




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1. Introduction 1.1. Scope This physical specification is intended to facilitate the point-to-point communication between electronic devices (e.g., computers and peripherals) using directed half duplex serial infrared communications links through free space. This document specifies the optical media interfaces for Serial Infrared (SIR) data transmission up to and including 115.2kbit/s, 0.576 Mbit/s, 1.152Mbit/s, 4.0Mbit/s and 16Mbit/s. It contains specifications for the Active Output Interface and the Active Input Interface, and for the overall link. It also contains Appendices covering test methods and implementation examples. Over the past several years several optical link specifications have been developed. This activity has established the advantages of optical interface specifications to define optical link parameters needed to support the defined link performance. Optical interface specifications are independent of technology, apply over the life of the link and are readily testable for conformance. The IrDA serial infrared link specification supports low cost optoelectronic technology and is designed to support a link between two nodes from 0 to at least 1 meter apart (20 cm for low power parts: please see Section 4.1) as shown in Figure 1 (the two ports need not be perfectly aligned). 1.2. References The following standards either contain provisions that, through reference in this text, constitute provisions of this proposed standard, or provide background information. At the time of publication of this document, the editions and dates of the referenced documents indicated were valid. However, all standards are subject to revision, and parties to agreements based on this proposed standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below. IrDA (Infrared Data Association) Serial Infrared Link Access Protocol (IrLAP), Version 1.1, June 16, 1996. IrDA (Infrared Data Association) Serial Infrared Link Management Protocol, IrLMP), Version 1.1, January 23, 1996. IrDA (Infrared Data Association) Serial Infrared Physical Layer Measurement 2 Guidelines, Version 1.0, January 16, 1998. IrDA (Infrared Data Association) IrMC Specification, Version 1.0.1, January 10, 1998. 2. General Description 2.1. Point-to-Point Link Overview The serial infrared link supports optical link lengths from zero to at least 1 meter with standard power transceivers (20cm for low power transceivers: see section 4.1) for accurate (within specified bit error ratio), free space communication between two independent nodes (such as a calculator and a printer, or two computers). 2.2. Environment The Optical Interface Specifications apply over the life of the product and over the applicable temperature range for the product. Background light and electric field test conditions are presented in Appendix A. 2.3. Modulation Schemes For data rates up to and including 1.152Mbit/s, RZI modulation scheme is used, and a “0” is represented by a light pulse. For rates up to and including 115.2kbit/s, the optical pulse duration is nominally 3/16 of a bit duration (or 3/16 of a 115.2kbit/s bit