以及以国家煤矿支护设备质量检测中心为骨干的检测队伍。制定有关支架检测标准11项,建立了各项支架检测手段,造就了一支研究、制造和使用液压支架的庞大队伍;形成了研制液压支架的雄厚基础。不仅能满足国内的需要,还向美国、俄罗斯、土耳其和印度等国家出口液压支架或成套综采设备。

   为适应我国煤矿综采机械化的发展,国内综采设备科研设计和制造企业已研制开发出具有较先进技术水平的大功率电牵引采煤机、重型刮板输送机、电液控制强力液压支架和多点驱动大运力带式输送机。配套设备的生产能力达到1500~2 500 t/h, 在适宜的煤层和矿井条件下,综采工作面可实现年产300万吨以上。

 新型矿用单体支护设备,采用悬浮式液压技术原理,生产矿用单体支护设备,技术水平达到了国际领先水平,填补了国际空白。DWX型液压支柱的柱塞悬浮,密封胀紧,密封补偿,无内泄漏、无圆弧焊缝等技术和安全特点,具有独创性。新型矿用单体支护设备的诞生,消除了五十年来国内外单体支护设备一直存在的内泄漏和圆弧焊缝脆断等安全隐患问题。解决了深部煤矿开采冲击地压条件下回采工作面顶板支护的关键技术,结束了由德国人发明的第二代单体支护设备的历史,开创了中国人发明的第三代单体支护技术设备的历史,并将会长期使用下去。该产品普遍适用于煤矿回采工作面的顶板支护和端头支护,可广泛应用于薄煤层、中厚煤层及较厚煤层工作面,是煤矿的重要支护设备。

 近10年来主要的发展趋势是向两柱掩护式和四柱掩护式架型发展,架型结构进一步完善,设计方法更先进,参数向高工作阻力、大中心距发展。液压支架另一重大突破是控制系统,应用电液控制技术,采用电磁控制的先导阀,先进可靠的压力和位移传感器,灵活自由编程的微处理机技术,红外线遥感技术等现代科技成果,使液压支架的动作自动连续进行,移架速度大大提高,支架循环时间达到6~8s。

 我国自1973年开始大规模引进德国、英国等国家的综采设备,经历了消化、吸收和改进提高的过程,到目前已形成了较完整的设计、制造和科研体系,掩护式液压支架的制造和采煤技术已有长远发展。

1.2本课题的研究目的和意义

 采用综合机械化采煤方法是大幅度增加煤炭产量、提高经济效益的必由之路。为了满足对煤炭增长的日益需要,必须大量生产综合机械化采煤设备,迅速增加综合机械化采煤工作面。由于采煤工作面的底顶板条件、煤层厚度、煤层的物理机械性质等的不同,对液压支架的要求也不同。为了有效的支护和控制顶板,必须设计出不同类型和不同结构尺寸的液压支架。因此液压支架的设计工作是很重要的。由于液压支架的类型很多,因此其设计工作量也是很大的,由此可见,研制和开发新型液压支架是必不可少的一个环节。

 通过对液压支架的理论学习,完成液压支架的设计工作,加深对液压支架工作原理、工作性能、工作环境及其结构的认识和了解。通过对液压支架结构的分析,加深和巩固机械原理的相关内容;通过对液压支架受力的分析和强度的校核,加深对专业基础课理论力学和材料力学及专业课机械设计相关内容的巩固和理解。同样通过对液压支架的设计,能够更好的认识国内外液压支架的发展趋势和发现目前煤矿液压支架主要存在的问题,从而为以后更深认的了解和设计液压支架打下良好的基础。

   通过自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。

   现代社会对人才提出了更高的要求,作为一名当代大学毕业生,不仅打好坚实的专业知识,还应具备工程技术人才应有的综合素质。为了适应这一发展趋势,我们应立足变传统的、僵化的、单纯的毕业设计为培养主动学习、提高创新能力、树立团结协作精神、强化计算机运用等多维兼容性毕业设计;同时通过完成毕业设计,锻炼学生解决实际工程问题的能力;在整个毕业设计的过程中,以我们的主动学习为主,教师适时指导为辅;将素质教育也毕业设计教学相融合,从根本上提高毕业设计的质量和水平 。 当操作阀处于升柱位置时,从乳化液泵站来得高压液体通过操纵阀液控单向阀5进入立柱2的下腔,立柱上腔回液,支架升起,并撑紧顶板。当操纵阀处于降柱位置时,工作液体进入立柱的上腔,同时打开液控单向阀,立柱下腔回液,支架下降。

  2.1.2支架推移

 支架的前移和推移输送机是通过操纵阀和推移千斤顶3来进行的。移架时,先使支架卸载下降,再把操纵阀置于移架位置,从乳化液泵站来的高压液体进入推移千斤顶的前腔即活塞杆腔,后腔即活塞腔回液。这时,支架以输送机为支点前移。移架结束后,再把支架升起,使支架撑紧顶板。若将操纵阀置于推溜位置,高压液体进入推移千斤顶后腔即活塞腔,前腔即活塞杆腔回液,这时输送机以支架为支点被推向煤壁。

   2.1.3 支架承载过程

   支架的承载过程是指支架与顶板之间相互力学作用的过程,它包括初撑、承载增阻和恒阻三个阶段。

  (1) 初撑阶段

 在升架过程中,当支架的顶梁接触顶板,直到立柱下腔的液体压力逐渐上升到泵站工作压力时,停止供液,液控单向阀6立即关闭,这一过程为支架的初撑阶段。此时支架对顶板的支撑力为初撑力。

  (2) 承载增阻阶段

 支架初撑结束后,随着顶板的下沉,立柱下腔的液体压力逐渐升高,支架对顶板的支撑力也随之增大,呈现增阻状态,这一过程为支架的承载增阻阶段。

  (3) 恒阻阶段

 随着顶板压力的进一步增加,立柱下腔的液体压力越来越高,当升高到安全阀5的调定压力时,安全阀打开溢流,立柱下缩,液体压力随之降低。当降到安全阀的调定压力时,安全阀关闭。随着顶板的继续下沉,安全阀重复这一过程。由于安全阀的作用,支架的支撑力维持在某一恒定数值上,这是支架的恒阻阶段。此时,支架对顶板的支撑力成为工作阻力,它是由支架安全阀的调定压力决定的。对于掩护式和支撑掩护式支架,其初撑力和工作阻力的计算还要考虑到立柱倾角的影响因素。      

  图2.2 支架的工作特性曲线

 由上可知,支架工作时,其支撑力与时间的关系,可用支架工作特性曲线表示,如图 所示,曲线上的、、t2分别表示支架的初撑、增阻、和恒阻阶段的时间。

 上述工作过程表明:支架在达到额定工作阻力以前具有增阻性,以保证支架对顶板有效的支撑作用;当支架达到额定工作阻力以后,支架能随顶板的下沉而下缩,即具有可缩性和恒阻性,支架的工作特性决定于立柱、液控单向阀、安全阀和操纵阀的性能和密封的好坏。所以这些元件是支架的关键液压元件

 通常液控单向阀和安全阀组合在一起,称为控制阀。支架的工作阻力是支架的一个重要参数,它表示支架支撑力的大小。但是,由于支架的顶梁长短和间距大小不同,所以并不能完全反映支架对顶板的支撑能力。因此,通常单位支护面积顶板上所受支架工作阻力值的大小,即支护强度来表示支架的支护性能。即   综采面中厚煤层液压支架设计即将结束。几个月来,从开始接到论文题目到参数计算、作图,再到论文的完成,每走一步对我来说都是新的尝试与挑战,这也是我在大学期间独立完成的最大的项目。在这段时间里,通过对液压支架的选型设计,总体设计,受力分析,强度校核,综合运用了大学期间所学到的知识并学到了很多知识,也有很多感受。开始对液压支架等相关技术很不了解的状态,通过独立的学习,查看相关的资料和书籍和老师指导,让自己头脑中模糊的概念逐渐清晰,又通过实习进一步了解了液压支架,为顺利的设计奠定基础

   虽然我的论文不是很成熟,还有很多不足之处,但这里面的每一个图、每一个数,都有我辛勤汗水的结晶。使我感觉到了知识充实带来的快乐。

   这次做论文的经历也会使我终身受益,我感受到做研究是要真真正正用心去做的一件事情,是真正的自己学习的过程和研究的过程,没有学习就不可能有研究的能力,没有自己的研究,就不会有所突破。希望这次的经历能让我在以后学习和工作得到更大的进步。

参考文献

马希青等主编.《机械制图》.中国矿业大学出版社.2004.7

王绍南。<<采煤工作面液压支架设计>>。北京:世界图书出版公司,1992.4

王国法。<<液压支架技术>>。北京:煤炭工业出版社,1999

刑福康,刘玉堂。<<煤矿支护手册>>。北京:煤炭工业出版社,1991

程居山。<<矿山机械>>。徐州:中国矿业出版社,1997.5

郝兆喜,赵建武。<<液压支架参数化建模及运动分析>>。山西煤炭管理干部学院学报。2007.4

《综采技术手册》编委会.综采技术手册. 北京京:煤炭工业出版社,2000

赵宏珠.<<综采面矿压与液压支架设计>>,徐州:中国矿业学院出版社,1987

李国军.<<煤矿(矿山)综采液压支架设备选型设计、工况分析检测及液压支架安全运行维护检修使用手册>>。北京:中国煤炭出版社,2007.3

机械设计手册编委会.<<机械设计手册>>.北京:机械工业出版社,2004.8

孙恒,陈作模主编,《机械原理》,第六版.高等教育出版社,2000

陈相山,《煤矿支护产品实用手册》,煤炭工业出版社

贾悦谦,伊常德,综采技术手册[M].北京:煤炭工业出版,1998

吴振国,赵宏珠,吴国华《综采综掘高档普采设备选型配套图集》,中国矿业大学出版社。

张继春.Pro/ENGINEER Wildfire结构分析.北京:机械工业出版社,2004.4

葛正浩,杨芙莲.Pro/E机构设计与运动仿真.北京;化学工业出版社,2007.6

美]JONATHAN WICKER . TAN INTRODUCTION TO MECHANICAL ENGINEERING

Yeaple F.Fluid Power Design Handbook.Znd Ed. Revised and Expanded. New York and Basel: Marcel Dekker Inc, 1990

