




已阅读5页,还剩60页未读, 继续免费阅读
(信号与信息处理专业论文)散焦测距系统的摄像机镜头参数的标定.pdf.pdf 免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
哈尔滨工程大学硕士学位论文 摘要 散焦测距的原理是根据物体所处位置与摄像机聚焦平面的偏离程度对应 在像平面上形成模糊的散焦图像的模糊程度,且偏离距离越大,模糊程度越 大。利用这一图像变化特点并结合少量预知参数就可计算获得物体的距离信 息。在对景物进行定量分析或对物体进行精确定位时,都需要进行摄像机标 定,它是从二维图像信息得到三维空间信息的基本要求,是完成许多视觉工 作必不可少的步骤。 摄像机标定,即通过实验和计算,求得摄像机的外部参数( 空间位置、 方向,即旋转矩阵和平移矩阵) 和内部参数( 焦距、光心、象素比、畸变系 数等) 。寻求新的快速有效的摄像机标定方法是计算机视觉应用中的一个重要 问题。本文针对常用的带有一阶径向畸变的摄像机模型,介绍一种先线性求 解摄像机参数,然后通过非线性迭代估计进行参数标定的方法。这种方法可 较精确地标定各内外参数,并通过最大似然估计提高标定精度。文中先介绍 传统的t s a i 的两步法的原理及其标定的计算过程,然后详细介绍非线性迭代 估计法的线性求解过程和非线性迭代估计过程。 最后的标定试验中表明,该方法具有较高的标定精度,是一种实用的标 定方法。 关键词:径向畸变;最大似然估计;摄像机参数 哈尔滨工程大学硕士学位论文 a b s t r a c t d e p t hf r o md e f o c u si s b a s e do nl o c a t i o no fo b j e c ta n dd e p a r t u r ed e g r e eo f f o c u sp l a n e t h ed i s t a n c ec a l lb e o b t a i n e db yc h a n g e so fi m a g ea n ds o m e p a r a m e t e r sw h e nt h ed i s t a n c ec h a n g e s i t sn e c e s s a r yo nq u a n t i t a t i v ea n a l y s i sa n d p i n p o i n to fo b j e c tf o ru s eo fc a m e r ac a l i b r a t i o n i t sas i g n i f i a b l ep r o c e s so nal o t o fv i s i o nw o r kf r o m2 - di m a g ei n f o r m a t i o nt o3 - ds p a c ei n f o r m a t i o n c a m e r ac a l i b r a t i o ni st oc a l c u l a t et h ee x t r i n s i c ( p o s i t i o n ,d i r e c t i o n ,r e v o l v i n g m a t r i x ,t r a n s f e rm a t r i x ) a n di n t r i n s i c ( f i c u s ,o p t i c a lc e n t e r ,p i x e lr a t i o ,c o r r e c t i o n p a r a m e t e r ) p a r a m e t e r so fac a m e r a i t sr ni m p o r t a n tp r o b l e mo na p p l i c a t i o no f c o m p u t e rv i s i o nt of i n