duration).For0.576Mbit/s and1.152Mbit/s, the optical pulse duration is nominally 1/4 of a bit duration. For 4.0Mbit/s, the modulation scheme is 4PPM. In it, a pair of bits is taken together and called a data symbol. It is divided into 4 “chips”, only one of which contains an optical pulse. For 4.0Mbit/s, the nominal pulse duration (chip duration) is 125 ns. A “1” is represented by a light pulse. For 16.0Mbithe specified data rate. The HHH(1, 13) code guarantees for at least one empty chip and at most 13 empty chips between chips containing pulses in the transmitted IR signal. The 16.0Mbit/s rate packet frame structure is based on the current IrDA-FIR(4.0 Mbit/s) frame format with modifications introduced where necessary to accommodate the requirements that are specific to the new modulation code. Furthermore, the HHH(1,13) code is enhanced with a simple scrambling/ descrambling scheme to further optimize the duty cycle. 3. Media Interface Description 3.1. Physical Representation A block diagram of one end of a serial infrared link is shown in Figure 2. Additional signal paths may exist. Because there are many implementation alternatives, this specification only defines the serially encoded optical output and input signals at 3. In the diagram, the electrical signals to the left of the Encoder/Decoder at 1 are serial 3 bit streams. For data rates up to and including 1.152Mbit/s, the optical signals at 3 are bit streams with a "0" being a pulse, and a "1" is a bit period with no pulse. For 4.0Mbit/s, a 4PPM encoding scheme is used, with a “1” being a pulse and a “0” being a chip with no pulse. For 16.0Mbit/s, a HHH(1,13), (d,k) = (1,13) run length limited (RLL), low duty cycle, rate 2/3 modulation code is used. The HHH (1,13) code guarantees for at least one empty chip and at most 13 empty chips between chips containing pulses in the transmitted IR signal. A summary of pulse durations for all supported data rates appears in Table 2 in Section 4.1. The electrical signals at 2 are the electrical analogs of the optical signals at 3. For data rates up to and including 115.2kbit/s, in addition to encoding, the signal at 2 is organized into frames, each byte asynchronous, with a start bit, 8 data bits, and a stop bit. An implementation of this (up to 115.2kbit/s) is described in Appendix B. For data rates above 115.2kbit/s, data is sent in synchronous frames consisting of many data bytes. Detail of the frame format is found in Section 5. 3.2. Optical Angle Definitions The optical axis is assumed to be normal to the surface of the node's face that contains the optical port (See Figure 3). For convenience, the center of the optical port is taken as the reference point where the optical axis exits the port. If there is asymmetry, as long as the maximum half angle of the distribution is not greater than the allowable Half-Angle Range maximum, and the minimum half angle of the distribution is not less than the Half-Angle Range minimum, the Half-Angle Range specification is met. 4 4. Media Interface Specifications 4.1. Overall Links There are two different sets of transmitter/receiver specifications. The first, referred to