机械毕业设计(论文)-双曲柄往复式给料机设计【全套图纸】.doc_第1页
机械毕业设计(论文)-双曲柄往复式给料机设计【全套图纸】.doc_第2页
机械毕业设计(论文)-双曲柄往复式给料机设计【全套图纸】.doc_第3页
机械毕业设计(论文)-双曲柄往复式给料机设计【全套图纸】.doc_第4页
机械毕业设计(论文)-双曲柄往复式给料机设计【全套图纸】.doc_第5页
已阅读5页,还剩93页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中国矿业大学2007届本科生毕业设计 第98页1、 往复式给料机的概述全套图纸,加153893706 往复式给煤机在我国煤矿、选煤厂及其它行业应用已有几十年。生产实践证明,该设备对煤的品种、粒度、外在水份等适应能力强,与其他给料设备相比,具有运行可靠、性能稳定、噪音低、完全可靠、维护工作量小等优点,仍有推广使用价值。往复式给煤机的主要缺点是能耗较高。1.1 K型往复式给煤机的用途最通用的往复式给煤机为K型,一般用于煤或其他磨琢性小、黏性小的松散粒状物料的给料,将储料仓或料坑里的物料连续均匀地卸运到运输设备或其他筛选设备中。1.2 K型往复式给煤机的组成K型给煤机由机架、底板(给煤槽)、传动平台、漏斗、闸门、托辊等组成。当电动机开动后经弹性联轴器、减速器、曲柄连杆机构拖动倾斜的底板在辊上作直线往复运动,煤均匀的卸到其他设备上。本机可根据需要设有带漏斗、不带漏斗两种形式。给煤机设有两种结构形式:1、带调节闸门 2、不带调节闸门,其给料能力由底板行程来达到。1.3 K-4型往复式给煤机的技术参数表1-1 K-4型往复式给煤机技术参数型号规格K-4给料能力/(t/h)底板行程曲柄位置无烟煤烟煤200459053015034403951002295268501148132曲柄转速/()62电动机型号YB200L-8(Y200 L-6)功率/18.5转速/()970减速器型号JZQ-500速比15.75最大允许粒度/含量10 %以下700含量10 %以上550设备重量/ 带料斗2337不带料斗2505图1-1K型往复式给煤机外形尺寸和安装尺寸表1-2 K-4型往复式给煤机外形尺寸和安装尺寸型号ABCK-4162247401632330型号K-476234515433835型号K-41700175015501500型号K-41435150013001250型号K-41250158035266型号K-4396220型号K-4240014 K型往复式给煤机工作原理简述往复式给煤机由槽形机体和带有曲柄连杆装置的活动底板组成的曲柄滑块机构。底板是工作机构。由于曲柄连杆装置的作用,底板作有规律的往复运动。当底板正行时,将煤仓和槽形机体内的煤带到机体前端;底板逆行时,槽形机体内的煤被机体后部的斜板挡住,底板与煤之间产生相对滑动,机体前端的煤自行落下。由于底板往复运动的结果,机体内的煤连续地卸落到运输设备或筛选设备上。1.5 K4型给煤机的技术改造随着矿井的延伸,井下使用K4型给煤机的数量不断增加。由于在使用中,发现该机在结构上存在一些问题,为此我们对其进行了技术改造。1.3.1 存在的问题该机主要由电动机、减速器、曲拐、底托板、底托轮、后斜板、侧板、弧形门、煤仓缩口联接盘等组成。主要技术参数为:电动机功率:185;给煤量:132、268、395、530Ch。该机使用中主要存在以下问题:(1)底托板易弯曲变形。原因是:支撑轮间跨度大,抗弯能力低;钢板厚度较薄(1012 ),随着过煤量的增加,磨损严重;放煤时受煤块频繁冲击砸压,发生变形、弯曲。(2)后斜板和侧板易变形。原因是:受煤仓煤流频繁冲击,从而发生变形。(3)弧形门不能随意调节,无法控制煤仓跑水煤现象。原因是:在给煤机运行过程中,因经常发生跑水煤现象,冲坏输送机托辊、埋住机架、甚至发生伤人的安全事故。1.3.2 改进措施(1)底托板,增设支撑轮装置在底托板下面焊接2根轨距为600的矿用轨道,以底托板中心线对称布置,支撑轮顶在轨道上。运行时轨道与底托板一起运动 支撑轮做旋转运动。支撑轮采用普通矿车轮,矿车轮用支座安装在承载梁上,承载梁用矿用l2 工字钢,承载梁下为2根与底板固定的工字钢立柱。支撑轮支座用8条MI6 X60螺栓与承载梁上焊接的钢板连接,便于支撑轮因磨损或轴承故障时更换方便。