转向臂零件数控加工工艺及加工仿真[三维UG]【含CAD图纸全套】
收藏
资源目录
压缩包内文档预览:
编号:29840277
类型:共享资源
大小:5.69MB
格式:ZIP
上传时间:2019-12-06
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
三维UG
含CAD图纸全套
转向
零件
数控
加工
工艺
仿真
三维
UG
CAD
图纸
全套
- 资源描述:
-
【温馨提示】 dwg后缀的文件为CAD图,可编辑,无水印,高清图,压缩包内含CAD图的预览图片,仅用于预览,压缩包内文档可直接点开预览,需要原稿请自助充值下载,压缩包内的文件及预览,所见即所得,请细心查看有疑问可以咨询QQ:414951605或1304139763
- 内容简介:
-
毕业设计(论文)任务书I、毕业设计(论文)题目:丝网印花机系统设计II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:1. 本自动印花设备由可转位的工作台,可上下、左右移动的印花机构,和可左右移动的推网机构组成。通过各机构的协调动作,实现自动印花过程。2. 设计工作台的机械结构。3. 设计印花机构和推网机构的机械结构。4.设计控制系统的电路,实现工作台和印花机构的逻辑动作。III、毕 业设计(论文)工作内容及完成时间:1.搜集资料写开题报告,英文翻译。 第1周第2周2.设计自动印花设备的机械结构,并绘制零件图和装配图。 第3周第8周3.设计控制系统的电路图。 第9周第11周4.编写相关控制算法。 第12周第14周5.撰写毕业论文。 第15周第16周6答辩准备及毕业答辩 第17周 、主 要参考资料:1.机械设计手册编委会机械设计手册北京:机械工业出版社,20042.成大先机械设计手册(机械传动)北京:化学工业出版社,20043.陈康宁等机械工程控制基础西安:西安交通大学出版社,19974.何克忠,李伟计算机控制系统北京:清华大学出版社,19985.李树雄PLC原理与应用北京:北京航空航天大学出版社,20066.R.T.Lee,W.H.ChengA Multizone Scaling Method for CAD in Shoe Sole DesignInt J AdvManuf Technol(2002)19:313-3177.C. H. LanOptimal Control of a Multistage Machining Operation on a Computer Numerically Controlled MachineInt J Adv Manuf Technol (2002) 20:807811 学院(系) 专业类 班学生(签名): 程周波填写日期: 2011年 1 月 3 日指导教师(签名): 高延峰助理指导教师(并指出所负责的部分):机械制造工程 系(室)主任(签名): 姚坤弟附注:任务书应该附在已完成的毕业设计说明书首页。毕业设计(论文)任务书I、毕业设计(论文)题目:旋转电弧传感器机械结构设计II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:1. 利用圆锥摆动方案实现导电嘴的旋转运动,采用空心轴电机驱动导电杆旋转。2. 设计局部排水结构,实现水下局部干法焊接。3. 设计传感器的总装图和主要零件的工程图。4. 设计各零件的三维模型,并进行虚拟装配。III、毕 业设计(论文)工作内容及完成时间:1.搜集资料写开题报告,英文翻译。 第1周第2周2.设计传感器的机械结构, 第3周第5周3.绘制零件图和装配图。 第6周第8周4.设计各零件的三维模型,进行虚拟装配。 第9周第14周5.撰写毕业论文。 第15周第16周6. 答辩准备及毕业答辩 第17周 、主 要参考资料:1.机械设计手册编委会机械设计手册北京:机械工业出版社,20042.成大先机械设计手册(机械传动)北京:化学工业出版社,20043.潘际銮现代弧焊控制现代弧焊控制北京:机械工业出版社,2000.64.曾松盛等基于电弧传感器的焊缝跟踪技术现状与展望焊接技术,2008,37(2):1-65. 贾剑平,张华,潘际銮用于弧焊机器人的新型高速旋转电弧传感器的研制J南昌大学学报(工科版),2000,22(3):1-46. Shi, Y.H, Yoo,W.S, Na, S.j. Mathematical modeling of rotational arc sensor in GMAW and its applications to seam tracking and endpoint detectionJ. Science and technology of welding and joining. 2006, 11(6): 723730. 学院(系) 专业类 班学生(签名): 黄屹立填写日期: 2011年 1 月 3 日指导教师(签名): 助理指导教师(并指出所负责的部分):机械制造工程 系(室)主任(签名): 姚坤弟附注:任务书应该附在已完成的毕业设计说明书首页。毕业设计(论文)任务书I、毕业设计(论文)题目:转向臂零件数控加工工艺、加工仿真II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:1使用的原始资料是转向臂零件图,材料为铝合金,毛坯为一长方体。2根据零件实物或模型在CAD/CAM软件中进行数字化三维设计。3 编制零件的数控加工工艺。4生成零件的NC加工程序,进行仿真加工。5 研究零件的加工误差检测方法。III、毕 业设计(论文)工作内容及完成时间:1 搜集资料写开题报告,英文翻译。 第1周第2周2 零件的三维建模。 第3周第5周3 加工工艺设计,加工程序编制 第6周第8周4.加工误差检测方法研究。 第9周第14周5.撰写毕业论文。 第15周第16周6.答辩准备及毕业答辩 第17周 、主 要参考资料:1 张冶,洪雪. Unigraphics NX三维工程设计与渲染教程.北京:清华大学出版社,2004.2 曾向阳,谢国明. UG NX基础及应用教程(建模、装配、制图). 北京:电子工业出版社, 2003.3 王红兵.UG NX数控编程实用教程.北京:清华大学出版社,2004.4宋晓华等.基于UG参数化的产品优化设计,CAD/CAM与制造业信息化,2003.45 L.Qiang. A Distributive and Collaborative Concurrent Product Design System Through the.WWW/Internet. Advanced Manufacturing Technology(2001)17. 航空制造工程 学院(系) 机械设计制造及其自动化 专业类 班学生(签名): 李琛填写日期: 2011年 1 月 3 日指导教师(签名): 助理指导教师(并指出所负责的部分):机械制造工程 系(室)主任(签名):附注:任务书应该附在已完成的毕业设计说明书首页。毕业设计(论文)任务书I、毕业设计(论文)题目:飞行模拟转台设计II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:1. 采用并联机构,由三个液压缸联接上下两个平台,下平台固定,上平台的位姿通过液压缸的伸缩调整。同时上平台上安装可以绕轴旋转机构,从而实现飞行姿态模拟。2. 通过控制液压缸的伸缩,从而调整上平台的位姿。3. 设计液压飞行模拟转台的机械结构。III、毕 业设计(论文)工作内容及完成时间:1. 搜集资料写开题报告,英文翻译。 第1周第2周2. 模拟转台的机械结构设计。 第3周第5周3. 绘制零件图和装配图。 第6周第8周4. 设计液压缸的液压回路。 第9周第10周5.对系统进行三维建模。 第11周第14周6. 撰写毕业论文。 第15周第16周 7. 答辩准备及毕业答辩 第17周 、主 要参考资料:1.赵佩华单片机接口技术及应用北京:机械工业出版社,20032.陈康宁等机械工程控制基础西安:西安交通大学出版社,19973.何克忠,李伟计算机控制系统北京:清华大学出版社,19984.成大先等机械设计手册(液压传动)北京:化学工业出版社,20045.