as Standard, is for a link which operates from 0 to at least 1 meter. The second, referred to as the Low Power Option, has a shorter operating range. There are three possible links (See Table 1 below): Low Power Option to Low Power Option, Standard to Low Power Option; Standard to Standard. The distance is measured between the optical reference surfaces. The Bit Error Ratio (BER) shall be no greater than 10-8. The link shall operate and meet the BER specification over its range. Signaling Rate and Pulse Duration: An IrDA serial infrared interface must operate at 9.6kbit/second. Additional allowable rates listed below are optional. Signaling rate and pulse duration specifications are shown in Table 2. For all signaling rates up to and including 115.2kbit/s the minimum pulse duration is the same (the specification allows both a 3/16 of bit duration pulse and a minimum pulse duration for the 115.2kbit/s signal (1.63 microseconds minus the 0.22 microsecond tolerance). The maximum pulse duration is 3/16 of the bit duration, plus the greater of the tolerance of 2.5% of the bit duration, or 0.60 microseconds. For 0.576Mbit/s and 1.152Mbit/s, the maximum and minimum pulse durations are the nominal 25% of the bit duration plus 5% (tolerance) and minus 8% (tolerance) of the bit duration. For 4.0Mbit/s, the maximum and minimum single pulse durations are the nominal 25% of the symbol duration plus and minus a tolerance of 2% of the symbol duration. For 4.0Mbit/s, the maximum and minimum double pulse durations are 50% of the 5 symbol plus and minus a tolerance of 2% of the symbol duration. Double pulses may occur whenever two adjacent chips require a pulse. For 16Mbit/s, the maximum and minimum single pulse durations are the nominal symbol duration plus and minus a tolerance of 8% of the nominal symbol duration. The link must meet the BER specification over the link length range and meet the optical pulse constraints. In order to guarantee non-disruptive coexistence with slower (115.2kbit/s and below) systems, once a higher speed (above 115.2kbit/s) connection has been established, the higher speed system must emit a Serial Infrared Interaction Pulse (SIP) at least once every 500 ms as long as the connection lasts to quiet start pulse, causing the potentially interfering system to listen for at least 500 ms. See Section 5.2. The specified values for Rise Time Tr, Fall Time Tf, and Jitter are listed in Table 3. Link Access and Management Control protocols are covered in separate specification documents (see Section 1.2., References). 4.2. Active Output Interface At the Active Output Interface, an infrared signal is emitted. The specified Active Output Interface parameters appearing in Table 3 are defined in section 1.4 and the associated test methods are found in Appendix A. Std refers to the standard 0 to 1 meter link; LP refers to the Low Power Option; Both refers to both. 6 4.3. Active Input Interface If a suitable infrared optical signal impinges upon the Active Input Interface, the signal is detected, conditioned by the receiver circuitry, and output to the IR Receive Decoder. The specified Active Input Interface