这样,底托板由4点支撑变为6点支撑,跨度缩小,抗弯曲能力大大提高。(2)后斜板加焊矿用l2 工字钢在后斜板加焊与给煤机给煤方向垂直的水平工字钢,工字钢采用矿用3根l2 工字钢,长度与给煤机后斜板宽度相同,这样增强了后斜板的抗弯曲能力。 (3)底托板、后斜板和侧板均增加衬板衬板均采用612的普通锰钢。底托板的1块衬板,四周用20条MI6 X60的沉头螺栓与原底托板连接。后斜板衬板1块,四周用l6条M16 X60的沉头螺栓与原后斜板连接。侧板衬板左右各1块,每块用22条M16 X60的沉头螺栓与侧板连接。(4)弧形门增加电动控制装置装置包括电动机、减速器、卷筒、钢丝绳、导向滑轮、固定平台。电动机和减速器采用SSJ一1000110 X 2型可伸缩带式输送机的收带装置,卷筒和导向滑轮自制加工,钢丝绳直径 l5.5,固定平台由612钢板和矿用l2 工字钢制作。改造后,给煤机在运行过程中可实现无级调节,可随时控制给煤量的大小,当有水煤时,司机可立即按下控制按钮,将弧形门放下,减少给煤量。当水煤放完后,可将弧形门重新开大,调大给煤量。弧形门上设有过位保护装置,使弧形门在最低位置时与底托间之间仅有2050的间隙,这样可防止弧形门挤坏底托板,经现场使用,效果良好。(5)实施要点1)在新安装每台给煤机时应事先在下井前完成上述改造项目。如果使用后再进行改造,由于底托板、后斜板与侧板变形弯曲,实施难度加大。2)所有衬板用沉头螺栓与底托板、后斜板、侧板连接后,再在各板四边进行点焊,使衬板与原板牢靠地成为一体,可大大延长衬板的使用时间,同时便于更换衬板。3)弧形门电动控制装置平台与给煤机放煤口要保持一定的安全距离(一般为1215),当煤仓内有大量水煤时,司机可站在给煤机前方安全地点操作,可确保人身安全,此点在斜巷运输中更为重要。1.3.3 经济效益(1)K4型给煤机改造前,一般只能用2 a,改造后可使用56 a,每台改造费用1万元,计入6a内更换衬板2次、费用2万元,共计3万元。而在改造前6a内需更换2台给煤机,需花费30万元。(2)对于运煤系统而言,运煤系统沿途布置多台给煤机,每台给煤机检修时,为了确保安全,需停止下面的带式输送机,这样将严重制约运煤系统的运行时间;改造后,由于可避免运煤系统输送机频繁停机,从而可提高主运煤系统的有效运行时间。2、往复式给料机的结构设计2.1给煤机的外型尺寸参考表1-2 K-4型往复式给煤机取料仓宽度为=1500,底托板材料选用Q235钢长度为L=2400 。已知给煤机的行程取=300。给料量1200吨时=20 ,曲柄转速62 。由此可推出每转推出煤的容积为:曲柄每转推出煤为吨=322.6查表得散煤的容重由式得推出煤的最低高度:取底托板焊接在热扎等边角钢焊成的架子上。查手册选用型号为10的角钢,角钢的基本参数为:截面积 理论质量 所需角钢的长度为:角钢的质量为:底托板尺寸为:在底托板的两侧各加一块钢板用来挡煤,防止煤洒落。钢板选用与底托板相同的材料,钢板的尺寸为:在底托板的前后两端各加一块钢板用来挡煤,防止煤洒落。钢板选用与底托板相同的材料,钢板的尺寸为:在底托板的下面四个滚轮滚动的地方各焊接一块钢板,钢板选用与底托板相同的材料,钢板的尺寸为:整个钢板的质量为:2.2能耗分析往复式给煤机的运行阻力往复式给煤机运行时,电动机功率主要消耗在克服下列阻力上。正行时:底板在托滚轮上的运动阻力F1和煤与固定侧板的摩擦阻力。逆行时:底板在托滚轮上的运动阻力F1和煤与底板的摩擦阻力。此外,还有一些能量消耗在克服底板加速运动时的动阻力上。往复式给煤机正行时的功耗是有效功耗,逆行时的功耗是无效功耗。2.2.1产生运行阻力的因素采用倾斜式仓口漏斗由于煤仓出口处压力的作用,使底板产生了运行阻力,如果采用倾斜的仓口漏斗,使煤仓出口压力对底板作用减小或不作用在底板上,底板的运行阻力就可以大大减小。 图2-1往复式给料机计算简图式中给煤机槽体内煤的质量, ; 给煤机运动部件的质量, ; 重力加速度,g=9.81; 给煤机底板水平投影长度, ;底板在托滚轮上的运动阻力系数,=0.08; 煤与钢的摩擦系数,=0.50.7; 煤对侧板的侧压系数=0.995; 煤的松散容重,=950; h底板上煤的厚度,。 K型往复式给煤机计算简图见图2-1。 