dan e w m e t h o do fc a m e r ac a l i b r a t i o n t h ep a p e rd e a l sw i t h c a m e r ac a l i b r a t i o nw h i l er a d i a ld i s t o r t i o ne x i s t s ,w h i c hi 8t h em o s tc o m m o n d i s t o r t i o na n dh a san o t i c e a b l ee f f e c t an o l i n e a ri t e r a t i v ee s t i m a t i o na p p r o a c ho f c a l i b r a t i o ni si n t r o d u c e di nt h i sp a p e r i t sc a l i b r a t e sa l lp a r a m e t e r so n c ea n dm a k e s r e s u l tm o r ep r e c i s i o nb ym a x i m u ml i k e l i h o o de s t i m a t i o n t h ep a p e ri n t r o d u c e s n o l i n e a ri t e r a t i v ee s t i m a t i o na p p r o a c hi nd e t a i la f t e rd o e st s a i st w o s t e p s a p p r o a c h t h ee x p e r i m e n tr e s u l t ss h o wt h a tt h en e wa p p r o a c hi sv e r ye f f i c i e n ta n dt h e a c c u r a c yi sg o o de n o u g h k e y w o r d :r a d i a ld i s t o r t i o n ,m a x i m u ml i k e l i h o o de s t i m a t i o n ,c a m e r ac a l i b r a t i o n 哈尔滨工程大学 学位论文原创性声明 本人郑重声明:本论文的所有工作,是在导师的指 导下,由作者本人独立完成的。有关观点、方法、数据和 文献的引用已在文中指出,并与参考文献相对应。除文中 已注明引用的内容外,本论文不包含任何其他个人或集体 已经公开发表的作品成果。对本文的研究做出重要贡献的 个人和集体,均已在文中以明确方式标明。本人完全意识 到本声明的法律结果由本人承担。 作者( 签字) :绦、名 目期:易,5 年2 月妒日 哈尔滨工程大学硕士学位论文 第1 章绪论 视觉是人类从大自然中获取信息的最主要的手段,而图像是人类获取视 觉信息的主要途径,计算机作为当今人类最得力的工具在处理图像方面的能 力也已经有了长足进展。用摄像机或相机拍摄我们感兴趣的图片,输入计算 机就可以进行各种各样的处理。相机成了我们观察外界的眼睛,计算机就像 我们的大脑一样进行分析思考。本论文主要探讨摄像机标定技术,它与视觉、 图像相关。是从二维图像信息得到三维空间信息的基本要求,是完成许多视 觉工作必不可少的步骤“”。 1 1 引言 当摄像机取得清晰图像后,在物距不变的情况下,也就是镜片到物体的 距离不变,然后增加或减少像距,将会造成原清晰图像变得逐渐模糊,因此, 他利用此现象,提出由测量图像的模糊程度来计算图像中的景深信息,这种 方法则称为散焦测距( d f d ) 。d f d 的基本原理是物体的深度信息可以通过两 张散焦程度不用的图像来获得。如果透过一个微小孔径的镜头( 如针孔相机) 取像,那么这张图像将会是近乎完全清晰的,另外再取一张由正常镜头设定 而成像的图像,那么相对的模糊参数就可以很容易地计算出来。