Jaroslav Ivantysyn and Monika Ivantysynova. Hydrostantishe Pumpen and Motoren :Konstruktion and Bebrechnung.1Aufl.Wurzburg: Vogel ,1993


内容简介:
Hydraulic System There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include: 1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.2.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.3.Actuators which convert hydraulic power to usable mechanical power output at the point required.4.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.5.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics. The secret of hydraulic systems success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include: Pumps which convert available power from the prime mover to hydraulic power at the actuator.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.Actuators which convert hydraulic power to usable mechanical power output at the point required.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics. The secret of hydraulic systems success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment. 液压系统 仅有以下三种基本方法传递动力:电气,机械和流体。大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系。为了合理的确定采取哪种方法,重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济的传递动力。然而液压系统与电气系统相比,传递动力的距离较短。液压动力传递系统涉及电动机,调节装置和压力和流量控制,总的来说,该系统包括:泵:将原动机的能量转换成作用在执行部件上所谓液压能。阀:控制泵产生流体的运动方向,产生的功率的大小,以及到达执行部件液体的流量。功率大小取决与对流量和压力大小的控制。执行部件:将液压能转换成可用的机械能。 介质即油液:可进行无压缩传递和控制,同时可以润滑部件,使阀体密封和系统冷却。联结件:联结各个系统部件,为压力流体提供功率传输通路,将液体返回油箱(贮油器)。油液贮存和调节装置:用来确保提供足够质量和数量并冷却的液体。液压系统在工业中应用广泛,例如冲压,钢类工件的磨削及一般加工业,农业,矿业,航天技术,深海勘探,运输,海洋技术,近海天然气和石油勘探等行业,简而言之,在日常生活中很少有人不从液压技术中得到某种益处。液压系统成功而又广泛使用的秘密在于它的通用性和易作性。液压动力传递不会像机械系统那样受到机器几何形体的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操作,加工过程和材料处理等。液压动力之所以成为自动化的重要组成分,是因为它有如下主要的四种优点:1. 控制方便精确 通过操作一个简单的操作杆和按钮,液压系统的操作者便能立即启动,停止,加减速和能提供任意功率,位置精度为万分之一英寸的位置控制力。2. 增力 一个液压系统(没有使用笨重的齿轮,滑轮和杠杆)能简单有效地将不到一盎司的力放大产生几百吨力的输出。3. 恒力和恒扭矩 只有液压系统能提供不随速度变化的恒力或恒扭矩,它可以驱动对象从每小时移动几英寸到每分钟几百英寸,从每小时几百转到每分钟几千转。4. 简单,安全,经济 总的来说,液压系统比机械或电气系统使用更少的运动部件,因此,它们运行与维护简单。这使的系统结构紧凑,安全可靠。例如一种用于车辆上的新型动力转向控制装置已淘汰其他类型的转向动力装置,该转向部件中包含有人力操作方向控制阀和分配器。因为转向部件是全液压的,没有万向节,轴承,减速齿轮等机械连接,这使得系统简单紧凑。另外,只需输入很小的扭矩就能产生满足极恶劣工作条件所需的控制力,这对于因操作空间限制而需要方向盘的场合很重要,这也是减轻司机疲劳度所必需的。液压系统的其他优点包括双向运动,过载保护和无级变速控制,在已有的任何动力系统中液压系统亦具有最大的单位质量功率比。尽管液压系统具有如此高性能,但它不是可以解决所有动力传递问题的灵丹妙药。液压系统也有些缺点,液压油有污染,并且泄露不可能完全避免,另外如果油液渗漏发生在灼热设备附近,大多数液压油能引起火灾。气压系统气压系统是用压力气体传递和控制动力,正如名称所表明的那样,气压系统通常用空气(不用其它的气体)作为流体介质,因为空气是安全、成本低而又随处可得的流体,在系统部件中产生电弧有可能点燃泄露物的的场合下(使用空气作为介质)尤其安全。在气压系统中,压缩机用来压缩并供应所需的空气。压缩机一般有活塞式、叶片式和螺旋式等类型。压缩机基本上是根据理想气体法则,通过减小气体体积来增加气体压力的。气压系统通常考虑采用大的中央空气压缩机作为一个无限量的气源,这类似于电力系统中只要将插头插入插座便可获得电能。用这种方法,压力气体可以从气源输送到整个工厂的各个角落,压力气体可通过空气气滤器除去污物,这些污物可能会损坏气动组件的精密配合部件如阀和气缸等,随后输送到各个回路中,接着空气流经减压阀以减小气压值适合某一回路使用。因为空气不是好的润滑剂(包括20%的氧气),气压系统需要一个油雾器将细小的油雾注射到经过减压阀减压的空气中,这有助于减少气动组件精密配合运动件的磨损。 由于来自大气中的空气含不同数量的水分,这些水分是有害的,它可以带走润滑剂引起过分磨损和腐蚀,因此,在一些使用场合中,要用空气干燥器来除去这些有害的水分。由于气压系统直接 向大气排气,会产生过大噪音,因此可在气阀和执行组件排气口安装消声器来降低噪音,以防止操作人员因接触噪声及高速空气粒子有可能引发的危害。用气动系统代替液压系统有以下几条理由:液体的惯性远比气体大,因此,液压系统中,当执行组件加速和减速和阀突然开启关闭时,油液的质量便是一个潜在的问题,根据牛顿运动定律(力等于质量乘以加速度),产生加速运动油液所需的力要比加速同等体积空气的力高出许多倍4。液体比气体具有更大的粘性,这会因为内摩擦而引起更大的压力 和功率损失:另外,由于液压系统使用的液体要与大气隔绝,故他们需要特殊的油箱和无泄露系统设计。气压系统使用可以直接排到周围环境中的空气,一般来说气压系统没有液体系统昂贵。然而,由于空气的可压缩性,使得气压系统执行组件不可能得到精确的速度控制和位置控制。气压系统由于压缩机局限,其系统压力相当低(地于250psi),而液压力可达1000psi之高,因此液压系统可以是大功率系统,而气动系统仅用于小功率系统,典型例子有冲压、钻孔、提升、冲孔、夹紧、组装、镏接、材料处理和逻辑控制操作等。河南理工大学万方科技学院本科毕业设计(论文)开题报告题目名称液压支架的运动仿真学生姓名专业班级07机设一班学号选题的目的和意义:液压支架是综采设备的重要组成部分。它能可靠而有效地支撑和控制工作面的顶板,隔离采空区,防止矸石进入回采工作面和推进输送机。它与采煤机配套使用,实现采煤综合机械化,解决机械化采煤工作中顶板管理落后于采煤工作的矛盾,进一步改善和提高采煤和运输设备的效能,减轻煤矿工人的劳动强度,最大限度保障煤矿工人的生命安全。因此要求我们从结构上,强度上和制造工艺上不断的研究设计,以使液压支架更加完善,耐用。国内外研究综述: 现今液压支架的发展趋势是通过工作机构尺寸的增加和结构的改进进来一步增加生产力,液压支架的未来发展方向是大型化和机电一体化。为了液压支架工作机构的稳定性,其零部件要向高强度,高寿命发展,主要从设计方面,材料方面,工艺方面着手,采用先进的设计理论和计算机优化设计手段,对其结构,重量,强度,寿命等方面进行优化,选用优质材料,提高热处理,从而液压支架的发展更加完善。 一、 毕业设计(论文)所用的主要技术与方法: 根据生产实际和预选的数据,以液压支架整套设备为核心;对液压支架工作机构的各个组成件进行科学,详细的计算,进行一些标准部件的选型根据二维CAD视图利用PRO-E绘制出三维的工作结构,液压支架等零件图进行装配以及运动仿真;对工作机构进行受力分析,利PRO-E有限元软件优化设计。二、 主要参考文献与资料获得情况:【1】 濮良贵,纪名刚北京高等教育出版社,2001【2】 鲁忠良,肖亚宁,唐中华煤矿液压支架的实用安全理论及技术中国矿业大学【3】 孙桓,陈作模。