正行阻力: 逆行阻力: 2.2.2运行阻力的计算运行阻力按正行阻力和逆行阻力的均方值计算,即: Q235的密度=7.85 给煤槽的运行速度和加速度用VB程序模拟曲柄滑块机构的运动,可得到最大速度和加速度模拟程序见附录底托板运行所需的功率为: 、减速器设计3.1电动机选型减速器用三对轴承,选用深沟球轴承查得其效率为齿轮选用直齿圆柱齿轮,其效率为联轴器选用弹性套柱销联轴器,型号为TL8,许用转矩T=710000N.mm。曲柄的效率:连杆的效率总效率为:电动机所需的功率为: 所以电机选:型号为YB200L2-6电机总功率22同步速度1000电机的满载转速为970 堵转转矩的额定转矩为1.8最大转矩的额定转矩为2.0查表可知电机轴直径为55 3.2传动比分配总传动比为15.75i=1.4ii=3.35取i=3.5,i=4.5 3.3计算传动装置的运动和动力参数 电动机功率 轴 轴 轴 3.4齿轮的设计3.4.1第一对齿轮的设计(1)选择齿轮材料查表2-17小齿轮选用20CMT渗碳淬火 HRC=5662 大齿轮选用20CMT渗碳淬火 HRC=5662(2)按齿面接触疲劳强度计算确定齿轮传动精度等级,按估取圆周速度,参考表8-14,表8-15选取 公差组8级小轮分度圆直径d,由式(8-64)得齿宽系数查表823按齿轮相对轴承为非对称布置,取 小齿轮齿数在推荐值20-40中选大齿轮齿数 齿数比 传动比误差 误差在5%范围内合适小齿轮转矩 由式(8-53)得载荷系数K由式8-54得使用系数查表8-20 动载荷系数查图8-57得初值 齿向载荷分布系数查图8-60 齿间载荷分配系数由式(8-55)及得查表821并插值则载荷系数的初值弹性系数 查表8-22得节点影响系数查图864(=0,)得重合度系数查图865(=0)得许用接触应力由式(869)得接触疲劳极限应力、查图869应力循环次数由式(870)预设给煤机每天工作20小时,每年工作300天,预期寿命为6年则查图8-70得,接触强度的寿命系数 、(不允许有点蚀)硬化系数查图8-71及说明接触强度安全系数查图8-27,按一般可靠度查1.1取13641364故的设计初值为:齿轮模数: 查表83得 小轮分度圆直径的参数圆整值: 圆周速度V: 与估计取Vt=5m/s有差距,对Kv取值有影响,需修正Kv查图8-57 Kv=1.18 小轮分度圆直径 大轮分度圆直径 中心距 齿宽 大轮齿宽小轮齿宽 (3)齿根弯曲疲劳强度校核计算由式(866)齿形系数查图8-67 小轮 大轮 应力修正系数 查图8-68 小轮 大轮 重合度系数 由式(8-67) 许用弯曲应力 由式(8-71)弯曲疲劳极限 查图8-72 弯曲寿命系数 查图8-73尺寸系数 查图8-74 =1安全系数 查表8-27 则 故:齿根弯曲强度足够3.4.2 第二对齿轮的设计 (1)选择齿轮材料查表2-17小齿轮选用20CMT渗碳淬火 HRC=5662 大齿轮选用20CMT渗碳淬火 HRC=5662(2)按齿面接触疲劳强度计算确定齿轮传动精度等级,按v=(0.0130.022) 估取圆周速度,参考表8-14,表8-15选取 公差组8级小轮分度圆直径d,由式(8-64)得d=齿宽系数查表823按齿轮相对轴承为非对称布置,取 小齿轮齿数在推荐值20-40中选大齿轮齿数 齿数比 传动比误差 =0.00误差在5%范围内 合适小轮转矩 由式(8-53)得载荷系数K由式8-54得使用系数查表8-20 K=1.75 动载荷系数K查图8-57得初值K K=1.12齿向载荷分布系数查图8-60 齿间载荷分配系数K由式(8-55)及=0得查表821并插值则载荷系数K的初值坏而后人防b弹性系数 查表8-22得节点影响系数查图864(=0,)得重合度系数查图865(=0)得许用接触应力由式(869)得接触疲劳极限应力、查图869应力循环次数由式(870)预设给煤机每天工作20小时,每年工作300天,预期寿命为6年则查图8-70得,接触强度的寿命系数 、(不允许有点蚀)硬化系数查图8-71及说明接触强度安全系数查图8-27,按一般可靠度查1.1取13641364故的设计初值为齿轮模数m: 查表83得 小轮分度圆直径的参数圆整值 圆周速度V: 与估计取Vt=2m/s很相近,对Kv取值影响不大,不必修正Kv Kv=小轮分度圆直径 大轮分度圆直径 中心距 齿宽 大轮齿宽小轮齿宽 (3)齿根弯曲疲劳强度校核计算由式(866)齿形系数查图8-67 小轮 大轮 应力修正系数 查图8-68 小轮 大轮 重合度系数 由式(8-67) 许用弯曲应力 由式(8-71)弯曲疲劳极限 查图8-72 弯曲寿命系数 查图8-73尺寸系数 查图8-74 =1安全系数 查表8-27 则 故:齿根弯曲强度足够。