机械设计课程设计-同轴式两级圆柱齿轮减速器F=3800,V=1.6,D=400.doc_第1页
机械设计课程设计-同轴式两级圆柱齿轮减速器F=3800,V=1.6,D=400.doc_第2页
机械设计课程设计-同轴式两级圆柱齿轮减速器F=3800,V=1.6,D=400.doc_第3页
机械设计课程设计-同轴式两级圆柱齿轮减速器F=3800,V=1.6,D=400.doc_第4页
机械设计课程设计-同轴式两级圆柱齿轮减速器F=3800,V=1.6,D=400.doc_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录1. 题目及总体分析22. 各主要部件选择23. 选择电动机34. 分配传动比35. 传动系统的运动和动力参数计算46. 设计高速级齿轮57. 设计低速级齿轮108. 减速器轴及轴承装置、键的设计14轴(输入轴)及其轴承装置、键的设计15轴(中间轴)及其轴承装置、键的设计21轴(输出轴)及其轴承装置、键的设计279. 润滑与密封3210. 箱体结构尺寸3211. 设计总结3312. 参考文献33一.题目及总体分析题目:设计一个带式输送机的减速器给定条件:由电动机驱动,运输带工作拉力为3800N,运输带速度为1.6m/s,运输机滚筒直径为400mm。自定条件:工作寿命10年(设每年工作300天),三年一大修,连续单向运转,载荷平稳,室内工作,有粉尘生产批量: 10台减速器类型选择:选用同轴式两级圆柱齿轮减速器。全套图纸加扣3012250582 整体布置如下:二.各主要部件选择目的过程分析结论动力源电动机齿轮斜齿传动平稳高速级做成斜齿,低速级做成直齿轴承此减速器轴承所受轴向力不大球轴承联轴器弹性联轴器三.选择电动机目的过程分析结论类型根据一般带式输送机选用的电动机选择选用Y系列(IP44)封闭式三相异步电动机功率工作机所需有效功率为Pw=6.08kw圆柱齿轮传动(7级精度)效率(两对)为10.972滚子轴承传动效率(四对)为20.98 4弹性联轴器传动效率(两个)取30.992输送机滚筒效率为40.96电动机输出有效功率为要求电动机输出功率为转速由v=1.6m/s 求卷筒转速nwV =1.25 nw=76.4r/min nd(i1i2in)nw有该传动方案知,在该系统中只有减速器中存在二级传动比i1,i2,其他 传动比都等于1。由1表13-2知二级圆柱齿轮传动比范围为840。所以 nd =(i1*i2) nw=8,40* nw , nd的范围是(600.23056)r/min,初选为同步转速为1000r/min的电动机,由课程设计手册表1-2 Y系列(IP44)电动机的技术数据选定电动 机型号Y160M-6 ,选用型号Y160M-6封闭式三相异步电动机四.分配传动比目的过程分析结论分配传动比传动系统的总传动比其中i是传动系统的总传动比,多级串联传动系统的总传动等于各级传动比的连乘积;nm是电动机的满载转速,r/min;nw 为工作机输入轴的转速,r/min。计算如下 (两级圆柱齿轮) 五.传动系统的运动和动力参数计算目的 过程分析结论传动系统的运动和动力参数计算各轴转速电动机转轴速度 n0=970r/min 高速I n1=970r/min 中间轴II n2=272.47r/min 低速轴III n3= =76.54r/min 卷筒 n4=76.54r/min。