机械设计手册编委会机械设计手册北京:机械工业出版社,20046.YUICHI SASAKI. Development of a computer-aided process planning system Based on a knowledge base. Marine science and technology(2003)7:175-179.7.Yu.I.Begichev, L.M.Koziorov, V.Yu.Lukanichev. Computer-Aided Flight Simulators: A Design Concept. Automation and Remote Control, 2001,7:1049-1056. 学院(系) 专业类 班学生(签名): 李江填写日期: 2011年 1 月 3 日指导教师(签名): 助理指导教师(并指出所负责的部分):机械制造工程 系(室)主任(签名):姚坤弟附注:任务书应该附在已完成的毕业设计说明书首页。毕业设计(论文)任务书I、毕业设计(论文)题目:鼠标上盖注塑模具设计与仿真加工II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:1.使用的原始资料可以是实物或自行设计。2.根据零件实物或模型在CAD/CAM软件中进行数字化三维设计,完成鼠标上盖的建模。3. 进行鼠标上盖凸凹模型面设计,并且设计模架、定位环、推杆、浇注系统、冷却系统等,完成模具的设计。4.生成鼠标上盖零件的NC加工程序,进行仿真加工。III、毕 业设计(论文)工作内容及完成时间:1查阅资料,英文资料翻译,撰写开题报告。 第1周第2周2. 鼠标上盖的三维建模。 第3周第5周 3. 凸凹模型面设计。 第6周第8周4. 注塑模具设计,绘制图纸。 第9周第11周5. 生成鼠标上盖零件的数控加工程序。 第12周第14周6. 撰写毕业论文。 第15周第16周7. 答辩准备及毕业答辩 第17周 、主 要参考资料:1.张洪兴等.数控机床编程、操作、维修,北京:航空工业出版社,2001.102.曾向阳,谢国明. UG NX基础及应用教程(建模、装配、制图). 北京:电子工业出版社,2003.3.盛晓敏等. 先进制造技术,北京:机械工业出版社,2000.94.李鲤,刘善春.基于UG下的数控加工快速编程,大众科技,2005.75.F.BACKS. Concurrent manufacturing of parts and tools for the sheet-metal Industry. Intelligent Manufacturing(1998)9,347-3526.C. K. Mok, K. S. Chin and John K. L. Ho. An Interactive Knowledge-Based CAD System For Mould Design in Injection Moulding Processes. Int J Adv Manuf Technol (2001) 17:2738 学院(系) 专业类 班学生(签名): 李琪填写日期: 2011年 1 月 3 日指导教师(签名): 助理指导教师(并指出所负责的部分):机械制造工程 系(室)主任(签名):姚坤弟附注:任务书应该附在已完成的毕业设计说明书首页。毕业设计(论文)任务书I、毕业设计(论文)题目:手机上盖注塑模具设计与仿真加工II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:1.使用的原始资料可以是实物或自行设计。2.根据零件实物或模型在CAD/CAM软件中进行数字化三维设计,完成鼠标上盖的建模。3. 进行手机上盖凸凹模型面设计,并且设计模架、定位环、推杆、浇注系统、冷却系统等,完成模具的设计。4.生成手机上盖零件的NC加工程序,进行仿真加工。III、毕 业设计(论文)工作内容及完成时间:1查阅资料,英文资料翻译,撰写开题报告。 第1周第2周2. 手机上盖的三维建模。 第3周第5周 3. 凸凹模型面设计。 第6周第8周4. 注塑模具设计,绘制图纸。 第9周第11周5. 生成手机上盖零件的数控加工程序。 第12周第14周6. 撰写毕业论文。 第15周第16周7. 答辩准备及毕业答辩 第17周 、主 要参考资料:1.张洪兴等.数控机床编程、操作、维修,北京:航空工业出版社,2001.102.曾向阳,谢国明. UG NX基础及应用教程(建模、装配、制图). 北京:电子工业出版社,2003.3.盛晓敏等. 先进制造技术,北京:机械工业出版社,2000.94.李鲤,刘善春.基于UG下的数控加工快速编程,大众科技,2005.75.F.BACKS. Concurrent manufacturing of parts and tools for the sheet-metal Industry. Intelligent Manufacturing(1998)9,347-3526.C. K. Mok, K. S. Chin and John K. L. Ho. An Interactive Knowledge-Based CAD System For Mould Design in Injection Moulding Processes. Int J Adv Manuf Technol (2001) 17:2738 学院(系) 专业类 班学生(签名): 刘健填写日期: 2011年 1 月 3 日指导教师(签名): 助理指导教师(并指出所负责的部分):机械制造工程 系(室)主任(签名):姚坤弟附注:任务书应该附在已完成的毕业设计说明书首页。毕业设计(论文)任务书I、毕业设计(论文)题目:管道外圆自动焊接机结构设计II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:1. 设计可以带动焊枪移动和转动的焊接机械手.2. 设计可以调整的圆形轨道,从而焊接不同外径的圆管。3. 设计系统的总体结构,实现沿管道外圆进行旋转焊接的功能。4. 绘制总体装配图和相关的零件图。III、毕 业设计(论文)工作内容及完成时间:1.搜集资料写开题报告,英文翻译。 第1周第2周2.研究设计方案,进行相关计算。 第3周第5周3.设计机械结构,并绘制装配图。 第6周第10周4.绘制各主要零件图。 第11周第14周5.撰写毕业论文。 第15周第16周6.答辩准备及毕业答辩 第17周 、主 要参考资料:1.机械设计手册编委会机械设计手册北京:机械工业出版社,20042.成大先机械设计手册(机械传动)北京:化学工业出版社,20043.焦向东等.球罐全位置焊接机器人智能控制系统.焊接学报,2000,21(4):144. 朱进满焊接机器人的应用J现代制造,2005,12:42475. W.-S Yoo,J.-D. Kim,S.-J. NaA Study on A Mobile Platform-manipulator Welding System for Horizontal Fillet JointsJMechatronics,2001,11:853868 学院(系) 专业类 班学生(签名): 刘敏填写日期: 2011年 1 月 3 日指导教师(签名): 助理指导教师(并指出所负责的部分):机械制造工程 系(室)主任(签名):姚坤弟附注:任务书应该附在已完成的毕业设计说明书首页。 毕业设计(外文翻译)题目: 步进电机和伺服电机的系统控制 系 别 航空与机械工程系专业名称 机械设计制造及其自动化班级学号 0781053学生姓名 李琛指导教师 高延峰二O一一 年 四月 Step Motor& Servo Motor Systems and ControlsMotion Architect Software Does the Work for You. Configure ,Diagnose, Debug Compumotors Motion Architect is a Microsoft Windows-based software development tool for 6000Series products that allows you to automatically generate commented setup code, edit and execute motion control programs, and create a custom operator test panel. The heart of Motion Architect is the shell, which provides an integrated environment to access the following modules. System ConfiguratorThis module prompts you to fill in all pertinent set-up