齿轮设计时所用的公式、表和图参考机械设计工程学。3.4.3大齿轮的腹板设计查表4.10-1得 第一对齿轮中大齿轮的腹板设计取取第二对齿轮中大齿轮的腹板设计取取齿轮的腹板设计时,所查的表和图全部参考机械设计课程设计中10.1圆柱齿轮的结构表4.10.1。3.5传动轴的设计3.5.1轴的设计(1)该轴上的转矩 : (2)求出作用在齿轮上的力输入轴齿轮的分度圆直径为:, 圆周力、径向力和轴向力的大小如下,方向如图3-2所示。 (3)确定轴的最小直径选取轴的材料为45钢,调质处理。按式4-2初估轴的最小直径,查表4-2,取A=115,可得 (4) 轴的结构设计1)拟定轴上零件的装配方案装配方案如图3-1所示2)按轴向定位要求确定各轴段直径和长度轴段该轴段安装滚动轴承。因轴承只承受径向力,选择深沟球轴承。选用6411型深沟球轴承。其基本尺寸,取轴段直径 mm。取齿轮距箱体内壁的距离,考虑到箱体的铸造误差,滚动轴承应距箱体有一段距离,取, 。图3-1 轴的结构图轴段该轴段安装齿轮,齿轮左端采用套筒定位。取轴段直径 ,已知齿轮的轮毂宽度为,为了使套筒端面可靠地压紧齿轮,轴段长度应略短于齿轮毂孔宽度取轴段该轴段为轴环。取齿轮右端轴肩高度,则轴环直径,轴段长度轴段该轴段安装齿轮,该轴段左端有一轴肩取,则轴段直径。已知齿轮轮毂宽度为,为了使套筒端面可靠地压紧齿轮,轴段应略短于齿轮毂孔宽度取。轴段该轴段与轴段相同,取, 3)轴上零件的周向固定齿轮与轴的周向定位采用双键B型普通平键,平键的尺寸分别为, 。为了保持齿轮与轴有良好的对中性,取齿轮与轴的配合为。滚动轴承与轴的周向定位采用过渡配合保证,因此轴段直径的尺寸公差取为。4)确定轴上的圆角和倒角尺寸各处轴肩的圆角半径见图,轴端倒角取。(5)轴的强度校核1)求轴的载荷首先根据轴的结构作出轴的计算简图(见图3-2)。在确定轴承的支点位时,手册中查取a值(见表4-16(b)。对于6411型深沟球轴承,查得,因此轴的支撑跨距。根据轴的计算简图作出轴的弯矩图、扭矩图和当量弯矩图(见图3-2)。从轴的结构图和当量弯矩图中可以看出,C截面的当量弯矩最大,是轴的危险截面。C截面处的支反力: 水平面 垂直面弯矩和: 水平面垂直面合成弯矩: 扭矩: 当量弯矩:2)校核轴的强度轴的材料为45钢,调质处理。由表4-1查得,轴的计算应力为图3-2轴的计算简图根据计算结果可知,该轴满足强度要求。3.5.2轴的设计(1)该轴上的转矩 (2)求出作用在齿轮上的力输入轴齿轮的分度圆直径为 圆周力、径向力和轴向力的大小如下,方向如图3-4所示。 (3)确定轴的最小直径选取轴的材料为45钢,调质处理。按式4-2初估轴的最小直径,查表4-2,取A=115,可得 轴段(见图3-3)用于安装联轴器,其直径应该与联轴器的孔径相配合,因此要选用联轴器。联轴器的计算转矩,根据工作情况选取,则。联轴器连接电机与减速器,电机轴的直径为,根据工作要求选用弹性套柱销联轴器,型号为,许用转矩。与输出轴连接的半联轴器孔径,因此轴段的直径。半联轴器轮毂总宽度(J形轴孔),与轴配合的毂孔长度。(4) 轴的结构设计1)拟定轴上零件的装配方案装配方案如图3-3所示图3-3 轴的结构图2)按轴向定位要求确定各轴段直径和长度轴段半联轴器左端用轴端挡圈定位,按轴段的直径 ,取挡圈直径。为保证轴端挡圈压紧半联轴器,轴段的长度应比半联轴器配合段毂孔长度略短23,取。轴段为了半联轴器的轴向定位,轴段右端制出轴肩,取轴肩高度,所以轴段的直径根据减速器与轴承端盖的结构,确定端盖的总宽度为。根据端盖装拆要求,取端盖外端面与半联轴器右端面之间的距离为,因此取。轴段该轴段安装滚动轴承。考虑轴承只承受径向力,选择深沟球轴承。取轴段直径为,选用6313型深沟球轴承。其基本尺寸,则 。轴段取轴肩高度,则轴环直径,轴环长度根据二轴取。轴段该轴段做成齿轮轴,取轴段直径,已知齿轮的轮毂宽度为,取轴段长度等于轮毂长 轴段该轴段同轴段,取该段轴径,轴环长度根据结构取轴段该轴段直径与轴段相同,取,轴段长度。