葛文杰机械原理(第七版)高等教育出版社【4】 倪洪启,谷耀新现代机械设计方法北京:化学工业出版社【5】 刘鸿文主编,材料力学1第四版,高等教育出版社【6】 冯开平,左宗义主编,画法几何与机械制图,华南理工大学出版社【7】 汪凯主编,机械设计标准应用手册,机械工业出版社【8】 冯之敬主编,机械制造工程原理,清华大学出版社三、 毕业设计(论文)进度安排(按周说明) 第35周 进行毕业实习,收集整理材料,完成实习报告以及英文文献翻译 第67周 完成开题报告。 第79周 完成总体设计,并完成各部件的详细计算并且绘制草图。 第1013周 完成总装图及零件图的绘制,进行中期检查,并完成中期检查报告,写设计说明书。 第1415周 整理并完善设计说明书以及零件图,并检查所有图纸。 第16 周 打印图纸进行归纳整理,进行答辩。四、 指导教师审批意见:指导教师: (签名)年 月 日 河南理工大学万方科技学院本科毕业论文摘要当前,我国制造业已经全面完成电图版工程,我国二维CAD技术的普及结束了手工绘图的历史,对减轻工程人员的劳动强度,提高经济效益起到了很明显的作用。随着技术的发展,CAD技术正从二维CAD向三维CAD过度,三维建模技术是CAD技术的核心,建模技术的研究、发展和应用,代表了CAD技术的发展水平。三维CAD/CAE技术在产品的三维造型、虚拟装配、工程图生成、动态干涉检验、机构运动分析和动态仿真等方面带来了革命性的突破,极大地提高了设计效率和设计质量。Pro/E软件是目前国内外最为先进的基于特征的三维参数化设计系统之一。本论文较系统地阐述了利用Pro/E软件实现放顶煤液压支架三维实体建模和运动仿真分析的基本方法和技巧。并大体介绍了液压支架的选型原则、各部件尺寸设计及结构设计等内容。通过对液压支架进行运动仿真证明,设计支架尺寸合理,运动灵活,无运动干涉区域,顶梁前端一点的运动轨迹符合近似双纽线的要求。关键词:Pro/E;液压支架;三维建模;仿真iAbstractAt present, Our country manufacturing industry has completed the project comprehensively of fling the chart board , and the popularization of two-dimensional CAD technology has finished the manual cartography history ,which plays a very obvious role in reducing the project personnels work and enhancing the economic benefit .With the development of technology ,the CAD is transiting from two-dimensional to three-dimensional . Three-dimensional modeling technology is the CADs core , and its research, development ,application on behalf of the CADs development. Three-dimensional CAD/CAE technology takes a revolutionary breakthrough at products three-dimensional modeling ,hypothesized assembly ,creating the engineering plat , dynamic interference examination ,organization movement analysis , dynamic simulation ,finite element analysis etc , which enormously enhances the efficiency and quality of design.Pro/E is at present one of the most advanced 3Dparameter CAD soft wares that based on the features. It is introduced in a systematic way the method and technique for the 3D parameter solid model and simulation of the hydraulic support with Pro/E.After the movement simulation analysis support ,it is proved that this hydraulic support have a reasonable size ,flexible movement and no movement interferes region ,the movement path of one point at the front of top-beam reaches request of similarly double turns the line .Key words: Pro/E ; hydraulic support ; modeling ; simulation河南理工大学万方科技学院本科毕业论文目 录1绪 论11.1 国内外液压支架的研究现状及发展11.2 本课题的研究目的和意义32章液压支架基本理论分析52.1 液压支架的工作原理52.2 液压支架的类型和结构82.3 对液压支架的基本要求102.4支架的选型设计113章液压支架的整体结构设计 153.1支架高度、中心距的确定153.2底座长度的确定163.3四连杆机构的设计173.4顶梁长度计算244章支架主要部件的设计264.1支架主要部件的设计要求264.2顶梁的设计274.3底座的设计284.4支架技术参数和立柱的设计294.5力柱柱窝位置和受力计算354.6千斤顶技术参数的确定385章 三维参数化建模 445.1 液压支架建模与装配的目的 445.2 液压支架的三维实体建模455.3 液压支架的整机装配476章液压支架的运动仿真 526.1 液压支架运动仿真的一般过程526.2 仿真结果分析 55结论 59致谢 60 参考文献 61河南理工大学万方科技学院本科毕业论文1绪 论1.1国内外液压支架的研究现状及发展地下开采的煤产量主要是利用由液压支架配套的综采设备产出的。综采设备的研制和广泛的运用,对煤炭工业革新技木装备不仅有着重大的作用,而且对采煤工艺各个环节技术水平的发展和提高,是强有力的促进因素。加速现代化进程,必须加速煤炭工业企业的建设、改造和革新技术装备的进程,增加地下开采和露天开采的煤产量。地下开采方法是最复杂和闲难的方法,但是,这种方法在工业发达国家和以煤作为次能源的地区,仍然普遍应用。而且,开采优质煤,包括炼焦煤,都是采用地下开采方法。综合机械化采煤是煤炭工业的一次技术革命,从根本上改变了煤炭工业的面貌,综合机械化采煤是20世纪人类科技发展的重要成果。 综合机械化采煤技术在我国的研究试验、使用、发展,彻底改变了我国煤炭工业的面貌,降低了工人的劳动强度,提高了产量、劳动生产率和企业效益,满足了国民经济建设对煤炭的需求,合理的集中生产简化了生产系统,提高了生产安全性。我国综采技术发展的30多年,使我国的煤炭生产技术水平跨进了世界先进行列,综放技术跃居世界领先地位。工作面支护问题始终是困扰煤矿生产安全、产量和效率的重要问题。以液压支架为主要设备的综合机械化采煤(以下简称综采)的诞生和发展是煤矿生产发展史上的一次重大革命。不仅从根本上改善了劳动和安全条件,也为工作面产量和效率的迅速提高奠定了基础。但是综采设备初期投资高,特别是液压支架占综采设备总投资约60%,因此液压支架的合理选用特显重要。30多年来在液压支架技术不断发展中,形成了以煤科总院专业研究所和骨干支架制造厂设计所为主的支架研究设计队伍,采用计算机CAD进行各种类型支架的设计,用有限元计算软件等进行计算,并普及计算机绘图。我国制订的缓倾斜工作面顶板分类及其它研究成果为支架设计、选型和使用提供了有力的指导依据。制造方面形成以原部属专业制造厂为主、机械工业部及船舶制造总公司等专业厂为辅的制造体系,以及以国家煤矿支护设备质量检测中心为骨干的检测队伍。制定有关支架检测标准11项,建立了各项支架检测手段,造就了一支研究、制造和使用液压支架的庞大队伍;形成了研制液压支架的雄厚基础。不仅能满足国内的需要,还向美国、俄罗斯、土耳其和印度等国家出口液压支架或成套综采设备。为适应我国煤矿综采机械化的发展,国内综采设备科研设计和制造企业已研制开发出具有较先进技术水平的大功率电牵引采煤机、重型刮板输送机、电液控制强力液压支架和多点驱动大运力带式输送机。配套设备的生产能力达到15002 500 t/h, 在适宜的煤层和矿井条件下,综采工作面可实现年产300万吨以上。 新型矿用单体支护设备,采用悬浮式液压技术原理,生产矿用单体支护设备,技术水平达到了国际领先水平,填补了国际空白。