information to initiate motion. Configurable to the specific 6000 Series product that is selected, the information is then used to generate actual 6000-language code that is the beginning of your program. Program EditorThis module allows you to edit code. It also has the commands available through “Help” menus. A users guide is provided on disk. Terminal EmulatorThis module allows you to interact directly with the 6000 product. “Help” is again available with all commands and their definitions available for reference. Test PanelYou can simulate your programs, debug programs, and check for program flow using this module.Motion Architect has been designed for use with all 6000 Series productsfor both servo and stepper technologies. The versatility of Windows and the 6000 Series language allow you to solve applications ranging from the very simple to the complex.Motion Architect comes standard with each of the 6000 Series products and is a tool that makes using these controllers even more simpleshortening the project development time considerably. A value-added feature of Motion Architect, when used with the 6000 Servo Controllers, is its tuning aide. This additional module allows you to graphically display a variety of move parameters and see how these parameters change based on tuning values.Using Motion Architect, you can open multiple windows at once. For example, both the Program Editor and Terminal Emulator windows can be opened to run the program, get information, and then make changes to the program.On-line help is available throughout Motion Architect, including interactive access to the contents of the Compumotor 6000 Series Software Reference Guide.SOLVING APPLICATIONS FROM SIMPLE TO COMPLEXServo Control is Yours with Servo Tuner SoftwareCompumotor combines the 6000 Series servo controllers with Servo Tuner software. The Servo Tuner is an add-on module that expands and enhances the capabilities of Motion Architect.Motion Architect and the Servo Tuner combine to provide graphical feedback of real-time motion information and provide an easy environment for setting tuning gains and related systemparameters as well as providing file operations to save and recall tuning sessions.Draw Your Own Motion Control Solutions with Motion Toolbox SoftwareMotion Toolbox is an extensive library of LabVIEW virtual instruments (VIs) for icon-based programming of Compumotors 6000 Series motion controllers.When using Motion Toolbox with LabVIEW, programming of the 6000 Series controller is accomplished by linking graphic icons, or VIs, together to form a block diagram.Motion Toolboxs has a library of more than 150 command,status, and example VIs. All command and status VIs include LabVIEW source diagrams so you can modify them, if necessary, to suit your particular needs. Motion Toolbox als user manual to help you gut up and running prehensiveM Software for Computer-Aided Motion Applications CompuCAM is a Windows-based programming package that imports geometry from CAD programs, plotter files, or NC programs and generates 6000 code compatible with Compumotors 6000 Series motion controllers. Available for purchase from Compumotor, CompuCAM is an add-on module which is invoked as a utility from the menu bar of Motion Architect.From CompuCAM, run your CAD software package. Once a drawing is created, save it as either a DXF file, HP-GL plot file or G-code NC program. This geometry is then imported into CompuCAM where the 6000 code is generated. After generating the program, you may use Motion Architect functions such as editing or downloading the code for execution.Motion Builder Software for Easy Programming