3)轴上零件的周向固定滚动轴承与轴的周向定位采用过渡配合保证,因此轴段直径的尺寸公差取为。轴与半联轴器的周向定位采用A型普通平键,平键的尺寸为。为了保持齿轮与轴有良好的对中性,取齿轮与轴的配合为。4)确定轴上的圆角和倒角尺寸各处轴肩的圆角半径见图,轴端倒角取。(5)轴的强度校核1)求轴的载荷首先根据轴的结构作出轴的计算简图(见图3-4)。在确定轴承的支点位时,手册中查取a值(见表4-16(b)。对于6013型深沟球轴承,查得,因此轴的支撑跨距。根据轴的计算简图作出轴的弯矩图、扭矩图和当量弯矩图(见图3-4)。从轴的结构图和当量弯矩图中可以看出,C截面的当量弯矩最大,是轴的危险截面。C截面处的支反力: 水平面 垂直面弯矩和 : 水平面垂直面合成弯矩 扭矩 当量弯矩图3-4轴的计算简图2)校核轴的强度轴的材料为45钢,调质处理。由表4-1查得,则0.090.15865 取轴的计算应力为根据计算结果可知,该轴满足强度要求。3.5.3 轴的设计(1)该轴上的转矩 (2)求出作用在齿轮上的力输入轴大齿轮的分度圆直径为 圆周力、径向力和轴向力的大小如下,方向如图3-6所示。 (3)确定轴的最小直径选取轴的材料为45钢,调质处理。按式4-2初估轴的最小直径,查表4-2,取A=115,可得 (4)轴的结构设计1)拟定轴上零件的装配方案装配方案如图3-5所示图3-5轴的结构图2)按轴向定位要求确定各轴段直径和长度轴段该轴段安装曲柄,取轴段直径。该轴段。轴段为了曲柄的轴向定位,轴段右端制出轴肩,取轴肩高度,所以轴段的直径取。根据减速器与轴承端盖的结构,确定端盖的总宽度为。根据端盖装拆要求,取端盖外端面与半联轴器右端面之间的距离为,因此取。轴段该轴段安装滚动轴承。考虑轴承只承受径向力,选择深沟球轴承。取轴段直径为,选用6317型深沟球轴承。其基本尺寸。根据与二轴的配合,则 。轴段该轴段安装齿轮,齿轮左端采用套筒定位。取轴段直径,已知齿轮的轮毂宽度为,为了使套筒端面可靠地压紧齿轮,轴段长度应略短于齿轮毂孔宽度取轴段该轴段为轴环。取齿轮右端轴肩高度,则轴环直径,轴段长度 。轴段该轴段直径与轴段相同,取,轴段长度。轴段该轴段与轴段相同,轴段长度。轴段该轴段与轴段相同安装曲柄,该轴段直径,轴段长度。3)轴上零件的周向固定齿轮与轴的周向定位采用双键B型普通平键,平键的尺寸为 。曲柄与轴的周向定位采用B型普通平键,键的尺寸为。为了保持齿轮与轴有良好的对中性,取齿轮与轴的配合为滚动轴承与轴的周向定位采用过渡配合保证,因此轴段直径的尺寸公差取为。4)确定轴上的圆角和倒角尺寸各处轴肩的圆角半径见图,轴端倒角取。(5)轴的强度校核1)求轴的载荷首先根据轴的结构作出轴的计算简图(见图3-6)。在确定轴承的支点位时,手册中查取a值(见表4-16(b)。对于6013型深沟球轴承,查得,因此轴的支撑跨距。根据轴的计算简图作出轴的弯矩图、扭矩图和当量弯矩图(见图3-6)。从轴的结构图和当量弯矩图中可以看出,C截面的当量弯矩最大,是轴的危险截面。C截面处的支反力: 水平面 垂直面弯矩和: 水平面垂直面合成弯矩 扭矩 图3-6轴的计算简图当量弯矩2)校核轴的强度轴的材料为45钢,调质处理。由表4-1查得,则0.090.15865 取轴的计算应力为根据计算结果可知,该轴满足强度要求。轴设计时所用到的表和图,参考机械设计工程学。3.5.4键的强度校核轴上键的强度校核键的尺寸,材料45钢。式中键与轮毂槽的接触高度,为键高;键的工作长度,为键宽;许用挤压应力,查表2-21得。键满足强度要求。轴上键的强度校核键的尺寸分别为, 键满足强度要求。轴上键的强度校核键的尺寸分别为, 键满足强度要求。3.5.5 轴承的校核轴上的轴承为6313型深沟球轴承,查手册,6313轴承的主要性能参数为:1)计算轴承支反力1、水平支反力: 2、垂直支反力: 3、合成支反力: 2)轴承的派生轴向力为零。3)轴承所受的轴向载荷为零。4)轴承的当量动载荷(1),查表5-12由式5-7(2),查表5-12得5)轴承寿命因,故应按计算,由表5-9、表5-10得。按式5-5轴上的轴承为6411型深沟球轴承,查手册,6411轴承的主要性能参数为:1)计算轴承支反力1、水平支反力: 2、垂直支反力: 3、合成支反力: 2)轴承的派生轴向力为零。3)轴承所受的轴向载荷为零。