各轴功率电动机额定功率 P0= 7.5Kw 高速轴额定功率为7.5*0.99=7.425中间轴II P2=P1=P1*=7.425*0.98*0.97=7.058kw 低速轴III P3=P2*n34=7.058*0.98*0.97=6.709Kw 卷筒 P4=P3*n45=P3*=6.709*0.98*0.99=6.509Kw各轴转矩高速轴T1=73.10N 中间轴II T2= =247.38N 低速轴III T3= =837.09N 卷筒 T4=812.136N其中Td= (n*m)轴名参数电动机轴高速轴1中间轴2低速轴3卷筒轴转速(r/min)970970272.4776.5476.54功率(kw)7.57.4257.0586.7096.509转矩(Nm)73.8473.10247.38837.09812.136传动比11效率0.990.960.96 0.98六.设计高速级齿轮目的过程分析结论选精度等级、材料和齿数) 选用斜齿圆柱齿轮传) 选用级精度) 材料选择。小齿轮材料为(调质),硬度为,大齿轮材料为钢(调质),硬度为HBS,二者材料硬度差为HBS。) 选小齿轮齿数1,大齿轮齿数2113.5624=85.44,取Z2=86。选取螺旋角。初选螺旋角目的过程分析 结论按齿面接触强度设计按式(1021)试算,即 )确定公式内的各计算数值()试选 ()由图,选取区域系数()由图查得()计算小齿轮传递的转矩 ()由表选取齿宽系数()由表查得材料的弹性影响系数()由图按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限()由式计算应力循环次数()由图查得接触疲劳强度寿命系数()计算接触疲劳强度许用应力取失效概率为,安全系数为S=1,由式得目的 过程分析结论按齿面接触强度设计)计算()试算小齿轮分度圆直径,由计算公式得()计算圆周速度()计算齿宽及模数()计算纵向重合度()计算载荷系数K已知使用系数根据,级精度,由图查得动载荷系数由表查得由图查得假定,由表查得故载荷系数()按实际的载荷系数校正所算得的分度圆直径,由式得目的过程分析结论按齿面接触强度设计()计算模数按齿根弯曲强度设计由式) 确定计算参数()计算载荷系数()根据纵向重合度,从图查得螺旋角影响系数()计算当量齿数()查取齿形系数由表查得()查取应力校正系数由表查得()由图查得,小齿轮的弯曲疲劳强度极限大齿轮的弯曲疲劳强度极限()由图查得弯曲疲劳强度寿命系数目的过程分析结论按齿根弯曲强度设计()计算弯曲疲劳许用应力取弯曲疲劳安全系数S1.4,由式得()计算大小齿轮的大齿轮的数据大) 设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,取2.0mm,已可满足弯曲强度。但为了同时满足接触疲劳强度,须按接触疲劳强度算得的分度圆直径来计算应有的齿数。于是由取,则齿数几何尺寸计算) 计算中心距将中心距圆整为130mm)按圆整后的中心距修正螺旋角因值改变不多,故参数、等不必修正。中心距=130mm螺旋角目的分析过程结论几何尺寸计算) 计算大、小齿轮的分度圆直径) 计算齿轮宽度圆整后取;分度圆直径齿轮宽度验算合适合适七.设计低速级圆柱斜齿传动目的设计过程结论选定齿轮精度等级、材料及齿数) 选用级精度) 由表选择小齿轮材料为(调质),硬度为,大齿轮材料为钢(调质),硬度为HBS。) 