of the 6000 SeriesMotion Builder revolutionizes motion control programming. This innovative software allows programmers to program in a way they are familiar witha flowchart-style method. Motion Builder decreases the learning curve and makes motion control programming easy.Motion Builder is a Microsoft Windows-based graphical development environment which allows expert and novice programmers to easily program the 6000 Series products without learning a new programming language. Simply drag and drop visual icons that represent the motion functions you want to perform.Motion Builder is a complete application development environment. In addition to visually programming the 6000 Series products, users may configure, debug, download, and execute the motion program. SERVO VERSUS STEPPER. WHAT YOU NEED TO KNOWMotor Types and Their ApplicationsThe following section will give you some idea of the applications that are particularly appropriate for each motor type, together with certain applications that are best avoided. It should be stressed that there is a wide range of applications which can be equally well met by more than one motor type, and the choice will tend to be dictated by customer preference, previous experience or compatibility with existing equipment.A helpful tool for selecting the proper motor for your application is Compumotors Motor Sizing and Selection software package. Using this software, users can easily identify the appropriate motor size and type.High torque, low speedcontinuous duty applications are appropriate to the step motor. At low speeds it is very efficient in terms of torque output relative to both size and input power. Microstepping can be used to improve smoothness in lowspeed applications such as a metering pump drive for very accurate flow control.High torque, high speedcontinuous duty applications suit the servo motor, and in fact a step motor should be avoided in such applications because the high-speed losses can cause excessive motor heating.Short, rapid, repetitive movesare the natural domain of the stepper due to its high torque at low speeds, good torque-to-inertia ratio and lack of commutation problems. The brushes of the DC motor can limit its potential for frequent starts, stops and direction changes.Low speed, high smoothness applications are appropriate for microstepping or direct drive servos.Applications in hazardous environmentsor in a vacuum may not be able to use a brushed motor. Either a stepper or a brushless motor is called for, depending on the demands of the load. Bear in mind that heat dissipation may be a problem in a vacuum when the loads are excessive.SELECTING THE MOTOR THAT SUITS YOUR APPLICATIONIntroductionMotion control, in its widest sense, could relate to anything from a welding robot to the hydraulic system in a mobile crane. In the field of Electronic Motion Control, we are primarily concerned with systems falling within a limited power range, typically up to about 10HP (7KW), and requiring precision in one or more aspects. This may involve accurate control of distance or speed, very often both, and sometimes other parameters such as torque or acceleration rate. In the case of the two examples given, the welding robot requires precise control of both speed and distance; the crane hydraulic system uses the driver as the feedback system so its accuracy varies with the skill of the operator. This wouldnt be considered a motion control system in the strict sense of the term.Our standard motion control system consists of three basic elements:Fig. 1 Elements of motion control systemThe motor. This may be a stepper motor (either