parameters appearing in Table 4 are defined in section 1.4. The test methods for determining the values for a particular serial infrared interface are found in Appendix A. There is no Half-Angle maximum value for the Active Input Interface. The link must operate at angles from 0 to at least 15 degrees. There are no Active Input Interface Jitter specifications, beyond that implied in the Active Output Requirements. The link must meet the BER specification for all negotiated and allowable combinations of Active Output Interface specifications, except for non-allowed codes. For rates up to and including 115.2kbit/s, the allowed codes are described in Infrared Data Association Serial Infrared Link Access Protocol (IrLAP), and Infrared Data Association Link Management Protocol. See Section 1.2, References. For 0.576Mbit/s and 1.152Mbit/s and 4.0 Mbit/s, see Section 5 of this document. 5. 0.576Mbit/s, 1.152Mbit/s, 4.0Mbit/s and 16.0Mbit/s Modulation and Demodulation 5.1. Scope 7 This section covers data modulation and demodulation above 115.2kbit/s up to 16.0Mbit/s data rates. The0.576Mbit/s and 1.152Mbit/s rates use an encoding scheme similar to 115.2 kbit/s; the 4.0Mbit/s rate uses a pulse position modulation (PPM) scheme. Both cases specify packet format, data encoding, cyclic redundancy check, and frame format for use in communications systems based on the optical interface specification. The 16.0Mbit/s rate uses the HHH(1,13) encoding scheme with the CRC check and frame format of 4.0Mbit/s rate with necessary modfications to the frame format for the new modulation code. Systems operating at these higher rates are transparent to IrLAP and IrLMP as it is defined for the lower rates. Architecturally, it appears as an alternate modulation/demodulation (modem) path for data from IrLAP bound for the IR medium. These higher rates are negotiated during normal IrLAP discovery processes. For these and specific discovery bit field definitions of the higher rates, see documents referenced in Section 1.2. 5.2. Serial Infrared Interaction Pulses In order to guarantee non-disruptive coexistence with slower (up to 115.2kbit/s) systems, once a higher speed (above 115.2kbit/s) connection has been established, the higher speed system must emit a Serial infrared Interaction Pulse (SIP) at least once every 500 ms as long as the connection lasts to quiet slower systems that might interfere with the link (see Section 4.1). The pulse can be transmitted immediately after a packet has been transmitted. The pulse is shown below: 5.3. 0.576Mbit/s and 1.152Mbit/s Rates 5.3.1. Encoding The 0.576Mbit/s and 1.152Mbit/s encoding scheme is similar to that of the lower rates except that it uses one quarter pulse duration of a bit cell instead of 3/16, and uses HDLC bit stuffing after five consecutive ones instead of byte insertion. The following illustrates the order of encoding. 