散焦测距过 程大致上可分为2 个处理阶段,第1 阶段是相机参数校正工作,第2 阶段是 深度重建的方法。 三维空间的几何信息通过摄像机或照相机成像系统成为二维图像信息, 它们之间有一一对应关系。同一空问物体,会因为像机焦距不同,或者像机 位置不同,而形成不同的图像。只要知道拍摄时摄像机的各个参数,就可以 反过来从图像信息建立三维几何信息,达到重建和识别物体的目的。这就需 要得到摄像机成像几何模型,即对摄像机参数进行标定。摄像机参数一般分 为外部参数( 空间位置、方向,即旋转矩阵和平移矩阵) 和内部参数( 焦距、 光心、纵横比、畸变系数等) 。 哈尔滨工程大学硕士学位论文 从理论上讲,摄像机标定就是解方程问题。但在实际应用中,由于噪声 的干扰、摄像机镜头的畸变等原因,要求得精确的摄像机参数是很困难的。 要进行高精度的摄像机标定,要求使用复杂的摄像机模型( 考虑镜头畸变) , 要求大量高精度的定标点等等,这些要求在通常的应用环境中很难满足,这 也是在计算机视觉与机器人等领域研究这一问题达数十年,但仍没有彻底解 决的原因之一。目前,随着计算机科学的兴起,计算机视觉、虚拟现实以及 多媒体等学科得到越来越广泛的应用,研究摄像机标定技术有其重要的理论 价值与实际意义“1 。 1 2 摄像机标定的主要问题 计算机视觉的基本任务之一是从摄像机获取的图像信息出发计算三维空 间中物体的几何信息,并由此重建和识别物体,而空间物体表面某点的三维 几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决 定的,这些几何模型参数就是摄像机参数。在大多数条件下这些参数必须通 过实验与计算才能得到,这个过程被称为是摄像机标定。由于在摄影测量学 方面也存在着同样的问题,在这个方向已经取得了很多研究成果。对于计算 机视觉而言,考虑到摄像机标定在理论和实践中的重要价值,学术界在最近 2 0 年以来进行了广泛的研究,基于不同的出发点和思路取得了系列成果, 对于不同的问题背景它们都有其各自的应用价值“,。 摄像机标定技术来源于摄影测量学。摄影测量学中所使用的方法是数学 解析方法,在标定过程中通常要利用数学方法对从图像中瑟得的数据进行处 理。通过数学处理手段,摄像机标定提供了非测量摄像机与专业测量摄像机 之间的联系。而所谓的非测量摄像机是指这样一类摄像机,其内部参数完全 未知、部分未知或者原则上不确定。摄像机的内部参数指的是摄像机成像的 基本参数,如主点( 图像中心) 、焦距、镜头径向畸变等参数。 对于计算机视觉研究而言,在实现对三维景物的获取、描述、识别和理 解这一任务时,c c d 摄像机是对物理世界进行三维重建的一种基本测量工具, 这时摄像机标定被认为是实现三维欧氏空间立体视觉的基本而又关键的一 步。总体柬说,其计算方法与摄影测量学中所使用基本相同。但这些问题在 哈尔滨工程大学硕士学位论文 计算机视觉中得到了进一步研究,这是因为计算机视觉中的问题与摄影测量 学中的问题相比,有着显著不同的特点: 1 计算机视觉系统中使用c c d 摄像机作为价格低廉的非测量摄像机。摄 像机参数未知或者不稳定,并且c c d 摄像机数字化图像分辨率低,存在量化 误差,存在非线性镜头畸变。 2 计算机视觉中所测量的一般为近景,为了使系统小巧,两摄像机之间 的基线长度不可能很长,从而使得系统计算误差较大。 3 在计算机视觉中,进行三维重建需要大数量的图像点,有时要求实时 地处理数据并给出结果。 此外,不同的应用背景也对标定技术提出了不同的要求。在立体计算机 视觉中,如果系统的任务是物体识别,则物体相对于某一个参考坐标系的绝 对定位显得并不特别重要,更重要的是物体特征点间相对位置的精度。举例 来说,在一个基于c a d 的物体识别系统中,所研究的物体上的特征的相对位 置必须具有足够高的精度,才能进行有效的匹配和识别。