选小齿轮齿数,大齿轮齿数取初选螺旋角目的过程分析结论按齿面接触疲劳强度设计按式(1021)试算,即 )确定公式内的各计算数值()试选 ()由图,选取区域系数()由图查得()计算小齿轮传递的转矩 ()由表选取齿宽系数()由表查得材料的弹性影响系数()由图按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限()由式计算应力循环次数()由图查得接触疲劳强度寿命系数()计算接触疲劳强度许用应力取失效概率为,安全系数为S=1,由式得目的过程分析结论按齿面接触疲劳强度设计)计算()试算小齿轮分度圆直径,由计算公式得()计算圆周速度()计算齿宽及模数()计算纵向重合度()计算载荷系数K已知使用系数根据,级精度,由图查得动载荷系数由表查得由图查得假定,由表查得故载荷系数()按实际的载荷系数校正所算得的分度圆直径,由式得分度圆直径模数按齿根弯曲强度设计()计算模数目的分析过程结论按齿根弯曲强度设计由式) 确定计算参数()计算载荷系数()根据纵向重合度,从图查得螺旋角影响系数()计算当量齿数()查取齿形系数由表查得()查取应力校正系数由表查得()由图查得,小齿轮的弯曲疲劳强度极限大齿轮的弯曲疲劳强度极限()由图查得弯曲疲劳强度寿命系数()计算弯曲疲劳许用应力取弯曲疲劳安全系数S1.4,由式得()计算大小齿轮的大齿轮的数据大) 设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,取2.25mm,已可满足弯曲强度。但为了同时满足接触疲劳强度,须按接触疲劳强度算得的分度圆直径来计算应有的齿数。目的分析过程结论按齿根弯曲强度设计于是由取,则齿数几何尺寸计算计算1)计算中心距将中心距圆整为130mm)按圆整后的中心距修正螺旋角因值改变不多,故参数、等不必修正分度圆直径中心距齿宽验算合适验算合适八.减速器轴及轴承装置、键的设计 (中间轴)1轴(输入轴)及其轴承装置、键的设计目的过程分析结论输入轴的设计及其轴承装置、键的设计输入轴上的功率求作用在车轮上的力初定轴的最小直径选轴的材料为钢,调质处理。根据表,取于是由式初步估算轴的最小直径这是安装联轴器处轴的最小直径,由于此处开键槽,校正值,联轴器的计算转矩 查表14-1取,则查机械设计手册(软件版),选用GB5014-1985中的HL3型弹性柱销联轴器,其公称转矩为630000N。半联轴器的孔径,轴孔长度L82,取d1=42mm,相应地,轴段1的长度应比联轴器主动端轴孔长度略短,故取选轴的材料为钢,调质处理目的过程分析结 论输入轴的设计及其轴承装置、键的设计轴的结构设计)拟定轴上零件的装配方案(见前图)根据轴向定位的要求确定轴的各段直径和长度()为满足半联轴器的轴向定位要求,轴段右端需制处一轴肩,轴肩高度,故取段的直径(2)初选型号30308的滚动轴承参数如下基本额定动载荷故 轴段7的长度与轴承宽度相同,故取 ( 3 )轴段4上安装齿轮,为便于齿轮的安装,应略大与,可取.齿轮左端用套筒固定,为使套筒端面顶在齿轮左端面上,即靠紧,轴段4的长度应比齿轮毂长略短,若毂长与齿宽相同,已知齿宽,故取 ( 4 )齿轮右端用肩固定,由此可确定轴段5的直径, 轴肩高度,故取 ( 5 )取齿轮端面与机体内壁间留有足够间距H,取 ,取轴承上靠近机体内壁的端面与机体内壁见的距离S=8mm,取轴承宽度C=50mm.由机械设计手册可查得轴承盖凸缘厚度e=10mm,取联轴器轮毂端离K=20mm.故取齿轮齿宽中间为力作用点,则可得,选用HL型弹性柱销联轴器轴的尺寸():目的过程分析结 论输入轴的设计及其轴承装置、键的设计 5.轴的受力分析 1)画轴的受力简图目的过程分析结 论输入轴的设计及其轴承装置、键的设计)计算支承反力在水平面上在垂直面上 故 总支承反力) 画弯矩图 故 4)画转矩图 输入轴的设计及其轴承装置、键的设计输入轴的设计及其轴承装置、键的设计7 按弯矩合成应力校核轴的强度对于单向转动的转轴,通常转矩按脉动循环处理,故取折合系数,则 查表15-1得=120到150mpa,因此,故安全.8 校核键连接强度联轴器: 查表得.故强度足够.