4)轴承的当量动载荷1、,查表5-12由式5-72、,查表5-12得5)轴承寿命因,故应按计算,由表5-9、表5-10得。按式5-5轴上的轴承为6317型深沟球轴承,查手册,6317轴承的主要性能参数为:1)计算轴承支反力1、水平支反力: 2、垂直支反力: 3、合成支反力: 2)轴承的派生轴向力为零。3)轴承所受的轴向载荷为零。4)轴承的当量动载荷1、,查表5-12由式5-72、,查表5-12得5)轴承寿命因,故应按计算,由表5-9、表5-10得。按式5-5通过以上计算可知轴承可满足使用要求。轴承校核时所用到的公式、表和图,参考机械设计工程学。3.6减速器箱体的结构设计减速器的箱体是支承和安装齿轮等传动零件的基座,因此,它本身必轴上键的校核须具有很好的刚性,以免产生过大的变形而引起齿轮上载荷分布不均。为此目的,在轴承座凸缘的下部设有肋板。箱体多制成剖分式,剖分面一般设在水平位置并与齿轮轴面重合。箱体选用铸铁。表3-1减速器铸造箱体的结构尺寸名 称代 号荐用尺寸关系下箱座壁厚两级齿轮减速器上箱盖壁厚下箱座剖分面处凸缘厚度上箱盖剖分面处凸缘厚度地脚螺栓底脚厚度箱座上的肋厚箱盖上的肋厚两级圆柱齿轮减速器中心距之和轴承旁联接螺栓(螺钉)直径轴承旁联接螺栓通孔直径轴承旁联接螺栓沉头座直径轴承旁凸台的凸缘尺寸(扳手空间)上下箱联接螺栓(螺钉)直径上下箱联接螺栓通孔直径上下箱联接螺栓沉头座直径箱缘尺寸(扳手空间)地脚螺栓直径地脚螺栓孔直径地脚螺栓沉头座直径底脚凸缘尺寸(扳手空间)地脚螺栓数目轴承盖螺钉直径见表4.9-4检查孔盖联接螺钉直径圆锥定位销直径减速器中心高轴承旁凸台高度根据低速轴轴承座外径和扳手空间的要求,由结构确定轴承旁凸台半径轴承端盖(即轴承座)外径见表4.9-4轴承旁联接螺栓距离取箱体外壁至轴承座端面的距离轴承座孔长度(即箱体内壁至轴承座端面的距离)大齿轮顶圆与箱体内壁间距离齿轮端面与箱体内壁间距离3.7轴承盖选用螺钉联接式轴承盖-端盖联接螺钉直径见表3-2表3-2轴承外径D螺钉直径端盖上螺钉数目456570100110140150230681012166图3-7螺钉联接式轴承盖的尺寸图轴上轴承盖的尺寸该轴上轴承的大径为140 ,故=10 m由结构确定由密封尺寸确定轴上轴承盖的尺寸该轴上轴承的大径为140,故=10m由结构确定由密封尺寸确定轴上轴承盖的尺寸该轴上轴承的大径为180,故=12m由结构确定由密封尺寸确定3.8起吊装置吊耳和吊钩的尺寸确定取图3-8箱座上的吊耳箱座上的吊耳见表3-1螺塞的选择根据表4.9-63.9封油垫材料封油垫材料:石棉橡胶板,工业用革;螺塞材料:Q235-A。通气塞的选择根据表4.9-2轴承盖、起吊装置吊耳和吊钩的尺寸确定及封油垫材料选用和设计时所用的表参考机械设计课程设计。4、给煤机的零件设计4.1滚轮轴的设计选择轴的材料为45钢,查表4-2得45钢的许用剪切应力为滚轮处轴所受的力:该处轴的截面积为该处轴的剪切应力为:轴的结构设计1)拟定轴上零件的装配方案装配方案如图41所示2)按轴向定位要求确定各轴段直径和长度轴段 该轴段直径根据结构要求取,根据结构取轴段长度。轴段该轴段带有螺纹拧定位小圆螺母,选则型号为的小圆螺母则轴段直径为。该轴段拧两个小圆螺母,查手册小圆螺母的宽度,则该轴段的长度取 。图41托辊轴的结构图轴段该轴段安装轴承,轴承选用型号为32214的圆锥滚子轴承,取轴段直径为,轴承的基本尺寸为:。两个轴承对装,两个轴承中间用一个套筒。套筒内径取70mm,外径取79,套筒长度取20 。该轴段的长度。轴段为了轴承的轴向定位,轴段右端制出轴肩,取轴肩高度,所以轴段的直径,轴段长度。轴段该轴段的轴径,轴段的长度。轴段该轴段与轴段相同,该轴段直径。轴段长度为。轴段该轴段与轴段相同,该轴段直径。轴段长度为。轴段该轴段与轴段相同,该轴段直径。轴段长度为。轴段该轴段与轴段相同,该轴段直径。轴段长度为。图42托辊轴受力分析图支反力: 垂直面垂直面2)校核轴的强度轴的材料为45钢,调质处理。由表4-1查得,则0.090.15865 取轴的计算应力为根据计算结果可知,该轴满足强度要求。4.2曲柄的设计给料机的往复行程为300mm,取曲柄的长度为150mm。曲柄选用活动曲柄,曲柄与减速器的周向定位采用键连接,其结构如图43所示。图43曲柄的结构图4.3连杆的设计根据总体结构之间的位置关系,取连杆的长度为,其结构如图44所示。