如果系统的任务是 物体的定位,相对于某一个参考坐标系的绝对定位精度就特别重要。例如, 在一个自主车辆导航系统中,自主式移动机器人必须准确地知道其自身的位 置、工作空间中障碍物的位置、以及障碍物的运动情况,才能有效地、安全 地进行导航。c c d 摄像机的特点和应用问题的要求使得标定技术、精度和实 时性等问题的研究显得特别重要,同时也导致了研究成果的多样性。 摄像机参数总是相对于某种几何成像模型的,这个模型是对光学成像过 程的简化,比如最常用的针孔模型,它是摄像机标定研究的基本模型。然而 很多情况下这种线性模型不能准确描述摄像机成像的几何关系,如在近距、 广角时的情形,因此还需要考虑线性或非线性的畸变补偿后,才能更合理地 看作针孔模型成像过程。在这种情况下,利用标定后的模型进行三维重建才 能得到更高的精度。因此成像模型和畸变补偿成为计算机视觉中摄像机标定 研究的重点。 哈尔滨工程大学硕士学位论文 1 3 散焦测距原理及系统简述 1 3 1 散焦测距原理 对于薄透镜,当一点光源o 所处位置在摄像机聚焦平面上时 距f 与像距v 之间有如下的成像关系式 11 1 一j 一一 vd f 0 图1 1 摄像机系统成像示意图 物距d 、焦 当保持像距v 的位置不变,而光源o 的物距偏离摄像机聚焦平面d 后,则 光源o 在摄像机像检测面上所成的像o ”将不再是一个聚焦的点,而是一个直径 为s 的光斑( 如图1 1 所示) ,s 的大小与d 的大小有关,与光源。和光心轴线 的距离无关,即只要ad 不变,光源。在该位置平面内运动,光斑直径s 的大小 保持不变。由摄像机系统成像示意图1 1 的几何关系可推出光斑直径s 与物距 和摄像机参数的关系式为 s=:专一而1一争(1-av(-2d 6 )s = 一一)j 、厂+ dv 7 式中,盯为摄像机镜头的光圈孔径 由关系式( 1 2 ) 可知,当物体起始距离d 和摄像机参数a 、v 与f 已知后, 物体移动距离ad f f n 光斑直径s 有固定对应关系,因此可通过求取图像的光斑 奎 哈尔滨工程大学硕士学位论文 直径s 柬计算物体的移动距离d 。光斑直径s 通常被认为与散焦图像的点扩展 函数的扩展参数。成比例,直接计算。比较费时费力,并且需要建立准确的 点扩展函数。为了克服这一问题,采用如下的间接计算方法来求取物体的移 动距离d 。 设物体平面的背景为亮度均匀的白色,并在上面设置一个黑色圆形特征 点。当特征点位置不在摄像机聚焦平面上时,特征点在摄像机像检测面上所 成的像是边缘模糊的散焦图像。用s o b e l 算子提取特征点散焦图像的模糊边缘 区,可获得梯度图像。边缘区域灰度变化剧烈,有较大的梯度值,在提取出 的图像中为亮区:非边缘区域梯度值近似为零,在提取出的图像中为暗区。得 到梯度图像后,取一固定窗口将边缘亮区包含。固定窗口大小应适中,太大 或太小都将影响测量精度。然后以图像矩保持原理为基础,计算边缘亮区面 积与该固定窗口面积的比值p 。 1 3 2 散焦测距系统概述 该系统的框图如图1 1 ,该图简单说明该系统的主要组成部分。 蓊豢荐怿制部件f 、” 至p c 机或 越斗军行喾 并行数据 输出 d s p 及 c p l d 等处理 与控制系统 图1 1 系统组成框图 本系统是以t i 公司的浮点d s pt m s 3 2 0 v c 3 3 为核心,信号的流程为:图 像信息通过镜头组件传到c o m s 图像传感器,然后由数据采集卡采集图像数据 哈尔滨工程大学硕士学位论文 到由d s p 与c p l d 等构成系统的处理与控制部分,经由d s p 处理后结果可由串 口接入计算机,也可通过并口快速的传入计算机。同时,系统的控制部分通 过指令控制镜头控制部件来驱动步进电机对镜头进行控制以改变焦距,系统 在进行运行前需要对镜头的参数先进行标定。这就是本文所要研究的主要内 容。 1 4 论文内容安排 本文共分5 章,第1 章介绍了摄像机标定的主要问题和散焦测距的简单 工作原理。