DWX型液压支柱的柱塞悬浮,密封胀紧,密封补偿,无内泄漏、无圆弧焊缝等技术和安全特点,具有独创性。新型矿用单体支护设备的诞生,消除了五十年来国内外单体支护设备一直存在的内泄漏和圆弧焊缝脆断等安全隐患问题。解决了深部煤矿开采冲击地压条件下回采工作面顶板支护的关键技术,结束了由德国人发明的第二代单体支护设备的历史,开创了中国人发明的第三代单体支护技术设备的历史,并将会长期使用下去。该产品普遍适用于煤矿回采工作面的顶板支护和端头支护,可广泛应用于薄煤层、中厚煤层及较厚煤层工作面,是煤矿的重要支护设备。近10年来主要的发展趋势是向两柱掩护式和四柱掩护式架型发展,架型结构进一步完善,设计方法更先进,参数向高工作阻力、大中心距发展。液压支架另一重大突破是控制系统,应用电液控制技术,采用电磁控制的先导阀,先进可靠的压力和位移传感器,灵活自由编程的微处理机技术,红外线遥感技术等现代科技成果,使液压支架的动作自动连续进行,移架速度大大提高,支架循环时间达到68s。我国自1973年开始大规模引进德国、英国等国家的综采设备,经历了消化、吸收和改进提高的过程,到目前已形成了较完整的设计、制造和科研体系,掩护式液压支架的制造和采煤技术已有长远发展。1.2本课题的研究目的和意义采用综合机械化采煤方法是大幅度增加煤炭产量、提高经济效益的必由之路。为了满足对煤炭增长的日益需要,必须大量生产综合机械化采煤设备,迅速增加综合机械化采煤工作面。由于采煤工作面的底顶板条件、煤层厚度、煤层的物理机械性质等的不同,对液压支架的要求也不同。为了有效的支护和控制顶板,必须设计出不同类型和不同结构尺寸的液压支架。因此液压支架的设计工作是很重要的。由于液压支架的类型很多,因此其设计工作量也是很大的,由此可见,研制和开发新型液压支架是必不可少的一个环节。通过对液压支架的理论学习,完成液压支架的设计工作,加深对液压支架工作原理、工作性能、工作环境及其结构的认识和了解。通过对液压支架结构的分析,加深和巩固机械原理的相关内容;通过对液压支架受力的分析和强度的校核,加深对专业基础课理论力学和材料力学及专业课机械设计相关内容的巩固和理解。同样通过对液压支架的设计,能够更好的认识国内外液压支架的发展趋势和发现目前煤矿液压支架主要存在的问题,从而为以后更深认的了解和设计液压支架打下良好的基础。通过自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。现代社会对人才提出了更高的要求,作为一名当代大学毕业生,不仅打好坚实的专业知识,还应具备工程技术人才应有的综合素质。为了适应这一发展趋势,我们应立足变传统的、僵化的、单纯的毕业设计为培养主动学习、提高创新能力、树立团结协作精神、强化计算机运用等多维兼容性毕业设计;同时通过完成毕业设计,锻炼学生解决实际工程问题的能力;在整个毕业设计的过程中,以我们的主动学习为主,教师适时指导为辅;将素质教育也毕业设计教学相融合,从根本上提高毕业设计的质量和水平 。2液压支架基本理论分析 本课题设计ZY3200/15/35取支架为2柱2.1 液压支架的工作原理液压支架在工作过程中,不仅要可靠的支撑顶板,维护一定的安全工作空间,而且要随工作面的推进,进行移架和推移输送机。因此,支架要实现升、降、推、移四个基本动作,这些动作是利用泵站供给的高压液体,通过工作面性质不同的几个液压缸来完成的,如图2.1所示。图2.1 液压支架工作原理1顶梁;2立柱;3推移千斤顶;4安全阀;5单向筏; 6、7操纵阀; 2.1.1 支架升降当操作阀处于升柱位置时,从乳化液泵站来得高压液体通过操纵阀液控单向阀5进入立柱2的下腔,立柱上腔回液,支架升起,并撑紧顶板。当操纵阀处于降柱位置时,工作液体进入立柱的上腔,同时打开液控单向阀,立柱下腔回液,支架下降。 2.1.2支架推移支架的前移和推移输送机是通过操纵阀和推移千斤顶3来进行的。移架时,先使支架卸载下降,再把操纵阀置于移架位置,从乳化液泵站来的高压液体进入推移千斤顶的前腔即活塞杆腔,后腔即活塞腔回液。这时,支架以输送机为支点前移。移架结束后,再把支架升起,使支架撑紧顶板。若将操纵阀置于推溜位置,高压液体进入推移千斤顶后腔即活塞腔,前腔即活塞杆腔回液,这时输送机以支架为支点被推向煤壁。 2.1.3 支架承载过程 支架的承载过程是指支架与顶板之间相互力学作用的过程,它包括初撑、承载增阻和恒阻三个阶段。(1) 初撑阶段在升架过程中,当支架的顶梁接触顶板,直到立柱下腔的液体压力逐渐上升到泵站工作压力时,停止供液,液控单向阀6立即关闭,这一过程为支架的初撑阶段。此时支架对顶板的支撑力为初撑力。(2) 承载增阻阶段支架初撑结束后,随着顶板的下沉,立柱下腔的液体压力逐渐升高,支架对顶板的支撑力也随之增大,呈现增阻状态,这一过程为支架的承载增阻阶段。(3) 恒阻阶段随着顶板压力的进一步增加,立柱下腔的液体压力越来越高,当升高到安全阀5的调定压力时,安全阀打开溢流,立柱下缩,液体压力随之降低。当降到安全阀的调定压力时,安全阀关闭。随着顶板的继续下沉,安全阀重复这一过程。由于安全阀的作用,支架的支撑力维持在某一恒定数值上,这是支架的恒阻阶段。此时,支架对顶板的支撑力成为工作阻力,它是由支架安全阀的调定压力决定的。对于掩护式和支撑掩护式支架,其初撑力和工作阻力的计算还要考虑到立柱倾角的影响因素。 图2.2 支架的工作特性曲线由上可知,支架工作时,其支撑力与时间的关系,可用支架工作特性曲线表示,如图 所示,曲线上的、t2分别表示支架的初撑、增阻、和恒阻阶段的时间。上述工作过程表明:支架在达到额定工作阻力以前具有增阻性,以保证支架对顶板有效的支撑作用;当支架达到额定工作阻力以后,支架能随顶板的下沉而下缩,即具有可缩性和恒阻性,支架的工作特性决定于立柱、液控单向阀、安全阀和操纵阀的性能和密封的好坏。所以这些元件是支架的关键液压元件通常液控单向阀和安全阀组合在一起,称为控制阀。支架的工作阻力是支架的一个重要参数,它表示支架支撑力的大小。但是,由于支架的顶梁长短和间距大小不同,所以并不能完全反映支架对顶板的支撑能力。因此,通常单位支护面积顶板上所受支架工作阻力值的大小,即支护强度来表示支架的支护性能。即 (式2.1)式中 支架的支护面积,2.2 液压支架的类型和结构液压支架按其对顶板的支护方式和结构特点的不同,分为支撑式、掩护式和支撑掩护式三种基本架型。 2.2.1 支撑式支架支撑式支架是出现最早的一种架型,按其结构和动作方式的不同,支撑式支架又分为垛式支架和节式支架两种结构型式。垛式支架每架为一整体,与输送机联接并互为支点整体前移。节式支架由23个框节组成,移架时,各节之间互为支点交替前移,输送机用与支架相连的推移千斤顶推移。节式支架由于稳定性差,现已基本淘汰。支撑式支架的结构特点是:顶梁较长,其长度多在4左右;而且立柱多,一般46根,且垂直支撑;支架后部设复位装置和挡矸装置。以平衡水平推力和防止矸石窜入支架的工作空间内。支撑式支架的支护性能是:支撑力大,且作用点在支架后部,故切顶性能好;对顶板重复支撑的次数多,容易把本来完整的顶板压碎;抗水平载荷的能力差,稳定性差;护矸能力差,矸石易窜入工作空间;支架的工作空间和通风断面大。由上可知,支撑式支架适用于直接顶稳定、老顶有明显或强烈周期来压,且水平力小的条件。 2.2.2 掩护式支架掩护式支架的结构特点是:有一个较宽的掩护梁以挡住采空区的矸石进入作业空间,其掩护梁的上端与顶梁铰接,下端通过前后连杆与底座连接。底座、前后连杆和掩护梁形成四连杆机构,以保持稳定的梁端距和承受水平推力。立柱的支撑力间接作用于顶梁或直接作用于顶梁上。掩护式支架的立柱较少,除少数掩护式支架1根立柱外,一般都是一排2根立柱。这种支架的立柱都为倾斜布置,以增加支架的调高范围,支架的两侧有活动侧护板,可以把架间密封。通常顶梁较短,一般为3.0mm左右。掩护式支架的支护性能是:支撑力较小,切顶性能差,但由于顶梁短,支撑力集中在靠近煤壁的顶板上,所以支护强度较大、且均匀,掩护性好,能承受较大的水平推力,对顶板反复支撑的次数少,能带压移架。但由于顶梁短,立柱倾斜布置,故作业空间和通风断面小。由上可知,掩护式支架适用于顶板不稳定和中等稳定、老顶周期来压不明显、瓦斯含量少的破碎顶板条件。 2.2.3 支撑掩护式支架支撑掩护式支架是在吸收了支撑式和掩护式两种支架优点的基础上发展起来的一种支架。因此,它兼有支撑式和掩护式支架的结构特点和性能,可适用于各种顶底板条件。支撑掩护式支架的顶梁由前梁与主梁构成,四根立柱支撑在顶梁和立柱之间,掩护梁的上端与顶梁铰接,下端用连杆与底座相连。这种支架的优点是:支撑力大,切顶性能强,防护性能好,通风断面大,稳定性好,应用范围广。它的主要缺点是:结构复杂,成本较高。支撑掩护式支架的立柱均为两排,立柱可前倾和后倾。也可倒八字形布置和交叉布置。通常,两排立柱都直接支撑在顶梁上,个别情况下,也有后排立柱支撑在掩护梁上而前排立柱支撑在顶梁上。 2.2.4 特种液压支架特种液压支架是为满足某些特殊要求而发展起来的液压支架,在结构型式仍属于上述某种基本架型。2.3 对液压支架的基本要求1. 为了满足采煤工艺及地质条件的要求,液压支架要有足够的初撑力和工作阻力,以便有效地控制顶板,保证合理的下沉量。2. 液压支架要有足够的推溜力和移架力。推溜力一般为100左右;移架力按煤层厚度而定,薄煤层一般为100kN150kN,中厚煤层一般为150kN 250kN,厚煤层一般为250kN 400kN。