图44连杆的结构图4.4给煤槽的设计参考K4型给料机的给煤槽的的结构尺寸,取长度:宽度:其结构及尺寸如图45所示。图45给煤槽的结构图4.5闸门的设计闸门的作用是控制煤流量,并在停机时将出口封死。即要求:当门在最高位置时,到给煤槽的距离H800;当门在最低位置时,到给煤槽的距离H25。取闸门半径为:。其结构如图46所示。图46闸门的结构图5、主要零件的加工工艺5.1齿轮的加工工艺该齿轮属于重载齿轮,用于给煤机的减速器。重载齿轮主要指为矿山、冶金、建材、石油、化工、电站、锻压、起重运输机械等主机的配套的齿轮和通用减速器中的齿轮。其作为齿轮制造行业中的重要组成部分,经过数十年的发展,在国内已具有相当的规模和实力。特别是从70年代后期至80年代,我国在引进冶金、建材、石油、化工、电站等方面的大型成套设备中,同时引进了与其配套的齿轮制造技术。与此同时,国内一些重载齿轮生产厂家也进口了一系列的大型高精度切齿设备、大型齿轮检测设备以及热处理设备。如3.5m磨齿机、2.5m齿轮检测仪、大型高精度滚齿机、大型滚刀磨床、2m渗碳炉等。通过技术引进和消化吸收工作,以及围绕提高齿面承载能力进行的一系列科研攻关,加之先进的齿轮制造设备几检测设备的引进,大大促进了我国重载齿轮行业制造技术的发展,逐步缩小了我国重载齿轮产品水平与国外先进水平的差距。这方面的标志是国内重载齿轮制造行业一发展到以渗碳淬火磨齿齿轮为主导地位的新阶段,基本上可以满足国内大型成套设备的配套要求。5.1.1硬齿面齿轮的工艺特点1、强调高精度硬齿面齿轮的齿面接触疲劳强度和齿根抗弯强度都很高,但是接触应力和弯曲应力的大小和精度是密切相关的。齿轮和箱体等的制造和装配误差均会引起齿面和齿根的局部过载,从而影响齿轮实际承载能力。硬齿面齿轮只有在高精度的条件下,其承载能力高的特点才能充分发挥。由于硬齿面齿轮的跑合性能比软齿面齿轮差的多,所以由于精度低造成硬齿面齿轮承载能力下降,其后果要比软齿面严重的多。可以说今后硬齿面齿轮加工工艺的研究重点,旨在提高制造精度。2、更有必要进行齿廓和齿向修形对于重载齿轮,特别是硬齿面齿轮,由于其弹性变形很大,跑合性能又极差为了减少由于齿轮受载变形所引起的啮入啮出冲击,改善啮合过程中齿面载荷分配特性,减少振动噪声和动载荷,更有必要进行齿廓修形;另一方面,为了使一同受载变形后,载荷沿齿宽均匀分布,亦更有必要进行齿向修形。3、降低齿面的表面粗糙度软齿面的表面粗糙度对齿面承载能力的影响微不足道的,而硬齿面的表面粗糙度对齿面承载能力的影响很大。因此要求硬齿面较软齿面具有更低的表面粗糙度数值。硬质合金滚刀精滚后采用蜗杆式珩磨轮珩齿,甚至磨齿后珩齿,进一步降低表面粗糙度,其目的就在于此。5.1.2渗碳齿轮的加工工艺表5-1渗碳齿轮的加工工艺工序号工序名称工序内容及说明0锻造1粗车 各内外圆及端面留量,总余量=正火后车削余量+渗碳后车去渗碳层余量+淬火后精车余量全部棱边按留量倒角;图样台肩圆角小于R5按R5加工,大于R5按图加工,全部表面粗糙度不大于2探伤 超声波探伤3正火4车 按外圆及端面找正 凹槽车成 齿顶圆直径,根据生产实践中掌握的热处理变形规律,工艺要求车小于热处理后涨大量相同的尺寸,以及热处理后,齿顶圆直径大致符合图样尺寸要求 若粗滚齿时测量齿厚,须由检查员测量实际齿顶圆直径,并在非基准面上标明,以备粗滚齿测量齿厚时进行修正 内径及端面留量,总余量=渗碳后车去渗碳层余量+淬火后车削余量 全部棱边倒角按余量倒角,全部表面粗糙度不大于5划线 划端面孔线6钻 钻端面孔7镗 将端面孔镗至图样要求尺寸8粗滚齿 采用磨前滚刀滚齿,要求精度达8-8-8(GB10095-88)测量公法线长度或齿厚,留出半精滚齿及磨齿余量9钳工端面齿形及齿顶沿齿长棱边倒角10渗碳11车 按齿顶圆及端面找正 车去内孔及端面渗碳层,内孔及端面留量,余量为淬火后车削余量 12钳工端面齿形倒角13淬火14喷丸15车 按齿圈找正;直齿轮在卡盘卡爪位置的四个齿槽两端均布8个磁性找正棒。在相距0.8齿宽的两个截面上,找正齿圈径向跳动。 