引出镜头标定并简单介绍摄像机标定的应用场合。第2 章介绍图 像获取环节的镜头和图像采集卡及其相关的软件。第3 章介绍单应矩阵和最 大似然估计的基本理论,对摄像机的线性与非线性模型做详细说明。为摄像 机参数标定的具体实现提供了理论基础。第4 章介绍了两种主要的参数标定 方法:t s a i 的两步法和非线性迭代估计方法。分别详细介绍了两种方法的原 理及具体的计算方法,在这之前还介绍了要标定的参数。第5 章给出两种方 法的仿真结果、试验对比及误差分析。 哈尔滨工程大学硕士学位论文 第2 章标定图像获取系统 本章介绍了标定图像的获取系统。标定是通过采集模型面或实际景物( 自 标定) 的图像并进行分析,所以标定图像的获取是比较重要的。图像获取主 要分硬件和软件两部分。其硬件除计算机外主要是镜头、c m o s 图像传感器和 图像采集卡。软件主要是图像采集卡附带的图像采集软件系统。 2 1 镜头 镜头是视觉系统摄入图像的最前端的设备,也是整个系统最关键设备, 当前的视觉系统中一般来说影响性能的最主要的部件就是镜头,它的质量( 指 标) 优劣直接影响整机指标。因此,光学镜头的选择是否恰当直接关系到系 统质量。 镜头的主要参数: 1 镜头的成像尺寸。应与摄象机c o d 靶面尺寸相一致。 2 镜头的分辨率。描述镜头成像质量的内在指标是镜头的光学传递函数 与畸变,摄象机的靶面越小,对镜头的分辨率越高。 3 镜头焦距与视野角度。首先根据摄象机到被监控目标的距离,选择镜 头的焦距,镜头焦距f 确定后,则由摄象机靶面决定了视野。 4 光圈或通光量( 光阑系数) 。镜头的通光量以镜头的焦距和通光孔径的 比值来衡量,以f 为标记,每个镜头上均标有其最大的f 值,通光量与f 值 的平方成反比关系,应根据光线变化程度来选择用手动光圈还是用自动光圈 镜头。 5 焦距。焦距的大小决定着视场角的大小,焦距数值小,视场角大,所 观察的范围也大,但距离远的物体分辨不很清楚;焦距数值大,视场角小, 观察范围小,只要焦距选择合适,即便距离很远的物体也可以看得清清楚楚。 哈尔滨工程大学硕士学位论文 我们选用了b c o 一2 8 0 2 型远心镜头,其外形见图2 1 。该镜头的主要性能 参数( 见表2 1 ) 可以基本满足一般的系统要求,对于本课题的散焦测距应 用来说其5 0 0 p r m 的精度也可以满足系统要求。彳i 会影响系统标定的应用。 图2 1g c 0 - 2 8 0 2 型镜头外观 图2 2g c o 一2 8 0 2 型远心镜头内部结构示意圈 图2 1 显示了6 c 0 2 8 0 2 远心镜头的外观,其外形尺寸为9 3 6 5 0 4 6 m m 。 图2 2 显示了g c o 一2 8 0 2 远心镜头的内部结构,该镜头由四组镜片构成。 哈尔滨工程大学硕士学位论文 表2 1g c o 一2 8 0 2 型远心镜头性能参数表 放大倍牢: 2 x 焦距: 6 2 6 m m 工作f 数: 1 4 物高: 6 2 5 m m 像高: 1 2 5 m m 工作距离: 8 4 m m 像方: 9 2 4 m m 远心度: j ) 个标准参照物的控制点的坐标( x ,y 。, z ) 及其对应的图像上的坐标( u , v ) ,1 1 个参数就可以用线性最小二乘算法计 算。当不考虑摄像机成像过程镜头的非线性畸变时,直接线性变换方法可以 划分为我们下而将要讨论的一类标定方法。当考虑非线性畸变时,直接线性 变换方法中罔像点与三维空问巾控制点的对应关系则是 “,+“,cq,v,=i=!x:;12业o_;jy!:;畿121 2 21 2 3w+ l + :州 + j+cq,=i2:i:;12生oj;i:1糍21 1 2 2一。f+ y 。,+ :+ f 驾 在这里,( x 。y 。z ) 足标准参照物上的第i 个控制点坐标,且( u 。,v ) 是标准 参照物上控制点对应的实际圈像坐标。这些图像点利用数字图像处理技术获 得。( u 。) 足校难后的蚓像点坐标。