1) The raw transmitted data is scanned from the least significant to the most significant bit of each byte sent and a 16 bit CRC-CCITT is computed for the whole frame 8 except flags and appended at the end of data. The CRC-CCITT polynomial is defined as follows: (For an example refer to the 32 bit CRC calculation in section 5.4.2.5 and adjust the polynomial for the one indicated above and note the size will be 16 bits (2 bytes) instead of 32 bits (4 bytes) , note preset to all 1s and inversion of the outgoing CRC value) (The address and control field are considered as part of data in this example.) For example, say four bytes, CChex, F5hex, F1hex, and A7hex, are data to be sent out in sequence, then 51DFhex is the CRC-CCITT. LSB MSB Raw Data 00110011 10101111 10001111 11100101 LSB MSB Data/CRC 00110011 10101111 10001111 11100101 11111011 10001010 2) A Zero is inserted after five consecutive ones are transmitted in order to distinguish the flag from data. Zero insertion is done on every field except the flags. Using the same data as an example; LSB MSB Data/CRC 00110011 10101111 10001111 11100101 11111011 10001010 First bit to be transmitted Last bit to be transmitted Transmit Data 001100111010111110000111110110010111110101110001010 (Note: Underlined zeros are inserted bits.) 3)The beginning and ending flags, 7Ehex, are appended at the beginning and end. Using the same example; Transmit Data First bit to be transmitted Last bit to be transmitted 0111111000110011101011111000011111011001011111010111000101001111110 4) An additional beginning flag is added at the beginning. Finally the whole frame to be sent out is: Tx Frame First bit to be transmitted 0111111001111110001100111010111110000111110110010111110101110001 9 Last bit to be transmitted 01001111110 5) The transmitter sends out 1/4-bit-cell-length pulse of infrared signal whenever data is zero. For example, the frame to be sent out is 0100110101 in binary in the order of being transmitted, then the following figure illustrates the actually transmitted signal for lower data rates and also for 0.576 and 1.152Mbit/s. 5.3.2. Frame Format 5.3.2.1. Frame Overview The 0.576 Mbit/s and 1.152 Mbit/s frame format follows the standard HDLC format except that it requires two beginning flags and consists of two beginning flags, an address field, a control field, an information field, a frame check sequence field and minimum of one ending flag. 7Ehex is used for the beginning flag as well as for the ending flag. The frame format is the same as for the lower rate IrLAP frame with STA changed from C0hex to 7Ehex and STO changed from C1hex to 7Ehex. STA: Beginning Flag, 01111110 binary ADDR: 8 bit Address Field DATA: 8 bit Control Field plus up to 2045 = (2048 - 3) bytes Information Field FCS: CCITT 16 bit CRC STO: Ending Flag, 01111110 binary Note 1: Minimum of three STO fields between back to back frames is required. Note 2: Zero insertion after five consecutive 1's is used. CRC is computed before zero insertion is performed. Note 3: Least significant bit is transmitted first. Note 4: Abort sequence requires minimum of seven consecutive 1s. Note 5: 8 bits are used per character before zero insertion. 