3. 防矸性能要好。4. 排矸性能要好。5. 要求液压支架能保证采煤工作面有足够的通风断面,从而保证人员呼吸、稀释有毒气体等安全方面的要求。6. 为了操作和生产的需要,要有足够宽的人行道。7. 调高范围要大,照明和通讯方便。8. 支架的稳定性要好,底座最大比压要小于规定植。9. 要求支架有足够的刚度,能够承受一定的不均匀载荷和冲击载荷。10. 在满足强度条件下,尽可能减轻支架重量。11. 要易于拆卸,结构要简单。12. 液压元件要可靠。2.4支架的选型设计 2.4.1设计的原始条件煤层厚度:H1.83.2米;顶设条件老顶II级、直接顶II级,底板平整,无影响支架通过的断层。工作面配套设备:采煤机:MXA-300/3.5,刮板输送机:SGZ730/320。煤层倾斜角小于15度,支护强度、底板抗压强度、泵站压力、安全阀调定压力40MPa。 2.4.2支架的支护性能与外载荷由液压支架的工作状态知,支架承受的外载荷是顶板下沉形成的。在顶板下沉过程中,支架的顶梁与顶板有相对滑动的现象,支架不仅受有垂直于顶梁的力,还受有平行于顶梁的摩擦力。垂直于顶梁的力由支架的工作阻力来平衡。在支架承载过程中,支架底座承受工作面底板反作用力。 为了设计计算方便,要对支架的外载荷和支架本身进行简化,概述如下:把支架简化成一个平面杆系结构。为偏于安全,在计算时把外载荷视为集中载荷;金属结构件按直梁理论计算;顶梁、底座与顶底板被认为均匀接触,载荷沿支架长度方向按线性规律分布,沿支架宽度方向为均布;通过分析和计算可知,掩护梁上矸石的作用力,只能使支架实际支护阻力降低所以,在进行强度计算时不计,使掩护梁偏于安全;立柱和短柱按最大工作阻力计算;产生作用在顶梁上的水平力的情况有两种,是由于支架让压回缩,顶梁前端点运动轨迹为近似双纽线,顶梁与顶板间产生相对位移,顶板给予顶梁水平摩擦力,另一种是由于顶柜向采空区方向移动,使支架顶梁受一指向采空区的水平摩擦力。顶梁和顶板的静摩擦系数W,一般取0.150.3;按不同支护高度时各部件最大受力值进行强度校核。 2.4.3 影响架型选择的因素(1) 煤层厚度煤层厚度不但直接影响到支架的高度和工作阻力,而且还影响到支架的稳定性。当煤层厚度大于2.52.8m(软煤取下限,硬煤取上限)时,应选用抗水平推力强且带护帮装置的掩护式或支撑掩护式支架。当煤层厚度变化较大时,应选用调高范围大的支架。(2) 煤层倾角煤层倾角主要影响支架的稳定性,倾角大时易发生倾倒、下滑象。当煤层倾角大于1015时,应设防滑和调架装置,当倾角超过18时,应同时具有防滑防倒装置。(3) 底板性质底板承受支架的全部载荷,对支架的底板影响较大,底板的软硬和平整性,基本上决定了支架底座的结构和支承面积。选型时,要验算底座对底板的接触比压,其值要小于底板的允许比压(对于砂岩底板,允许比压为1.962.16MPa,软底板为0.98MPa左右)。(4) 瓦斯涌出量对于瓦斯涌出量大的工作面,支架的通风断面应满足通风的要求,选型时要进行验算。(5) 地质构造地质构造十分复杂,煤层厚度变化又较大,顶板允许暴露面积和时间分别在58和20min以下时,暂不宜采用液压支架。(6) 设备成本在满足要求的前提下,应选用价格便宜的支架。 2.4.4 支架架型的确定从架型的结构特点来看,由于架型的不同,它的支撑力分布和作用也不同;从顶板条件来看,由于直接顶类别和老顶级别的不同,支架所承受的载荷也不同。所以,为了在使用中合理地选择架型,要对支架的支撑力、采煤高度与承载的关系进行分析,使支架的支撑力能适应顶板载荷的要求。根据煤层厚度1.83.2米,属于中厚煤层。支架的适应高度为1.53.5米煤质条件老顶II级、直接顶II级,底板平整,无影响支架通过的断层,根据表2.1初步选定为掩护式两柱液压支架。老顶级别直接顶类别12312312344支架类型掩护式掩护式支撑式掩护式掩护或支撑掩护式支撑式支撑掩护式支撑掩护式掩护或支撑掩护式掩护或支撑掩护式支撑式采高小于2.5m时支撑掩护式采高大于2.5m时支架支护强度MPa采高m10.2941.30.2941.60.29420.249应结合深孔爆破,软化顶板等措施处理采空区20.343(0.245)1.30.343(0.245)1.60.34320.34330.441(0.343)1.30.441(0.343)1.60.44120.44140.539(0.441)1.30.539(0.441)1.60.53920.539表2.1支架架型的选择 注:括号内的数字是掩护式支架的支护强度。表中所列支护强度在选用时,可根据本矿情况允许有%的波动范围。表中1.3、1.6、2分别为、级老顶的分级增压系数;级老顶给出最低值2,选用时可根据本矿实际确定适宜值。 3 液压支架的整体结构设计3.1 支架高度、中心距的确定 3.1.1支架高度的确定 支架高度的确定原则,应根据所采煤层的厚度,采区范围内地质条件的变化等因素来确定,其最大与最小高度为: (式3.1) (式3.2)煤层最大采高,煤层最小采高伪顶冒落的最大厚度,一般取0.20.3m顶板最大下沉量,一般取100200mm移架时支架的最小可缩量,一般取50mm矸、浮煤厚度,一般取50mm本设计采高1.83.2m,取支架高度为1.53.5m 3.1.2支架伸缩比支架的伸缩比指最大与最小支架高度之比值为: (式3.3)代入数据得m=2.33。 3.1.3支架间距 所谓支架间距,就是相邻两支架中心线间的距离。按下式计算: (式3.4)式中: 支架间距(支架中心距);每架支架顶梁总长度;相邻支架(或框架)顶梁之间的间隙;n每架所包含的组架的组数或框架数,整体自移式支架。支架间距要根据支架型式来确定,但由于每架支架的推移千斤顶都与工作面输送机的一节溜槽相连,因此目前主要根据输送机溜槽每节长度及帮槽上千斤顶连结块的位置来确定,我国刮板输送机溜槽每节长度为1.5m,千斤顶连结块位置在溜槽中长的中间,所以除节式和迈步式支架外,支架间距一般为1.5m。本次设计取支架的中心距为1.5m。3.2底座长度的确定 3.2.1底座长度底座是将板压力传递到底板和稳固支架的部件。在设计支架的底座长度时,应考虑如下诸方面:支架对底板的接触比压要小;支架内部应有足够的空间用于安装立柱,液压控制控制装置、推移装置和其他辅助装置;使于人员操作相行走,保证支架的稳定性等。通常,掩护式支架的底座长度职3.5倍的移架步距(一个移架步距为0.6m),即2.1m左右;支撑掩护式支架的底座长度取4倍移架步距,即2.4m左右。本次设计取底座长2.81m。 3.2.2 底座宽度支架底座宽度一般为1.11.2m。为提高横向稳定性和减小对底板比压,厚煤层支架可加大到1.3m左右,放顶煤支架为1.31.4m。底座中间安装推移装置的槽子宽度与推移装置的结构和千斤顶缸径有关,一般为300380mm。宽度取1350mm。3.3四连杆机构的设计 3.3.1四连杆机构的作用与缺点1梁端护顶 鉴于四连杆机构可使托梁铰接点呈双纽线运动,故可选定双纽线的近似直线部分作为托梁铰接点适应采高的变化范围。这样可使托梁铰接点运动时与煤壁接近于保持等距,当梁端距处于允许值范围之内时,借此可以保证梁端顶板维护良好。2挡矸 鉴于组成四连杆机构的掩护梁既是连接件,又是承载件,为了承受采空区内破碎岩石所赋予的载荷,掩护梁一般做成整体箱形结构,具有一定强度。由于它处在隔离采空区的位置,故可以起到良好的挡矸作用。3抵抗水平力 观测表明:综采面给予支架的外载,不但有垂直于煤层顶板的分力,而且还有沿岩层层面指向采空区方向(或指向煤壁方向)的分力,这个水平推力由液压支架的四连杆机构承受,从而避免了立柱因承受水平分力而造成立柱弯曲变形。4提高支架稳定性 鉴于四连杆机构将液压支架连成一个重量较大的整体,在支架承载阶段,其稳定程度较高。四连杆机构在具有以上诸作用的同时,也有一些缺点。首先,支架在工作过程当中,四连杆机构必须承受很大的内力,从而导致支架结构尺寸的加大和重量的增加;其次,由于四连杆机构对顶板产生一个水平力(又称水平支撑力),因此对支架的工作性能将产生不良影响。 3.3.2 四连杆几何特征(1)支架在最高位置时,=5262,即:0.911.08弧度;=7585即1.311.48弧度;支架在最低位置时,保证。(2)后连杆与掩护梁的比值,掩护式支架为I =0.450.61;支撑掩护式为I = 0.610.82。(3)前后连杆上绞点之距与掩护梁的比值为0.220.3。(4)点的运动轨迹呈近似双纽线,支架由高到低双纽线运动轨迹的最大宽度mm以下。(5)支架在最高位置时的应小于0.35,在优化设计中,对支撑掩护式支架最好应小于0.16。 3.3.3.四连杆机构各部尺寸的确定四连杆机构各部参数如图3.1所示,图中的为支架在最高位置时的计算高度。令:=; =; =; =; =; =; =; =;=; ;=图3.1四连杆机构参数图1、四连杆的作用四连杆机构是现代液压支架主要的稳定机构,其主要作用是保证支架纵向和横向的稳定性;承受和传递载荷以及保持液压支架的整体刚度等。对于四连杆的选择形式,大多数都是采用前整体后单的形式,这样可以增加尾部的空间。具有四连杆机构的液压支架从问世以来,经过长期的实践考验,显示出巨大优越性,并从根本上克服了支撑式支架稳定性和力学持性的缺陷,成为液压支架技术发展史上的一个重要里程碑。