a u ,( “;v ) 和v ( u ,v ) 是在图像点( u ,v 。) 处 的镜头畸变校i f 。l | 此我们可以看出,在直接线性变换方法中,非线性畸变 因素的引入是非常方便的。 d a ill is 和i u b e r t s 给了利川1 血接线性变换方法进行摄像机标定的结 果,他们的系统址为t i - 船的测鼠机器人的运动轨迹。该系统能够实时地测 量f j 机器人的运动轨迹,f i l i :小要求抓定锥法对系统的标定足实时的。 3 1 2 利用透视变换矩阵的摄像机标定方法 从镪影测5 学,0 f 统办法呵以霸,划画三维空阳j 坐标系与二维i 割像 坐# j i 系戈系的办袱股魄米足搬像机内挪参数和外部参数的北线性方程“。 如粜忽晰j 垃像机镜火的扯线t 变j :把透视变换矩阼t t t 的元索作为术女l | l l a 尔滨i :牲人。学顺p 似论文 数,给定纰置维控:m 量平刘应割像j ! ,i ,就可以利用线性方法求解透视变 欹矩阶t 0 各个元素。严格来说基于摄像机针孔模型的透视变换矩f 1 :方法 与m 接线性变换方法没有本质1 1 9 1 盖刖。而i = | 透视变换矩阵与“接线性变换矩 阵之间只棚差一个比例囚子。基于两者都可以计算摄像机的内部参数和外部 参数。这类标定方法的优点是不需利用蛙优化方法来求解摄像机的参数, 从而运算速度快,能够实现摄像机参数的实时的汁算。缺点是: 1 标定过程中不考虑摄像机镜头的非线性畸变标定精度受到影响; 2 线性方程。p 未知参数的个数大于要求解的独立的摄像机模型参数的个 数,线性方程中未知数不是相互独立的。这种过分参数化的缺点是,在图像 含有噪声的情况下,求解的线性方程巾的未知数也许能很好的符合这一组线 性方程,但山此分解得到的参数值却未必与实际情况很好地符合。利用透视 变换矩阵的摄像机标定方法被广泛应用于实际的系统,并取得了满意的结果。 o a n a p a t h y 首先给出了一个透视变换矩阵求解摄像枫内部参数和外部参数的 方法并埘分解过_ 1 ! i ! 作了详细的分析“。 31 3 通过纯平移运动求解内参数的自标定技术 此类算法比较彳i 代表性的足马颂德研究员提出的方法,利用主动视觉系 统对搬像机运动的,j 控肚,来线性求解摄像机1 个内参数”。 j e 攮木过稚足这样的,如果摄像机只做纯平移运动,由连接运动腑后叫 幅图像上的对应点褂到的阳帚郁年h 交于点c ,称为f o e ( f o c u so f l i x p a n s i 0 1 3 ) ,即极点,可以证叫,m 【与搬像机光心0 的近线甲行于j :;王像机 运动蚋j j 硒。 控制摄像牛j : 个川t 亚“的厅向卜做、| ,移运动,设0 ( i - l ,2 ,3 ) 为 3i l j l | , i 【冬j 像i :十| ij 、i f 门f o l 一_ ,j e l 纠像坐 ,j i 为( u ,v ) ( i = l ,2 ,3 ) ,毗0 ( ) p = ( ( “,一ur j ) 出,( j v r , ) 咖1 ) 。,i = 1 ,2 ,3 j e i id x ,d y 为 业个像豢f i jx 轴平y 轴方m 上的物理,t 寸。 根掘l l i 交条件川以 :j 剖 哈尔滨l :拌人学硕1 :学协论文 ( 1 ,l l ,o ) ( z ,2 一z ,o ) 出2 + ( 、,l - v o ) ( v 2 一v o ) d y 2 + 厂2 = 0 ( 2 ,l 一! ,o ) ( z b z 七) 西c2 + ( v i v o ) ( 屹一v o ) d y 2 + 厂2 = 0 ( “2 一i f 0 ) ( 1 b 一“o ) ( & 2 + ( v 2 一v 0 1 ( v 3 一y o d y 2 + 厂2 = 0 设t f = ( d x d y ) 2 , t 2 = ( f d x ) 2 , t j = t f v 。