5.3.2.2. Beginning Flag (STA) and Ending Flag (STO) Definition The 0.576 Mbit/s and 1.152 Mbit/s links use the same physical layer flag, 01111110, for both STA and STO. It is required to have a minimum of two STAs and a minimum of 10 one STO. The receiver treats multiple STAs or STOs as a single flag even if it receives more than one. 5.3.2.3. Address Field (ADDR) Definition The 0.576 Mbit/s and 1.152 Mbit/s links expect the first byte after STA to be the 8 bit address field. This address field should be used as specified in the IrLAP. 5.3.2.4. Data Field (DATA) Definition The data field consists of Control field and optional information field as defined in the IrLAP. 5.3.2.5. Frame Check Sequence Field (FCS) Definition The 0.576 Mbit/s and 1.152 Mbit/s links use a 16 bit CRC-CCITT cyclic redundancy check to check received frames for errors that may have been introduced during frame transmission. The CRC is computed from the ADDR and Data fields using the same algorithm as specified in the IrLAP. 5.3.2.6. Frame Abort A prematurely terminated frame is called an aborted frame. The frame can be aborted by blocking the IR transmission path in the middle of the frame, a random introduction of infrared noise, or intentional termination by the transmitter. Regardless what caused the aborted frame, the receiver treats a frame as an aborted frame when seven or more consecutive ones (no optical signal) are received. The abort terminates the frame immediately without the FCS field or an ending flag. 5.3.2.7. Frame Transmission Order All fields are transmitted the least significant bit of each byte first. 5.3.2.8. Back to Back Frame Transmission Back to back, or “brick-walled” frames are allowed with three or more flags, 01111110b, in between. If two consecutive frames are not back to back, the gap between the last ending flag of the first frame and the STA of the second frame should be separated by at least seven bit durations (abort sequence). 5.4. 4 Mbit/s Rate 5.4.1. 4PPM Data Encoding Definition Pulse Position Modulation (PPM) encoding is achieved by defining a data symbol duration (Dt) and subsequently subdividing Dt into a set of equal time slices called "chips." In PPM schemes, each chip position within a data symbol represents one of the possible bit combinations. Each chip has a duration of Ct given by: Ct = Dt/Base In this formula "Base" refers to the number of pulse positions, or chips, in each data symbol. The Base for IrDA PPM 4.0 Mbit/s systems is defined as four, and the resulting modulation scheme is called "four pulse position modulation (4PPM)." The data rate of 11 the IrDA PPM system is defined to be 4.0 Mbit/s. The resulting values for Ct and Dt are as follows: Dt = 500 ns Ct = 125 ns The figure below describes a data symbol field and its enclosed chip durations for the 4PPM scheme. Because there are four unique chip positions within each symbol in 4PPM, four independent symbols exist in which only one chip is logically a "one" while all other chips are logically a "zero." We define these four unique symbols to be the only legal data symbols (DD) allowed in 4PPM. Each DD represents two bits of payload data, or a single "data bit pair (DBP)", so that a byte of payload data can be represented by four DDs in sequence. The following table defines the chip pattern representation of the four unique DDs defined for 4PPM. Logical “1” represents a chip duration when the transmitting LED is emitting light, while logical “0” represents a chip duration when the LED is off. 12 红外数据协会的一系列红外物理层规则 1. 