现代掩护式和支撑掩护式支架都用前后连杆把掩护梁和底座连结在一起,这样组成的双摇杆四连杆机构可使支架升降时保持比较稳定的梁端距,即要求掩护梁和顶梁的铰接点的运动轨迹近似为一条直线,故称底座、前连杆、后连杆和掩护梁组成的机构为近似直线机构,从而得到一个近似相等的端面距,以提高管理顶板性能,使支架能承受较大的水平力。液压支架升降时,顶梁的运动轨迹是由四连杆机构决定的,既有顶梁与掩护梁的铰点E的轨迹所决定,其轨迹如图3.2所示:图3.2升降柱运动轨迹2、支架四连杆机构的运动轨迹支架在最大高度和最小高度范围内运动时,E点的运动轨迹呈3种形式:双向摆动(ABCD段)、单向向后摆动(BC段)和单向向前摆动(AB段和CD段)。选择不同的四连杆参数可以使E点轨迹处于上述3种曲线段。支架工作时,受到顶板载荷的作用,有下缩趋势。当E点轨迹处于AB段时,顶梁相对于顶板有向煤壁移动的趋势,顶板对顶粱的摩擦力指向采空区侧。当E点轨迹处于BC段时,顶梁相对于顶板有向采空区移动的趋势,此时顶板对顶梁的摩擦力指向煤壁。当顶板运动趋势超过支架运动趋势时,顶梁与顶板间的摩擦力方向将取决于顶板的运动趋势。从顶板管理方面分析,顶梁向煤壁方向移动比顶梁向采空区方向移动有利。前者对于保持粱端顶板处于挤压状态有利,而后者容易导致顶板产生离层或断裂,造成顶板断裂线前移或梁端冒顶。因此,合理设计四连杆参数使支架工作段内,E点轨迹处于AB段比较理想,但对于调高范围大的支架,要达到要求是困难的。然而,由于四连杆销孔间隙的作用,使E点实际运动轨迹与上述理论轨迹不完全相同。为了保持支架梁端距的稳定,一般应控制梁端摆动幅度 3080mm。液压支架的纵向稳定性完全是由四连杆机构决定的,而不取决于立柱的多少。液压支架实际受力状态十分复杂,经常受到非对称载荷和横向载荷的作用,保持支架横向稳定性和整体刚性十分重要。如图示支架立柱为二力构件,不具有承受较大横向载荷的能力。支架的横向载荷只能靠四连杆机构承受。3、四杆机构之间的关系掩护式和支撑掩护式支架的四连杆机构都是双摇杆机构。双摇杆机构形成的条件是:最短杆C和最长杆之和小于其余两杆长度之和,而最短杆为上连杆(掩护梁),最短杆的对边a为固定杆(底座),即: Cb。在J点作角,再取JC一定长度与HC交于C点,C点作为后连杆和掩护梁的铰接轴。 4)以J为圆心,JC为半径画一圆弧。以I为圆心,以HC的长度为半径画圆弧与ab弧交于E点。C点和E点就是后连杆在支架为最小高度和最大高度时的极限位置。 5)在CH上取一长度CD,必须使CDDC,这样CD就是最短杆。而且要使CDDGCJJG. 于是G点成为前连杆和底座的铰接轴。 7) IH之间的轨迹的校核。在CE弧内平均取几点,例如1、2、3点,依次的以1、2、3为圆心,以CD为半径画弧,与以G点为圆心GD为半径的FD弧交于点,连接、,并都给予延长得、点,使1=2=3CH。这样,I、所形成的曲线要接近直线。如果差别太大,要改变四连杆的尺寸或角度,以上述的过程画出IH间的轨迹,使近似于直线。 除要求水平偏移量不超过规定值外,对角的变化要求均匀。特别要注意在最大高度时,不要发生突变。角是连杆瞬时中心与掩护梁铰接轴的连线和顶梁延长线之间的夹角。 注意,CDH上的D点,可以不在CH连线上。确定掩护梁上铰点至顶梁顶面之距和后连杆下铰点至底座底面之距按同类型支架用类比法来确定得:掩护梁上铰点至顶梁顶面之距为160mm;后连杆下铰点至底座底面之距为400mm。 H1=3.5-0.56=2.94(m)H2=1.5-0.56=0.94(m)所的结果取整后得:U= 0.36 Q1= 78度 Q2= 18 度 P1=53度 P2=15度A= 858.6 B=500 C=1585 D=400 E= 970 G=2300 S=611 L=16613.4顶梁长度计算根据支架工作方式和设备配套尺寸来确定顶梁长度。 3.4.1支架工作方式对顶梁长度的影响支架工作方式对支架顶梁长度有很大影响。先移架后推溜方式(及时支护)要求顶梁有较大长度;先推溜后移架方式(滞后支护)要求顶梁长度较小。这是因为采用先移架后推溜的工作方式时,支架要超前输送机一个步距,以便采煤机过后,支架能及时前移,支控新暴露的顶板,做到及时支护,因此,先移架后推溜时顶梁长度要比先推溜后移架时的顶梁长度要长一个步距,一般为600 mm 。本次设计采用及时支护方式。 3.4.2顶梁长度计算 顶梁长度=配套尺寸+底座长度+Acos()-Gcos()+300+e+掩护梁与顶梁铰点至顶梁后端点之距 (式3.5)式中:底座长度底座前端至后连杆下铰点之距;支架由高到低顶梁前端点最大变化距离;、支架在最高位置时,分别为后连杆和掩护梁与水平面的夹角。采煤机:MXA-300/3.5,刮板输送机:SGZ-730/320。查综采设备手册得三机配套尺寸为:配套尺寸=671+1553=2224mm 代入相关数据得: 顶梁长度=2224+2100+1131cos(78)-2300cos( 53)300+65+100=2910mm顶梁的宽度:顶梁不仅必须满足支架的工作阻力的要求,还要使顶梁覆盖住顶板,以减少矸石的冒落。顶梁的覆盖率为顶梁面积与控制顶板面积比值的百分数,即 (式3.6) 式中 B顶梁宽度;l顶梁长度;j架间距;c顶梁前端到煤壁的距离;中等稳定顶板 ;一般j取100200mm。如果给定和j值,可以求出B值,即 (式3.7)取, =79% 、 j=200mm。顶梁宽度的决定,除用上式计算外,还要考虑到整体支架与一节溜槽长度相匹配的问题。故顶梁宽取1.4m。4支架主要部件的设计4.1支架主要部件的设计要求各部件设计要求要满足总体配套的要求,就是应满足采煤机、双输送机和支架配套的空间要求。各部件设计的基本要求:(1)四连杆机构应进行优化设计,使支架梁端距变化小,支架受力状态最佳,结构上既满足工作空间要求,又能承受足够的纵向、横向力及扭矩。(2)前梁由前梁千斤顶控制,可上下摆动15,与顶板保持良好的接触,维护机道上方顶板。挑梁是和前梁铰接的可翻转支护板,由防片帮千斤顶控制,可及时支护,并超过水平线上挑35,拉架时收回,还可在移架后支护煤壁,以防止片帮。(3)顶梁 顶梁是支架主要承受顶板压力的部件,并起切顶作用。它可多次反复支撑顶煤,以利于放煤。顶梁装有侧护板,活动侧装有千斤顶和弹簧,防止架间漏煤、矸及调节支架间距。(4)掩护梁受扭力和横向载荷力大,是十分重要的部件。(5)底座 底座是将支架承受的顶板压力和侧向力传至底板。它既要有足够的强度和刚度,又应满足底板比压不超限。保证支架整体稳定性的关键是在底座上铰接四连杆机构,在底座中间设置有推移装置,侧面设置拉后输送机的千斤顶和推移杆。(6)推移装置 此机构关系到支架能否正常推移,由千斤顶和推移杆组成。推移杆结构有长推杆或是由两部分短推移杆组成。(7)液压控制系统及立柱、千斤顶 液压系统由各液压件、管路系统组成,它应保证立柱、千斤顶完成支架要求的各种性能,并达到设计技术参数。4.2顶梁的设计图4.1 支架的顶梁顶梁前、后分别与前梁和掩护梁铰接,球面柱窝与立柱的活柱头相连。顶梁有铰接耳座与四连杆机构的上连杆联接,此外还设有所需千斤顶的耳座,如前梁、掩护梁千斤顶耳座。顶梁体箱式结构件的设计可根据总体受力分析,按不同支护高度时各部件最大受力值计算其强度。一般柱窝断面为最危险断面,断面安全系数n应大于1.1,同时要充分考虑各个铰接孔的挤压强度,以免孔受塑变拉长而损坏,特别是与上连杆铰接的耳座,一定要加大强度。侧护板与导杆连接的结构以长方形拉板为好,可以保证导杆与侧护板的连接强度。其机构与一般掩护式支架相同,梁体由钢板焊成箱式结构件,设计强度要求同上,安全系数n大于1.1,侧护板设计要考虑降架式不与邻架侧护板脱离接触。侧护板采用长方形拉板与导杆连接,支架工作阻力400吨以上时,侧推千斤顶采用内供液式,有利于保证梁体的焊接强度。本设计采用铰接式的顶梁,具体结构见图纸。4.3底座的设计 4.3.1液压支架的底座图4.2四连杆机构的底座底座为整体式刚性底座,四连杆机构铰接在底座前部(有的铰接在中部或后部),有两个球面柱窝与立柱缸底相连,底座中间布置有推移装置,侧面有拉后输送机千斤顶固定耳座。该底座整体性强,稳定性好,与底板接触面积大,比压小。由于四连杆机构在中部连接,使底座受力状态不好。上连杆与底座的铰接座为两突出的内主筋形成的箱体结构,应合理设计,使突变过渡处强度足够,呈圆弧状过渡,以免损坏。本设计采用整体式刚性的底座,具体结构见图纸。4.4支架技术参数和立柱的设计 4.4.1 支护面积支架的支护面积按下式计算:mm (式4.1)式中 支护面积,mm; 移架后顶梁前端点到煤壁的距离(),一般=0.3+将各数值代入公式(4.1)得支架的支护面积为:4.86m 4.4.2 支护强度支护强度的计算可借助表2.1,首先按表2.1根据老顶级别和直接顶类别确定支架架型,再根据老顶级别和采高确定支护强度。由于实际最大采高不一定正好和表2.1所列采高相同,所以要用插值法重新计算。 kN/ (式4.2)式中:当支架最大采高为时,支架应有的支护强度,kN/;在架型选样表2.1中与低于但与之相邻的采高相对应的支护强度;kN/; 在架型选择表2.1中与高于但与之相邻的采高相对应的支护强度,kN/;所对应的采高,m; 所对应的采高,m。根据表2.1将各数值代入公式得支护强度为:kN/支架理论支护阻力为:= (式4.3)代入数值得=2910kN 4.4.3 确定立柱的技术参数立柱缸径按下式进行计算: mm (式4.4)式中 立柱缸体内径,cm;支架承受的理论支护阻力,kN; kN每架支架立柱数;安全阀调整压力,MPa,按产品样本选取(或参考同类支架选取)。