,整理以上方程可以得到如下2 个方程: 解出u 、t 。和t ,从而可知v o = t 3 t 1 ,f , , = f d x = t 3 ,f v = t2 t 1 于是得到了摄像 机的全部内参数f i 。,f ,u 。,v 。这是近年束提出的比较简单的自标定方法。 啦三酬 哈尔滨i :w 人学颐l :学何论文 ( t i h ) 7 1 = 0 则有 ( c h 。k 。k 。p ,= ( c n 7 p = 0 其中e 为第1 次平移运动的极点,e :2 为第2 次平移运动的极点。上式构成 了对摄像村l i a j 参数的一个丛本线性约束,为了在柚差一个常数因子意义下, 获得的c 为唯一解,至少需要5 组这样的平面正交运动。一旦获得了矩阵c , 通过c h o l e s k y 分解就可以获得内参数矩| ;j 乍k 。 以上的各种算法要求作的平移运动的次数都比较多,马颂德的方法共需 要作6 次平移运动,杨睦江的方法共需要作8 次平移运动,而李华提出的方 法则需要作1 0 次平移运动,而且上述算法对平移运动的要求都较高。雷成严 格地证明了通过摄像机平台的4 次平移运动( 其中任意3 次均不在同一平面 上) 即可线性求解摄像机的内参数和摄像机坐标系与平台坐标系之间的旋转 矩阵”一t 。 3 2 单应矩阵( h o m o g r a g h y ) 给定两幅图像,如果空间点之问没有任何约束,那么两幅图像对应点之 i u j 的唯一约束是对极几何约束。对于3 幅图像,对应点之间的约束是3 阶张 量。对于4 幅图像,对应点之间的约束是4 阶张量。图像的数目多于4 幅时, 对应点之问不阿形成任何新的约束。值得指出晌是,不管是对极几何,还是 3 阶张量、4 阶张量,这些约束均不能对图像点构成一一对应关系。然而,如 果我f f j f i e 够得到空n i 的部分信息显然,图像对应点之唰的约束将会加强。 从射影几何知道,如果空f t t j 点位j :同一平而上且该平i 可不通过两摄像机的旺 一光心,那么- l f l , i 巧l l l i 。1 图像对应点之州存住一一对应关系,且这种一一对应 关系亓j 以川一个称为r n 应矩阵的变换矩阵米表示“。下面介缁单应矩阵的牛 关知i ! 。 3 2 1 单应矩阵的表示 令z 足夺n 1 j t t - 平面,它r :2 个视点下的像分;j 【j 记为【,l ! ,令 哈尔滨i :样人学颂十学何论文 m = ( u ,v ,1 ) i i , m = ( u ,v ,1 ) i2 是任意一对对应点,如果矩阵m 使得下式成 立, m = s m m 则称m 为图像( i 。,l ! ) 对关于平而丌的单应矩阵。j 纠,s 为:限零常数因子。 假定世界坐标系和第1 个视点所在的摄像机的坐标系重合,第2 个视点 关于第1 个视点的运动为( r ,t ) 则x = r x + t ,( x ,x 分别表示同一空问点 在2 个视点下的坐标) 。设石平面的方程为:n t x = d ,i 7 为万的单位法向量,d 为坐标原点到万的距离,则 m = 五触 卅= 丑。触 = 五。k ( 风4 - ,) 纠足( 触+ 护x ) = 鲁郴+ 扩md 因此,单应性矩阵可表示为 m = c r k ( r + 护1 1f 其中盯为非零常数因子。 当摄像机作纯平移运动时,即r = i 我们可得: m :盯( ,+ 三幻i 。k 一,) 3 ,2 2 单应矩阵的确定 单应性矩阵确定了图像与对应点之问的映射。反之,我们可以通过图像 0 对应点术 ( | ) 定- v 成性矩阵。于忡应+ 陀矩阵在相菁一个常数因子的意义 下赴唯一的,凶此,我们不妨令: 喻尔滨i :样人学烦十学位论文 h 2 岛 啊 也钆l 岛九1j 并将m 矩阼写成向量形式:i m = ( h 。,h 2 ,h 3 ,h 4 ,h 5 ,h 6 ,h ,h 。,1 ) 1 。对于图像上的一 对匹配点m = ( u 。