按图车成各部,在齿顶圆中部车宽10找正,见图即可 调装,端面靠平铁(平铁预先光一刀),用0.02塞尺检查不入,按找正带找正,按图车成其余各部16探伤17划线 划键槽加工线18插插键槽19钳工 将此件与轴、键装配20精车 按两端基准轴颈找正,径向圆跳动允差0.02 基准端面轻光一刀,见平即可 在齿顶圆中部车宽 10找正,见圆即可 若半精滚齿及磨齿时是测量齿厚,应在滚齿切入端,车宽度大于法向模数的测量带,车圆即可。须由检查员测量实际齿顶圆直径,并在非基准面上标明,以备半精滚齿、磨齿测量齿厚时进行修正21半精滚齿 按一端基准轴颈及齿顶圆找带找正;或按齿顶圆找正带 采用硬质合金滚刀半精滚齿,留磨余量为粗滚齿留出余量的1/4,要求精度达到7-8-8(GB1009588),精度7-8-8(GB1009588)或以下可以精滚成22磨齿 按两端基准轴颈找正,径向圆跳动允差0.01 采用将轴装入齿轮后,按两端基准轴径找正,精车基准端面和齿顶圆找正带,半精滚齿和磨齿时,按基准轴径和精车后的基准面找正的工艺方法,可以显著的减少由于齿轮轴线倾斜引起的附加几何偏心而造成的齿距累积误差;以及齿轮轴线倾斜造成的齿向误差这是提高齿轮精度行之有效的工艺方法23检查 按图样要求检查齿轮精度,在检查齿形时同时检查渐开线长度是否足够 检查是否有磨齿烧伤、裂纹 检查齿根部是否出现磨齿24钳工 端面齿形及齿顶沿齿长棱边倒角 做静平衡5.2轴的加工工艺表5-2渗碳轴齿轮的加工工艺工序号工序名称工序内容及说明0锻造1划线 检查毛坯余量 划一端中心孔加工线2打中心孔 平一端面并打中心孔3粗车 各外圆及端面留量,总余量=正火后车削余量(齿顶圆仅此一项)+渗碳后车去渗碳层余量+淬火后车削余量+外圆及端面磨削余量。为了避免热处理时由于应力集中造成裂纹:全部棱边按留量倒角;图样台肩圆角小于R5按R5加工,大于R5按图加工;全部表面粗糙度不大于(同时为了超声波探伤要求)。根据工艺需要车出热处理吊台4探伤 超声波探伤检查齿坯是否有缺陷。若齿坯内部质量不合格就报废5正火预备热处理。目的是使齿坯组织细化和均匀化,减少渗碳淬火时的变形6车 车两轴端端面,修打两端中心孔。齿顶圆按图车成。齿宽按图车成。其余外圆及端面留量,总余量=渗碳后车去渗碳层余量+淬火后车削余量+外圆及端面磨削余量倒角、台肩圆角、其余表面粗糙度要求同工序37粗滚齿 齿形预加工,要求精度达到8-8-8(GB1009588)采用带触角的磨前滚刀,在齿形根部切出沉割。测量公法线长度,并留出半精滚齿及磨齿余量8钳工 端面齿形及齿顶沿齿长棱边倒角,避免热处理时产生裂纹9渗碳10车 按齿顶圆两端找正。车成轴端端面,修打两端中心孔。车去各部渗碳层,外圆及端面留量,总余量=淬火后车削余量+外圆及端面磨削余量。倒角、台阶圆角、表面粗糙度要求同工序311淬火12喷丸 目的是:清除热处理氧化皮;使齿根部产生残余应力,以提高齿根抗弯疲劳强度13半精车 切去热处理吊台,保持总长 直齿轮在卡盘卡爪位置的四个齿槽两端均布8个磁性找正棒。在相距0.8齿宽的两个截面上,找正齿圈径向跳动。 调节卡盘卡爪和置于中心架上的固定于另一端的定位套,进行找正。修打两端中心孔 需磨削的外圆及端面要留量,其余车成。全部表面粗糙度不大于14探伤 超声波探伤,此次探伤结果最终确定齿坯内部质量是否合格15磨 磨外圆及端面16半精滚齿按两端轴径找正,采用硬质合金滚刀半精滚齿,留磨余量为粗滚齿留出余量的1/4。要求精度达到7-8-8(GB1009588)。设计要求精度为7-8-8(GB1009588)或更低可精滚成17磨齿 按两端基准轴径找正,径向圆跳动允差0.01 齿廓根部切出沉割,意图是避免齿槽根部磨削,其好处是:避免降低槽底硬度,及保持渗碳、淬火、喷丸后形成的压力应力层,以提高齿根抗弯疲劳强度;槽底狭小,散热条件差,以及过渡曲线处余量大小变化大,易产生磨削烧伤和裂纹;槽底磨削条件差,砂轮外圆磨粒易脱落和磨损,从而影响磨齿质量。总之,齿槽根部不磨削可以提高齿轮承载能力,避免磨齿损伤,提高磨齿质量,降低磨齿负荷,提高生产效率 调整好磨齿机后,每批首件试磨,然后对其进行精度检测,根据齿形和齿向的检测结果,对磨齿机进行小调整,直至磨出合格的产品18. 按图样要求检查齿轮精度,在检查齿形时,同时检查渐开线长度是否足够,检查是否有磨齿烧伤、裂纹;检查齿根部是否出现磨齿凸台19划线 划键槽加工线20铣 铣键槽21钳工 端面齿形及齿顶沿齿长棱边倒角结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论