rotary or linear), a DC brush motor or a brushless servo motor. The motor needs to be fitted with some kind of feedback device unless it is a stepper motor.Fig. 2 shows a system complete with feedback to control motor speed. Such a system is known as a closed-loop velocity servo system.Fig. 2 Typical closed loop (velocity) servo systemThe drive. This is an electronic power amplifier thatdelivers the power to operate the motor in response to low-level control signals. In general, the drive will be specifically designed to operate with a particular motor type you cant use a stepper drive to operate a DC brush motor, for instance.Application Areas of Motor TypesStepper MotorsStepper Motor BenefitsStepper motors have the following benefits: Low cost Ruggedness Simplicity in construction High reliability No maintenance Wide acceptance No tweaking to stabilize No feedback components are needed They work in just about any environment Inherently more failsafe than servo motors.There is virtually no conceivable failure within the stepper drive module that could cause the motor to run away. Stepper motors are simple to drive and control in an open-loop configuration. They only require four leads. They provide excellent torque at low speeds, up to 5 times the continuous torque of a brush motor of the same frame size or double the torque of the equivalent brushless motor. This often eliminates the need for a gearbox. A stepper-driven-system is inherently stiff, with known limits to the dynamic position error.Stepper Motor DisadvantagesStepper motors have the following disadvantages: Resonance effects and relatively long settlingtimes Rough performance at low speed unless amicrostep drive is used Liability to undetected position loss as a result ofoperating open-loop They consume current regardless of loadconditions and therefore tend to run hot Losses at speed are relatively high and can causeexcessive heating, and they are frequently noisy(especially at high speeds). They can exhibit lag-lead oscillation, which isdifficult to damp. There is a limit to their availablesize, and positioning accuracy relies on themechanics (e.g., ballscrew accuracy). Many ofthese drawbacks can be overcome by the use ofa closed-loop control scheme.Note: The Compumotor Zeta Series minimizes orreduces many of these different stepper motor disadvantages.There are three main stepper motor types: Permanent Magnet (P.M.) Motors Variable Reluctance (V.R.) Motors Hybrid MotorsWhen the motor is driven in its full-step mode, energizing two windings or “phases” at a time (see Fig. 1.8), the torque available on each step will be the same (subject to very small variations in the motor and drive characteristics). In the half-step mode, we are alternately energizing two phases and then only one as shown in Fig. 1.9. Assuming the drive delivers the same winding current in each case, this will cause greater torque to be produced when there are two windings energized. In other words, alternate steps will be strong and weak. This does not represent a major deterrent to motor performancethe available torque is obviously limited by the weaker step, but there will be a significant improvement in low-speed smoothness over the full-step mode.Clearly, we would like to produce approximately equal torque on every step, and this torque should be at the level of the stronger step. We can achieve this by using a higher current level when there is only one winding energized. This does not over dissipate the motor because the manufacturers current rating assumes two phases to be energized the current rating is based on the allowable case temperature). With only one phase energized, the same total power will be dissipated if the current is increased by 40%. Using this higher current in the one-phase-on state produces approximately equal torque on alternate steps (see Fig. 1.10).Fig. 1.8 Full step current, 2-phase onFig. 