,v ,1 ) 7 ,n 1 ( u 。,v ,1 ) t ,山( 1 ) 式可得两个关于m 的线性方程: 其中 f 弼删= “ i m 二川= v q l = ( 坼,v ,1 ,0 ,0 ,0 ,- - u i u ,一v i v ,- - u i ) 7 “2 = ( 0 ,0 ,0 ,“,v ,1 ,- - i ,一v f v ,一u ) 7 当取i 4 时,可得一个关于m 的线性方程组,从而可确定m 。 3 3 线性摄像机模型 从理论上i j ,只要柯充分多的标定点,可以创建任意复杂的摄像机模型, 指定任意多的待标定参数通过最优化算法进行求解,但实际应用中该方法 过于复杂,用得较多的足利用摄像机透视变换矩阵的定标方法w 。 这是摄像机成像的理想模型,从三维世界坐标系到计算机图像坐标系的 完整变换有如下几步。这罩用到了四个坐标系:世界坐标系( x ,y ,z ) 、 棚机坐标系( x ,y 。,z 。) 以及图像坐标系( x ,y ) 和计算机图像坐标系( u ,v ) 。 ,l刮f0 m i 合尔滨i 抖人学硕十学位论文 图3 1 理想小孔摄像机模型 3 2 1 三维世界坐标系到摄像机坐标系 摄像机成像几何关系可由陶3 1 表示。其中0 点称为摄像机光心,x 轴 和y c 轴与图像的x 轴与y 轴平行,z 。轴为摄像机的光轴,它与图像平面垂直。 光轴与图像平而的交点,即为图像坐标系的原点山点0 与x 。,y ,z 。轴纰成 的直角坐标系称为摄像机坐标系o o 。为摄像机焦距。 由于摄像机可安放在环境中的任何位置,我们在环境中还选择一个基准 坐标系来拙述摄像机的位置,并用它描述环境中任何物体的位置,该坐标系 称为世界坐标系。它l l | x 。y 。,z 、。轴组成。摄像机坐标系与世界坐标系之白j 的 关系可以刚旋转j j ! 阵r 与平移向量t 来描述。因此,空问中某一点p 在世界 坐概;系与搬像机坐标系下的齐次坐标如果分别是x 。= ( x 。,k ,z 。,1 ) 7 与 ( x 。,y ,z 。,1 ) j :是存在如下关系: x c 】0 五- 1 = 阳 。 】: z 。 1 。 j : z 。 l ( 3 一1 ) 其中r 和t 分刖为从i j = 界坐标系到摄像机坐标系的旋转和平移矩阵,设绕x 哈尔滨l 。程人学硕十学何论文 轴,y 轴和z 轴的旋转角为中,0 ,、l ,则r = r x ( q 0 r y ( 0 ) r z ( 9 0 ,则矩阵r 可以 表示为: r = c o s o c o s 些,c o s o s i n 妒 - - s i n o s i n s i n 臼c o s 一c o s 妒s i n 吵s i n s i n 曰s i n 妒+ c 0 s c o s 缈s i n c o s 0 c o s c s i n o c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿里巴巴笔试题及答案
- 2025年耗尽关机传感器合作协议书
- 员工合同入股协议书范本
- 中美欠发达地区城市化进程比较
- 关于武汉高端住宅写字楼酒店市场调查综合调研报告
- 2025年GPS高空探测系统项目发展计划
- 查理苏临床医学研究体系
- 影院营运培训
- 牧场奶牛养殖委托管理与供应链整合协议
- 高层管理培训体系构建
- 电大《法理学》期末考试复习资料
- 国家保密培训课件
- 安全生产法律法规汇编(2025版)
- 食品安全知识培训内容
- 50项护理技术操作流程及评分标准
- 2017年高考数学试卷(文)(北京)(空白卷)
- 酒店用电安全知识培训
- 数字化管理师复习测试卷附答案
- 文化节庆活动审批管理制度
- 2025年软件资格考试电子商务设计师(中级)(基础知识、应用技术)合卷试卷与参考答案
- 【MOOC】大学生健康教育与自卫防身-山东大学 中国大学慕课MOOC答案
评论
0/150
提交评论