其中,YB型=40 MPa;Y型=3060 MPa;立柱最大倾角(度),(支架降到最低工作位置时,角最大)。 将各数值代入公式3.9得立柱缸径为:cm 按北京煤矿机械厂标准(Q/BM32782)表4.1选取比计算值大的标准值作为内径,再选取配合尺寸。表4.1 内径标准 单位:mm506380100110125140(145)160180200210220230250查表4.1,选=230mm,查表,选取配合尺寸为:外缸内径230mm,活柱外径210mm,工作阻力1800kN,额定工作压43.3 MPa,泵站压力31.4Mpa。取泵站额定工作压力( MPa)减去从泵站到支架沿程压力损失后的值为30 MPa,代入公式得立柱初撑力为:kN 4.4.4 安全阀压力与立柱工作阻力的确定1、立柱的工作阻力安全阀的调整压力,按选定后的立柱缸体内径和支架承受的理论支护阻力来确定。即 MPa (式4.5)式中的按下式计算: kN (式4.6)式中 支架在最高位置时立柱倾角,度; 将数据代入公式得为:kN 由公式得安全阀的调整压力为: MPaPa求出后,在选定一种动作压力与Pa相近的标准安全阀。此安全阀的动作压力即为支架安全阀的调整压力。取Pa=40MPa。立柱工作阻力按下式进行计算: kN (式4.7) 将各数值代入公式得立柱工作阻力为:kN表4.2支架工作阻力数值圆整标准(MT169-87)(kN)12001600200024002800320036004000440048005200560064007200800090001000012000圆整取支架工作阻力为3200kN,则P2=1600kN。2、最小导向长度的确定当活柱全部伸出时,从活塞导向环中点倒导向套中点的距离称为最小导向长度的H,如图4.3所示。如果导向长度过小,将使立柱的初折曲增大,影响立柱的强度和稳定性。因此在设计时,必须保证有一定的最小导向长度。一般要求满足下式。式中L立柱最大工作行程,L=1000mm缸筒内径,mm一般导向长度A,当缸内径,取活柱外径的0.61.0倍。活塞宽度B则取缸内径的0.61.0倍。C取缸内径的0.61.0倍。为了保证导向长度,过分增大导向套长度和活塞宽度都是不适宜的,最好在活塞上不装一个距离套,距离套的宽度有所需要的最小导向长度决定。图4.3立柱导向长度关系图1缸筒;2活塞;3导向环;4距离套;5导向套;6缸盖;7活柱3、缸底厚度计算掩护式和支撑掩护式支架立柱的缸底,一般在缸内做成平地,在缸外做成球面形,如图4-35所示。在直径(mm)处的底后可用下列公式计算:式中p缸内所能形成的最大压力,P=43.3MPa;缸底材料的许用应力,铸钢=100MPa。图4.4立柱缸底示意图4、缸体长度的确定液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体的外形长度还要考虑到两端端盖的厚度。一般液压缸的缸体长度不应大于内径的2030倍。 4.4.6支护效率整台支架的工作阻力是由立柱工作阻力产生的。对于掩护式支架而言,用支护效率来评价立柱工作阻力转为支架工作阻力的有效程度,效率按下式计算: (4.8)值与支架的架型、结构尺寸和支架高度有关,值过大或过小都不好。 由于支架的工作阻力由立柱工作阻力之和的垂直分力及掩护梁和前、后连杆来承担,而立柱的工作阻力之和不变,当值过大,说明掩护梁和前、后连杆受载增加,对掩护梁和前、后连杆不利;当值过小,说明立柱的工作阻力不能充分发挥。一般要求在支架工作段内,掩护式支架由于立柱倾角较大,值应大于90%以上。故满足要求。 4.4.7 底座接触比压顶板对支架的巨大载荷有整台支架传到底板,在支架底座与底板接触处将具有一定的比压。由于底板岩性不同,含水量不同等因素,使底板具有不同的抗压强度。则在设计支架时,应验算底板的比压。 (式4.9) 则平均接触比压为: (式4.10)式中 平均接触比压;支架工作阻力;B底座与底板的接触宽度;L底座与底板的接触长度。结论:该底座比压在允许范围内。4.5立柱柱窝位置和受力计算立柱是液压支架的主要承载与高度调节件。它除了要具有较高的承载能力外,还应有较大的伸缩行程,以满足支架工作高度的要求。在厚煤层开采中,为了增大支架对煤层厚度变化的适应性,常需使支架的伸缩比较大。此时,单伸缩立柱就难以满足要求。虽然采用在支架上装设机械加长杆的方法,在一定程度上可以扩大其调高范围。但机械加长杆在安装后就成为固定活塞杆,需要调节时装拆比较困难。目前,在国内外一些大高度的新型支架上日益采用伸缩式立柱。本设计采用单伸缩加长杆立柱结构。 4.5.1立柱布置1)立柱数,本课题设计3200/15/35取支架为2柱。2)支撑方式:掩护式支架为倾斜布置,这样可克服一部分水平力,并能增大调高范围。一般立柱轴线与顶两的垂线夹角小于(支架在最低工作位置时),由于角度较大,可是调高范围增加。同时又与顶梁较短,立柱倾角较大可以使顶梁柱窝位置前移,是顶梁前端支护能力增大。 4.5.2立柱柱窝位置的确定液压支架立柱上柱窝位置的确定原则,从理论上分析,要使顶梁支撑力分布与顶板载荷分布一致。但顶板载荷复杂,分布规律因支架顶梁与顶板的接触情况而异。为简化计算,假定顶梁与顶板均匀接触,载荷沿顶梁长度方向按线性规律变化,沿支架宽度方向均布。把支架的空间杆系结构,简化成平面杆系结构。同时为偏于安全,可以认为顶梁前端载荷为零,载荷沿顶梁长度方向向后越来越大呈三角形分布,并按集中载荷计算。所以,支架支撑力分布也为三角形,以此计算立柱上柱窝位置。此时认为支架顶梁承受集中载荷在顶梁1/3处,取顶梁为分离体,受力情况如图4.4所示。对A取距,可算得x 图4.5 顶梁受力分析 (式4.11)式中:x立柱上柱窝至顶梁和掩护梁铰点之距;支架支护阻力; q支架最大支护强度; 支护面积;Lg顶梁长度; 支护工作阻力之和;顶梁和掩护梁铰点至顶梁顶面之距;立柱上柱窝中心至顶梁顶面之距;立柱在最高位置时的倾角。由前面的计算可知道q598.78kN/ =2910kN Lg=2.91m =2=3200kN =0.26m =0.16m =15度代入得x=800mm 由立柱倾角可得下柱窝位置。4.6 千斤顶技术参数的确定 4.6.1推移千斤顶推移千斤顶选用框架推移方式,则其缸体内径为: mm (式4.12)式中 推移千斤顶的移架力,kN。在薄煤层中=100150 kN;中厚煤层中=150250 kN;厚煤层中=300400 kN。由于是中厚煤层,所以取=150 kN,代入公式得推移千斤顶缸体内径为: mm由以上计算出来的推移千斤顶的缸体内径,再按表4.3选取标准值:缸径(mm)1601401251008063杆径(mm)14010085100857070(63)50454540泵压(MPa)32.6推力(kN)63349039224515798拉力(kN)1500382445234304284127157981084858推荐材料规格(mm)缸19422168201461412114102148311杆15217105元钢95元钢110105元钢95元钢85元钢8085元钢70元钢表4.3 推移千斤顶缸、杆配合关系 经查表,选用标准缸径为80mm。推移千斤顶的行程与推移步距有关,当推移步距为600mm时,推移千斤顶的行程为700750mm,按液压缸行程系列表选用700mm。 4.6.2平衡千斤顶在顶梁上位置的确定 (1)参考液压支架技术表千斤顶缸径、活塞杆径与工称载力匹配关系选取平衡千斤顶缸径160,推力/拉力()633/454。取顶梁为分离体如图所示,对a点取距有:图4.6顶梁受力图 (式4.13) 平衡千斤顶推力/拉力W 顶板与顶梁之间的摩擦系数,计算时取0.3支架在最高位置时立柱倾角支架在最高位置时平衡千斤顶倾角为保证平衡千斤顶与掩护梁不发生干涉,保证支架在不同高度时平衡千斤顶与掩护梁平行,可以取在最高位置时顶梁上平面与掩护梁的夹角。为保证平衡千斤顶与掩护梁不发生干涉,按下式计算 (式4.14)式中: 掩护梁厚度() 平衡千斤顶外径() P平衡千斤顶外径与掩护梁间之间隙,一般取0.030.05() L2平衡千斤顶上铰点至顶梁和掩护梁铰点之距平衡千斤顶受拉力时,取x=0.27Lg 平衡千斤顶受推力时取x=0.35Lg以上参数具体数值如下表,将数据代入得L2=0.322m表4.4 计算平衡千斤顶各种参数W32006334540.315531602600.35L0.27LL4Db6118001018.5785.76702201601661(2)平衡千斤顶的行程计算为了防止平衡千斤顶的耳环或平衡千斤顶本身背被拉坏,对平衡千斤顶的行程有如下要求:当支架在最高位置时,顶梁能下摆15度;支架在最低位置时顶梁能上摆10度,或顶梁和掩护梁近似180度。为简化计算,取如下两种情况:假设平衡千斤顶的活塞杆全部伸出时顶梁和掩护梁成180度;平衡千斤顶的活塞全部缩回时,支架恰好在最高位置。当支架在最高位置时,平衡千斤顶达到最小长度L4,如图4.7所示 图4.7平衡千斤顶最短位置 (式4.15)上式中X由下式进行计算 (式4.16) 当顶梁和掩护梁成180度时,平衡千斤顶达到最大长度L5,如图4.8所示。 