齿轮: 查表得.故强度足够.9. 校核轴承寿命轴承载荷 轴承1 径向: 轴向: 轴承2 径向: 轴向: 因此,轴承1为受载较大的轴承,按轴承1计算 按表13-6,取按表13-5注1,对深沟球轴承取,则 计算得预期计算寿命所以满足要求键校核安全2轴(中间轴)及其轴承装置、键的设计目的 过程分析结论中间轴的设计及其轴承装置、键的设计1. 中间轴上的功率转矩求作用在车轮上的力高速大齿轮: 低速小齿轮: 初定轴的最小直径选轴的材料为钢,调质处理。根据表,取于是由式初步估算轴的最小直径选轴的材料为钢,调质处理目的过程分析结论中间轴的设计及其轴承装置、键的设计这是安装联轴器处轴的最小直径,取轴段1的直径轴的结构设计)拟定轴上零件的装配方案(见前图)根据轴向定位的要求确定轴的各段直径和长度( 1 )初选型号30307的滚动轴承参数如下基本额定动载荷 故 轴段7的长度与轴承宽度相同,故取 ( 2 )轴段3上安装齿轮,为便于齿轮的安装,应略大与,可取. ( 3 )齿轮右端用肩固定,由此可确定轴段4的直径, 轴肩高度,取,故取,l4段采用齿轮轴的形式 ( 4 )取齿轮端面与机体内壁间留有足够间距H,取 ,取轴承上靠近机体内壁的端面与机体内壁见的距离S=8mm,取轴承宽度C=50mm.由机械设计手册可查得轴承盖凸缘厚度e=10mm,取联轴器轮毂端面与轴承盖间的距离K=20mm.故取齿轮齿宽中间为力作用点,则可得,选用HL型弹性柱销联轴器轴的尺寸():目的过程分析结论中间轴的设计及其轴承装置、键的设计5.轴的受力分析1)画轴的受力简图目的过程分析结论中间轴的设计及其轴承装置、键的设计)计算支承反力在水平面上 在垂直面上 故 总支承反力3 ) 画弯矩图 故 4 ) 画转矩图中间轴的设计及其轴承装置、键的设计7 按弯矩合成应力校核轴的强度对于单向转动的转轴,通常转矩按脉动循环处理,故取折合系数,则 查表15-1得=60mpa,因此,故安全.8 校核键连接强度高速齿轮: 查表得.故强度足够.9. 校核轴承寿命轴承载荷 轴承1 径向: 轴向: 轴承2 径向: 轴向: 因此,轴承1为受载较大的轴承,按轴承1计算轴校核安全轴承选用6307深沟球轴承,校核安全寿命()为目的过程分析结论中间轴的设计及其轴承装置、键的设计,查表13-5得X=0.4,Y=1.7按表13-6,取,故,查表13-3得预期计算寿命3.轴(输出轴)及其轴承装置、键的设计目的过程分析结论输出轴及其轴承装置、键的设计输出轴上的功率转矩求作用在车轮上的力初定轴的最小直径选轴的材料为钢,调质处理。根据表,取于是由式初步估算轴的最小直径这是安装联轴器处轴的最小直径,由于此处开键槽,取,联轴器的计算转矩 查表14-1取,则查机械设计手册(软件版),选用GB5014-1985中的HL4型弹性柱销联轴器,其公称转矩为1250N。半联轴器的孔径,轴孔长度L84,J型轴孔,C型键,联轴器主动端的代号为HL4 55*84 GB5014-1985,相应地,轴段1的直径,轴段1的长度应比联轴器主动端轴孔长度略短,故取轴的结构设计)拟定轴上零件的装配方案(见前图)根据轴向定位的要求确定轴的各段直径和长度目的过程分析结论输出轴及其轴承装置、键的设计()为满足半联轴器的轴向定位要求,轴段右端需制处一轴肩,轴肩高度,故取段的直径(2)初选型号30313滚动轴承参数如下 故 轴段6的长度与轴承宽度相同,故取 ( 3 )轴段4上安装齿轮,为便于齿轮的安装,应略大与,可取.齿轮左端用套筒固定,为使套筒端面顶在齿轮左端面上,即靠紧,轴段4的长度应比齿轮毂长略短,若毂长与齿宽相同,已知齿宽,故取 ( 4 )齿轮右端用肩固定,由此可确定轴段5的直径, 轴肩高度,取,故取 ( 5 )取齿轮端面与机体内壁间留有足够间距H,取 ,取轴承上靠近机体内壁的端面与机体内壁见的距离S=8mm,取轴承宽度C=50mm.