介绍 1.1 范围 这个规则将会使电子设备之间的点对点通信便利化(举例来说,计算机和外围设备),这种电子设备用半双工串行接口通过空间来连接。这一份文件证明光学介质串行接口 数据传输速率已提高到 115.2kbit/s, 0.576Mbit/s, 1.152Mbit/s,4.0Mbit/s 和 16Mbit/s。它包括输入端接口和输出端接口的说明 ,和所有的连接。它也附加了测试方法和相关例子。 在过去的许多年里光学连接规则已发展成熟了许多,这一个活动已经确定了光学接口规格的优点以便用来定义光学连接叁数,这些参数用来支持被定义的连接性能。光学的接口规格与技术无关 ,适用于生活中的所有连接并且是可以测试的。 IrDA 红外连接支持低成本的 optoelectronic 技术而且支持从 0 到至少 1 公尺处 ;两点之间的连接(对于低能量为 20cm:见第 4.1 节 )如图 1(两点可以不按顺序排列) 图 1 光学接口的几何原理图形 1.2.叁考 下列的标准或者包含一些条款,在本文中作为参考的标准或者用来提供背景数据。这份文件自出版后就是有效的。所有的标准都是经过校订的,部分以这个标准为基础的协议在下面列出,被用做最新版本的参考。 IrDA(红外线数据协会 )的建立连接协议层 (IrLAP),1.1版, 1996年 6月 16日出连接长度 节点 1 节点 2 光学接口点 13 版。 IrDA(红外线的数据协会 )连接管理协 议层( IrLMP) ,1196年 1月 23出版 1.1版。 IrDA(红外数据协会)物理层标准指导方针 1.0 版 ,1998 年 1月 16日出版。 IrDA(红外线的数据协会 )IrMC规格, 1.0.1版, 1998年 1月 10日。 2. 一般描述 2.1. 点对点的连接 串行接口连接支持光学连接长度至少为 1公尺(在指定的误差范围内)的标准收发器(对于低能量为 20cm)两个点之间的空间传输 (像是一个计算机和一台打印机 ,或二部计算机 ). 2.2. 环境 光学的接口规格在产品寿命期和适用温度方面是适用的。附录 A是背景光和电场测 试情况。 2.3. 调制原理 数据传输率最高达到 1.152Mbit/s,使用 RZI调制,“ 0”用光脉冲表示,波特率在 1.152Mbit/s以下时,用最大脉冲宽度是位周期的 3/16来调制,速率为 0.576 Mbit/s和 1.152Mbit/s时用最大脉冲宽度是位周期的 1/4来调制。对于 4.0 Mbit/s,用 4PPM(脉冲位置调制)调制。在它里面,两个比特位被编码成一个“数据符号位”,每个符号位分为 4等份,只有一份包含光脉冲,对于 4.0Mbit/s,光脉冲宽度为 125ns,每个“ 1”靠一个光脉冲传送。对于 16.0Mbit/ s ,它是依靠于 IrDA-FIR( 4.0 Mbit/s)已包含有许多字节的数据包传输,根据特定的需求来修改编码。此外, HHH(1,13) 编码与简单的混合一起更进一步的将有效周期最优化。 3. 媒体接口描述 3.1. 物理层描述 图 2为红外连接的框图,可能存在其他的信号路径。因为有许多其他传输,这一件规格只定义被编码后的光学输出和在 3处的输入信号。在图表中 , 编码 14 器 / 译码器左边的电信号在 1 是连续数据,波特率高于 1.152Mbit/s,在 3处,光学信号“ 0”是一个脉冲,“ 1” 没有脉冲。对于 4.0Mbit/s,用 4PPM编码,“ 1”用一个脉冲表示,“ 0”是一个时隙但没有脉冲。对于 16.0Mbit/s, HHH(1,13)是 (d,k)=(1,13)RLL run-length-limited码,功率消耗和频带利用率相对折中的码 ,码率为 2/3。 HHH(1,13) 编码保证在传输 IR信号时至少一个符号位,最多 13个符号位,一个脉冲之间的概括在第 4.1 节的表 2 中支持数据率出现 .信号 2是信号 3的电信号表示,波特率在 115.2 kbit/s以下时, ,除了编码之外 ,信号2 被编入帧中,每个帧中包含一个起始位, 8个数据位,一个停止位,(达到 115.2 kbit/s) 在附录 B中被描述,高于 115.2 kbit/s,数据以相同的格式组成许多数据符号位,具体格式如表 5所示。 3.2. 光学的角度定义 假定光轴对包含光学点的表面是正确的 (见图 3). 简单的说,光学的点中心作为叁考点,参考点处,光学轴脱离了节点。如果有不均匀 ,只要分配的最大半角不超过允许的半 -角范围最大值,而且分配的最小半角是不少于半角范围最小量,一半 - 角度 的范围规格被碰到。 1 红外信号输入 红外信号输出 红外发送编码电路 红外接收解码电路 编码 /解码 输出 /LED 驱动 探测与接收 红外转换电路 2 3 图 2 红外转换模块 15 图 3参考点的几何图形 4. 媒体接口规格 4.1.全部的连接 有两组不同规格的发射器 /接收器。第一个,如标准中所言,是一个从 0到至少 1公尺的连接。第二个就是低能量的时候,有一个较短的距离。有三个可能 的连接:(见表 1),低能量对低能量的标准,距离是光学参考面之间 表 1连接距离规格 误差不能超过 10-8,连接 将实现且满足 BER规格, 比特率和脉冲间隔:红外通信 IrDA应满足 9.6kbit/s。可以参考下面列出的波特率和脉冲间隔的,见表 2。 波特率不高于 115.2kbit/s,最小的脉冲间隔是相同的 (允许 3/16的脉冲调制,对于 115.2kbit/s用最小的脉冲间隔(或使用 1.63个微秒减 0.22微秒宽度 ).最大的脉冲间隔是 3/16个比特位 ,脉冲的宽度为比特位的 2.5%,即 0.60微秒。 对于 0.576Mbit/s和 1.152Mbit/s,最大和最小脉冲之间是 25%的比特位,允许 5%到 8%的变动。 对于 4.0Mbit/s,最大和最小脉冲之间的宽度是 25%加上或减去 2%。对于4.0Mbit/s,最大与最小的比特对相差 50%+/-2%的比特位,当比特对需要脉冲时, 低电量 低电量 标准 低电量 标准 标准 最低限度的连接长度 0 0 0 最大限度的连接长度 0.2 0.3 1.0 半角 参考轴 参考的接口点 参考面就是点的外表面,包括该点 参考点的中 心轴 16 可能产生两倍的脉冲。 对于 16Mbit/s,最大,最小脉冲间相差 8%的比特位。连接应满足超过连接长度的 BER规则且满足光学的脉冲限制。 