行程 ()查表液压活塞行程系列表取 图4.8平衡千斤顶最长位置(3)平衡千斤顶在掩护梁上位置的确定 平衡千斤顶的行程确定后,即可确定它在掩护梁上的位置,如图4.8 (4.17) 式中 -当活塞全部缩回时,缸体上铰点之活塞上部之距,如图4.8所示。对于掩护型支架, =209。 -当活塞杆全部缩回时,活塞杆铰点之活塞杆腔出油孔中心线之距,对于掩护式支架,=141。 4.6.3侧推千斤顶位置的确定侧推千斤顶伸出时,使活动侧护板外移,可密闭架间间隙,起到防矸、导向、防倒和调架等作用;侧推千斤顶缩回时,使活动侧护板回缩,可减少移架阻力。1. 侧推千斤顶控制方式(1)无锁紧回路且在不操作时,侧推千斤顶处于浮动状态,靠弹簧筒的弹簧力控制活动侧护板与邻架的间隙。防止顶板岩石从架间冒落,移架时摩擦阻力小。其中ZYZ型掩护式支架每个弹簧筒的弹簧力为6.2KN,QY型掩护式支架每个弹簧筒的弹簧力为17.2KN。这种结构的缺点在于防矸、防倒效果与弹簧式差不多。(2)有锁紧回路时,用液控单向阀锁紧。优点为防矸、防倒效果好。缺点在于移架时要操纵千斤顶,使移架操作复杂化,而且架间易掉矸。2. 侧推千斤顶位置布置由于顶梁在顶板载荷作用下,要求侧推千斤顶的推拉力大,才能灵活操纵顶梁侧护板。因此在顶梁上一般布置两个侧推千斤顶,两个弹簧筒。在掩护梁上一般仅在中间一个侧推千斤顶,两端各对称布置一个弹簧筒。由于在顶梁和掩护梁上焊有横筋板,则侧推千斤顶的安装位置要与横筋板相适应。一般为对称布置,这样可以使侧护板受力平衡。具体布置方式有如下三种:二孔式采用两个侧推千斤顶,在侧推千斤顶处同时布置弹簧筒,靠弹簧力实现架间密封。三孔式中间孔安装侧推千斤顶,两侧对称安装弹簧筒。四孔式中间两孔安装侧推千斤顶,侧面两孔布置弹簧筒。第5章 三维参数化建模 随着科技的发展,单一使用二维CAD技术进行液压支架设计已不能满足现代设计的需求。在科研人员到各煤矿和生产厂家进行方案汇报、项目招标的过程中,利用Pro/ENGINEER Wildfire 5.0软件建立的支架三维实体模型和运动仿真分析,将支架的每一个部件结构,每一层装配关系,各种运动轨迹都清晰、直观的显示出来,从视觉上带给客户更感性的认识,收到了很好的效果。现阶段比较有代表性、应用广泛的三维CAD软件有:美国PTC公司的Pro/ENGNEER Wildfire、DRC公司的i-deas、SOLIDWORKS公司的solidworks、EDS公司的solid edge、北航海尔的caxa。其中Pro/ENGINEER Wildfire 5.0是windows平台下基于特征的参数化造型技术和变量化造型技术的三维实体造型系统,具有杰出的机械装配设计和制图性能,能够方便地与windows平台下其它应用软件进行数据转换和链接操作。Pro/ENGINEER Wildfire 5.0强大的建模功能可以完成任何复杂的造型设计和装配设计,其工程图模块可以将零件环境、装配环境中生成的各类零件、装配件等实体进行投影,生成符合制图标准的二维工程图,极大地方便了液压支架零部件的设计,因此确定采用Pro/ENGINEER Wildfire 5.0软件来进行液压支架三维实体的建模。5.1 液压支架建模与装配的目的Mechanism(机构动力学分析)模块是PRO/E软件中包含的一个运动分析和仿真模块,该模块即可实现对机构的定义、建立零件之间的连接及装配自由度,对输入轴添加相应的电机驱动产生设计要求的运动,又可以在分析机构运动时观察和记录分析仿真过程的一些测量值,如位置、速度、和加速度等,还可以进行运动干涉检查和运动轨迹显示等。创建三维模型,不仅仅是为了造型,更多的是为了今后使用方便如设计的修改和调整、虚拟装配、动力学分析、运动分析等。一般对于开发性设计来说,造型的近期目标就是为了修改。具体到支架设计,由于每次设计所需要的支护强度个不相同,所以设计的支架模型在完成机构运动学目标后,还要通过强度验算同时确保支架总重量不超过一定数值,因此支架模型只有在通过强度验算合格和总重量不超标的情况下才能正式确定下来。也可以说,在设计时,修改零件模型是必可缺少的。这就要求创建零件造型结构完整,尺寸和几何约束齐全、正确,以便在今后的零件设计过程中,随时可以方便地对不合理的结构做出修改。 要明确零件造型的目的:在不影响零件的基本特征和受力的情况下,某些细小特征(如较小的圆角和倒角)可以忽略,还可以将有关部件直接绘成一个零件模型,减少模型储存量及缩短模型再生时间,从而提高了工作效率。要明确装配的目的:装配是运动仿真的基础,装配的好与坏直接影响到运动仿真的进行,只有在模型装配好之后才能进行运动仿真。5.2 液压支架的三维实体建模对液压支架整机的三维实体建模一般采用自下向上的方法,即先依据各部件的结构形状和尺寸建立各部件的三维模型,然后再按照它们彼此之间的装配和约束关系逐个进行组装,最后形成一台完整的机器。很显然,对液压支架各部件的精确建模和正确定义各部件之间的装配关系,是完成液压支架整机建模的关键。在本次设计中主要采用拉伸命令进行建模。本文将以顶梁的建模过程作为代表。打开PRO/E5.0,点击新建按钮出现对话框,设置如图5-1所示,点击确定,之后选择mmns_part_solid,点选确定,之后就进入了零件的建模窗口。点击,之后点击放置按钮,进入草绘面选择对话框,选择草绘平面,如图5-2所示。根据零件尺寸要求一步一步的进行拉伸,零件创建好之后其效果图如图5-3所示。图5-3顶梁效果图5.3 液压支架的整机装配创建好液压支架的所有部件之后,就要开始进行装配。装配前,应正确分析各部件在整机中的位置、作用、以及相关部件之间的装配关系、运动关系,以保证装配后整机定位可靠、运动灵活、互不发生干涉。装配是在PRO/E的组件模块中完成的。由于各部件之间的装配关系不同,PRO/E提供了不同的装配形式。如果装配件与装配件之间没有相对运动,装配时应选用“放置”选项定义板定义彼此之间的约束关系;否则,在装配时应选用“连接”选项板来定义它们之间的连接关系和约束关系。在装配过程中,如果按照设定的约束关系并没有使装配件处于“正常的工作位置”,可使用“拖动”选项板上的“平移”、“旋转”等工具对配件进行调整,直至符合要求为止。 在PRO/E中,组件模块提供了“匹配”、“对齐”、“插入”和“坐标系”等多种约束类型和“刚性链接”、“销钉链接”、“平面链接”、“球连接”等多种形式,如图5-4所示。图5-4接形式与用户自定义在具体的操作中,正确地选择并使用这些约束类型和连接形式,对能否成功地实现液压支架的虚拟装配与运动仿真至关重要。为此,四个立柱与油缸两端的销孔与其相关部件上耳座之间一律采用“销联接”,活塞与缸体之间一律采用“滑动杆连接”,顶梁与掩护梁之间,掩护梁与前后连杆之间一律采用“销联接”。一般情况下,采用的链接形式不同,接下来所需定义的约束类型也不同。只有当装配处于完全约束时,被装配件才可能具有确定运动,“链接”才会生效.总的来说,装配过程是较为简单的。但是还是要注意几个问题。1)一般来说,建立一个装配约束时,应选取元件参照和组件参照。元件参照和组件参照分别是元件和装配体中用于约束定位和定向的点、线、面。例如通过对齐(Align)约束将一根轴放入装配体的一个孔中,轴的中心线就是元件参照,而孔德中心线就是组件参照。2)系统一次只添加一个约束。例如不能用一个“对齐”约束将一个零件上两个不同的孔与装配体中的另一个零件上的两个不同的孔对齐,必须定义两个不同的对齐约束。3)要对一个元件在装配体中完整地指定放置和定向(即完全约束),往往需要定义数个装配约束。4)正确进行立柱的装配。由于现有的很多软件很难识别立柱窝和立柱缸体底部圆球面得配合关系,所以装配过程比较复杂,有时甚至没法装配。有一个解决方法局势将立柱简化成铰点(joint),这样还有一个优点就是进行运动分析(dynamic)和运动学分析(kinematic)时时比较方便(简化成转动副)立柱与柱窝的装配关系如图4-5所示。还有局势立柱以及各部件以及各种千斤顶的活塞和缸体最好装配成部件,然后调入到总装图当中,不要放在总装图中装配。如果在总装图总装配,装配过程将会很复杂。图5-5立柱与柱窝的和装配关系图5)在PRO/E中元件时,可以将多个所需的约束添加到元件上。即使从数学的角度来说,元件的位置已完全约束,还可能需要指定附加约束,一确保装配件达到设计意图。如图5-6所示为顶梁装配链接关系图,用到多个设置,以保证与各部件的定位关系正确。图5-6顶梁的装配关系 在装配插板和插板缸时有可能装不上,我们可以先进行“尾梁”、“插板”和“插板缸”的装配。新建“组建”取消“缺省”确定选择mmns-asm-design,确定之后进入组装模块。点击,选取“尾梁”,进入装配界面,选择缺省。如图5-7所示。图5-7 需要说明的是,三维建模工具仅仅完成了实体建模的制作,只有和有限元分析软件以及运动学仿真软件结合起应用,才能发挥其最大的价值。如果把三维建模工具仅仅当成项AutoCAD软件那样来绘制图形,则没有发挥到其正真的作用。应为三维建模的主要目标在于为虚拟产品提供数据。要形成一个认识:
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:液压支架的运动仿真设计【带PROE三维+仿真动画】【8张CAD图纸】【优秀】
链接地址:https://www.renrendoc.com/p-295607.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!