1.9 Half step currentFig. 1.10 Half step current, profiledWe have seen that energizing both phases with equal currents produces an intermediate step position half-way between the one-phase-on positions. If the two phase currents are unequal, the rotor position will be shifted towards the stronger pole. This effect is utilized in the microstepping drive, which subdivides the basic motor step by proportioning the current in the two windings. In this way, the step size is reduced and the low-speed smoothness is dramatically improved. High-resolution microstep drives divide the full motor step into as many as 500 microsteps, giving 100,000 steps per revolution. In this situation, the current pattern in the windings closely resembles two sine waves with a 90 phase shift between them (see Fig. 1.11). The motor is now being driven very much as though it is a conventional AC synchronous motor. In fact, the stepper motor can be driven in this way from a 60 Hz-US (50Hz-Europe) sine wave source by including a capacitor in series with one phase. It will rotate at 72 rpm.Fig. 1.11 Phase currents in microstep modeStandard 200-Step Hybrid MotorThe standard stepper motor operates in the same way as our simple model, but has a greater number of teeth on the rotor and stator, giving a smaller basic step size. The rotor is in two sections as before, but has 50 teeth on each section. The half-tooth displacement between the two sections is retained. The stator has 8 poles each with 5 teeth, making a total of 40 teeth (see Fig. 1.12).Fig. 1.12 200-step hybrid motorIf we imagine that a tooth is placed in each of the gaps between the stator poles, there would be a total of 48 teeth, two less than the number of rotor teeth. So if rotor and stator teeth are aligned at 12 oclock, they will also be aligned at 6 oclock. At 3 oclock and 9 oclock the teeth will be misaligned. However, due to the displacement between the sets of rotor teeth, alignment will occur at 3 oclock and 9 oclock at the other end of the rotor.The windings are arranged in sets of four, and wound such that diametrically-opposite poles are the same. So referring to Fig. 1.12, the north poles at 12 and 6 oclock attract the south-pole teeth at the front of the rotor; the south poles at 3 and 9 oclock attract the north-pole teeth at the back. By switching current to the second set of coils, the stator field pattern rotates through 45. However, to align with this new field, the rotor only has to turn through 1.8. This is equivalent to one quarter of a tooth pitch on the rotor, giving 200 full steps per revolution.Note that there are as many detent positions as there are full steps per rev, normally 200. The detent positions correspond with rotor teeth being fully aligned with stator teeth. When power is applied to a stepper drive, it is usual for it to energize in the “zero phase” state in which there is current in both sets of windings. The resulting rotor position does not correspond with a natural detent position, so an unloaded motor will always move by at least one half step at power-on. Of course, if the system was turned off other than in the zero phase state, or the motor is moved in the meantime, a greater movement may be seen at power-up.Another point to remember is that for a given current pattern in the windings, there are as many stable positions as there are rotor teeth (50 for a 200-step motor). If a motor is de-synchronized, the resulting positional error will always be a whole number of rotor teeth or a multiple of 7.2. A motor cannot “miss” individual steps position errors of one or two steps must be due to noise, spurious step pulses or a controller fault.Fig. 2.19 Digital servo driveDigital Servo Drive OperationFig. 