波特率 编码 误差 最小脉冲宽度 正常的脉冲宽度 最大脉冲宽度 2.4Kbit/s RZI +/-0.87 1.41vs 78.13vs 88.55vs 9.6Kbit/s RZI +/-0.87 1.41vs 19.53vs 22.13vs 19.2Kbit/s RZI +/-0.87 1.41vs 9.77vs 11.07vs 38.4Kbit/s RZI +/-0.87 1.41vs 4.88vs 5.96vs 57.6Kbit/s RZI +/-0.87 1.41vs 3.26vs 4.34vs 115.2Kbit/s RZI +/-0.87 1.41vs 1.63vs 2.23vs 0.576Mbit/s RZI +/-0.1 295.2ns 434.0ns 520.8ns 115.2Mbit/s RZI +/-0.1 147.6ns 217.0ns 260.4ns 4.0Mbit/s 单脉冲 双脉冲 4PPM 4PPM +/-0.01 +/-0.01 115.0ns 240.0ns 125.0ns 250.0ns 135.0ns 260.0ns 16.0Mbit/s HHH ( 1, 13) +/-0.01 38.3ns 41.7ns 45.0ns 表 2 波特率和脉冲宽度规格 为了保证用较慢的系统保持连续,一旦高速的连接建立,它可能至少每 500 ms 发送一系列的红外交互脉冲,只要连接依然与慢的系统连接着,因为它可能有所干扰。 SIP 被定义为 发射器的 1.6 ms 光学脉冲 ,它伴随着一个 7.1 ms 的发射器。资讯科技模拟开始脉冲 , 引起干扰系统至少 500 ms 一次。见到第 5.2 节。 上升时间 Tr,下降时间 Tf 和跳动的指定值在表 3 中列出 4.2. 活跃的输出接口 在活跃的输出接口,红外信号被发出。在表 3 中出现的指定的活跃输出接口叁数在第 1.4 节和联合的测试方法中被定义并写在附录 A, .Std 提及标准的 0 到1 公尺连接 ;LP 提及低能量选项 ;BOTH 两者都 提到 17 规格 数据率 类型 最小值 最大值 峰峰波长 Up um 所有 都有 0.85 0.90 最大程度的角度 所有 Std - 500* “” “” LP - 72* 最小的角度 =115.2kbit/s Std 40 - “” “” =115.2kbit/s LP 3.6 - “” “” 115.2kbit/s Std 100 “” “” 115.2kbit/s LowPwr 9 半角,程度 所有 所有 15 30 时钟准确性 所有 所有 表 2 表 2 上升时间 Tr 10-90% ,下降时间 Tf 90-10%, ns =115.2kbit/s 所有 - 600 上升时间 Tr 10-90% ,下降时间 Tf 90-10%, ns 115.2kbit/s-4.0 Mbit/s Std - 40 上升时间 Tr 10-90% ,下降时间 Tf 90-10%, ns 16.0 Mbit/s 所有 - 19 脉冲间隔 所有 所有 表 2 表 2 跳动锐利 ,% 所有 所有 - 25 =115.2kbit/s 所有 - +/-6.5 0.576&1.152 所有 - +/-2.9 18 Mbit/ s 4.0 Mbit/s 所有 - +/-4.0 16.0 Mbit/s Std - +/-4.0 *对于给定的发射器, IEC 60825-1 AEL 1级界限可能是比这更少。见 2.4节上方的 附录一 4.3. 活跃的输入接口 如果适当的红外光学信号接触到输入接口 ,发现信号时,以接收电路为条件,将结果输出到 IR 译码器。表 4 中指定的输入接口参数在第 1.4 节中被定义。决定红外接口序列值的特别测试方法在附录一。 规格 比特率 类型 最小值 最大值 角的范围 最大的光发射 mW/cm2 所有 两者都有 - 500 角的范围最小的光发射 mW/cm2 小于等于115.2 kbit/ s 低电源 9.0 - “” “ ” 小于等于115.2 kbit/ s 标准电源 4.0 - “ ” “ ” 高于 115.2 kbit/ s 低电源 22.5 - “ ” “ ” 高于 115.2 kbit/ s 标准电源 10.0 - 半角 所有 两者都有 15 - 接收器 小于等于 4.0 Mbit/ s 标准电源 - 10 接收器 小于等于 4.0 Mbit/ s 低电源 - 0.5 接收器 16.0 Mbit/ s 两者都有 - 0.10 19 表 4 活跃的输入规格 活跃的输入接口没有半角最大值。连接应该从 0 度到至少 15 度。 没有活跃的输入接口跳动规格 ,超过要求应该满足输出的需要。对所有的协议和可允许的输出接口规格除了非允许的密码以外,连接应该满足 BER 规格。对于比特率小于等于 115.2kbit/s,被允许的密码在红外线连接允许协议和红外线连接管理协议中被记录,见第 1.2 节, 0.576Mbit/s 和 1.152Mbit/s 和 4.0Mbit/s,见文件的第 5 节。 5. 0.576Mbit/s , 1.152Mbit/s , 4.0Mbit/ s 和 16.0Mbit/ s 调制和解调 5.1. 范围 这一个区段包括数据调制和解调,从 115.2kbit/ s 到 16.0Mbit/ s 。 0.576Mbit/ s 和 1.152Mbit/ s 与 115.2kbit/s使用相近的编码规则 ;4.0Mbit/ s 率采用 PPM编码 ,两者采用小包的格式 ,数据的编码 ,循环检查 ,和对于以光学的接口为基础的连接系统的结构格式 .。 16.0Mbit/ s 率使用 HHH(1,13)编码 ,CRC 检查和适用于 4.0Mbit/s的结构格式和必须的新的编码的规格。 当它被定义为低比特率的时候,以这些较高的比率操作的系统对 IrLAP 和 IrLMP 是透明的 ,同样地 ,它被用来做 IrLAP 的 IR介质的调制 /解调路径 . 这些较高的比率在正常的 IrLAP 协议中被协商 ,对于这些和高比特率的特别的比特领域 ,见1.2 节 5.2. 连续的红外线的交互作用脉冲 为了要用比较慢的 (达到 115.2kbit/s)系统保证非迅裂共存 , 已经建立一次较高的连接 (高于 115.2Kbit/s),高速率的系统应该发出序列 的红外线的交互作用脉(SIP),至少 500 次 /ms 只要始终与系统连接 ,它影响这个连接 (见 4.1 节 ).一个小包传输后 ,脉冲就可立即传送 ,脉冲在下边被显示 : 20 5.3. 0.576Mbit/ s 和 1.152Mbit/s 5.3.1. 编码 0.576Mbit/ s 和 1.15
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《T实施与管理》课件
- 小学舞蹈团队活动方案
- 《黄山的云海课件语文A版》
- 《化学误差理论》课件
- 烟草包装设备的快速更换技术考核试卷
- 聚己内酰胺纤维应用考核试卷
- 《血小板减少性疾病的诊断与治疗》课件
- 粮食仓储农业废弃物利用考核试卷
- 塑料零件在汽车行业的应用考核试卷
- 纺织原料企业的生产计划与调度考核试卷
- 备战2025年高考英语抢分秘籍(新高考专用)猜押语法填空(话题+体裁)(学生版+解析)
- 船舶与海洋工程2025年相关知识考试试卷及答案
- 吉林银行笔试题库及答案
- 《危险化学品企业安全生产标准化规范》专业深度解读与应用培训指导材料之8:5管理要求-5.8作业安全(雷泽佳编制-2025A0)
- 江苏省南京市、盐城市2025届高三年级5月第二次模拟考试英语(南京盐城二模)
- Unit6Integration(A-C)课件译林版(2024)英语七年级下册
- (二模)2024~2025学年度苏锡常镇四市高三教学情况调研(二)物理试卷(含答案)
- 甘肃开放大学2024年《信息技术与信息管理》形考作业1-4答案
- 2024年大学生电子版三方协议书模板
- ISO9001-ISO14001-ISO45001三体系内部审核检查表
- 模糊控制――文献综述(共13页)
评论
0/150
提交评论