由机械设计手册可查得轴承盖凸缘厚度e=10mm,取联轴器轮毂端面与轴承盖间的距离K=20mm.故 取齿轮齿宽中间为力作用点,则可得,5.轴的受力分析1 )画轴的受力简图)计算支承反力在水平面上 在垂直面上 选用HL4型弹性柱销联轴器轴的尺寸():目的在垂直面上 故结论输出轴及其轴承装置、键的设计总支承反力 3 )画弯矩图 目的过程分析结论输出轴及其轴承装置、键的设计故 4)画转矩图 6 校核轴的强度 C剖面左侧,因弯矩大,有转矩,还有键槽引起的应力集中,故C剖面左侧为危险剖面 轴的材料为45刚 , 调质处理. 由 表 15-1 查得 ,.截面上由于轴肩而形成的理论应力集中系数及按附表3-2查取.因 , ,经插值后可查得,又由附图3-1可得轴的材料的敏性系数为,故有应力集中系数按式(附3-4)为 由附图3-2得尺寸系数由附图3-3得扭转尺寸系数由附图3-4得 轴未经表面强化处理,即,则按式3-12及3-12a得综合系数值为 目的过程分析结论输出轴及其轴承装置、键的设计 由3-1及3-2得碳钢的特性系数 , 取 , 取于是,计算安全系数值,按式(15-6)(15-8)则得 故安全 7 按弯矩合成应力校核轴的强度对于单向转动的转轴,通常转矩按脉动循环处理,故取折合系数,则 查表15-1得=60mpa,因此,故安全. 8 校核键连接强度联轴器: 查表得.故强度足够.齿轮: 查表得.故强度足够.轴校核安全目的过程分析结论输出轴及其轴承装置、键的设计 9 校核轴承寿命 ,查表13-5得X=0.4,Y=1.7按表13-6,取,故,查表13-3得预期计算寿命 故满足要求九.润滑与密封目的过程分析结论润滑与密封1润滑方式的选择 因为润滑脂承受的负荷能力较大、粘附性较好、不易流失,齿轮靠机体油的飞溅润滑。I,II,III轴的速度因子,查机械设计手册可选用钠基润滑剂2号 2密封方式的选择由于I,II,III轴与轴承接触处的线速度,所以采用毡圈密封3润滑油的选择因为该减速器属于一般减速器,查机械手册可选用中负载工业齿轮油N200号润滑,轴承选用ZGN2润滑脂十.箱体结构尺寸目的分析过程结论机座壁厚=0.025a+58mm机盖壁厚11=0.025a+58mm机座凸缘壁厚b=1.512mm机盖凸缘壁厚b1=1.5112mm机座底凸缘壁厚b2=2.520mm地脚螺钉直径df =0.036a+1216.3mm地脚螺钉数目a1.212mm齿轮端面与箱体内壁距离2210 mm两齿轮端面距离4=2020 mmdf,d1,d2至外机壁距离C1=1.2d+(58)C1f=28mmC11=23mmC12=21mmdf,d1,d2至凸台边缘距离C2C2f=24mmC21=19mmC22=15mm机壳上部(下部)凸缘宽度K= C1+ C2Kf=48mmK1=38mmK2=33mm轴承孔边缘到螺钉d1中心线距离e=(11.2)d113mm轴承座凸起部分宽度L1C1f+ C2f+(35)52 mm吊环螺钉直径dq=0.8df13mm11. 设计总结二周的课程设计结束了,本课程设计的任务是二级圆柱齿轮减速器。根据设计任务书的要求,同学们展开了激烈的讨论。我也查阅了大量资料,然后才开始设计。但其中还是出了很多问题,主要有两个:1、齿轮设计中出现的问题齿轮设计中首先遇到的是齿数和模数的决定。后来,通过与同学们的互相讨论。为使工作机运转平稳,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论