2.19 shows the components of a digital drive for a servo motor. All the main control functions are carried out by the microprocessor, which drives a D-to-A convertor to produce an analog torque demand signal. From this point on, the drive is very much like an analog servo amplifier.Feedback information is derived from an encoder attached to the motor shaft. The encoder generates a pulse stream from which the processor can determine the distance travelled, and by calculating the pulse frequency it is possible to measure velocity.The digital drive performs the same operations as its analog counterpart, but does so by solving a series of equations. The microprocessor is programmed with a mathematical model (or “algorithm”) of the equivalent analog system. This model predicts the behavior of the system. In response to a given input demand and output position. It also takes into account additional information like the output velocity, the rate of change of the input and the various tuning settings.To solve all the equations takes a finite amount of time, even with a fast processor this time is typically between 100ms and 2ms. During this time, the torque demand must remain constant at its previously-calculated value and there will be no response to a change at the input or output. This “update time” therefore becomes a critical factor in the performance of a digital servo and in a high-performance system it must be kept to a minimum.The tuning of a digital servo is performed either by pushbuttons or by sending numerical data from a computer or terminal. No potentiometer adjustments are involved. The tuning data is used to set various coefficients in the servo algorithm and hence determines the behavior of the system. Even if the tuning is carried out using pushbuttons, the final values can be uploaded to a terminal to allow easy repetition.In some applications, the load inertia varies between wide limits think of an arm robot that starts off unloaded and later carries a heavy load at full extension. The change in inertia may well be a factor of 20 or more, and such a change requires that the drive is re-tuned to maintain stable performance. This is simply achieved by sending the new tuning values at the appropriate point in the operating cycle.步进电机和伺服电机的系统控制 运动的控制者-软件:只要有了软件,它可以帮助我们配置改装、诊断故障、调试程序等。数控电动机的设计者会是一个微软窗口基于构件的软件开发工具,可以为6000系列产品设置代码,同时可以控制设计者与执行者的运动节目,并创造一个定制运营商的测试小组。运动建筑师的心脏是一个空壳,它可以为进入以下模块提供一个综合环境。1. 系统配置这个模块提示您填写所有相关初成立信息启动议案。配置向具体6000系列产品的选择,然后这些信息将用于产生实际的6000 - 语言代码,这是你的开始计划。 2. 程序编辑器允许你编辑代码。它也有可行的“帮助”命令菜单。A用户指南提供了相关的磁盘指南。3. 终端模拟器本模块,可让您直接与6000系列产品互动。他所提供的“帮助”是再次参考所有命令和定义。4. 测试小组你可以使用本模块,模拟程序,调试程序,并跟踪检测程序。运动建筑师已经将所有的6000系列产品都运用在了步进电机和伺服电机的技术上。由于丰富的对话窗口和6000系列语言,使得你能够从简单到复杂的解决问题。运动建筑师的6000系列产品的标准配置工具,能够使得这些控制器更加简单,相当大的缩短项目开发时间。它的另外一个增值特点是使用6000伺服控制器的调谐助手。基于调谐价值观,这个额外的模块可以以图形化的方式为你展示各种参数。看看这些参数是如何让变化的。用运动的建筑师,你可以一次性打开多个窗口。举例来说,无论是程序编辑器和终端模拟器窗口,你都可以打开运行程序, 得到信息,然后改变这一程序。运动建筑师可以利用在线帮助,在整个互动接触内容中为数控电机6000系列软件做参考指南。从简单到复杂的解决应用伺服控制是你用伺服调谐器软件控制。数控电机与6000系列伺服控制器相结合并应用伺服调谐器软件。伺服调谐器是一个新增功能模块,它扩展和提高运动建筑师的能力。议案建筑师与伺服调谐器结合起来,以提供图形化的反馈方式,反馈实时运动信息并提供简便环境设置微调收益及相关制参数以及提供文件操作,以保存并记得微调会议。请你用运动工具箱软件解决自己的运动控制。运动工具箱实际上是一个为数控电机和6000系列运动控制器而设计的广泛应用的虚拟图标式编程仪器。当使用运动工具箱与虚拟编程仪时,编程6000系列控制器实质上是完成连接图形图标,或加上形成框图使之可见。 运动工具箱中包含了1500多条命令,状态栏,实例等。所有的命令、状态栏、实例都包括可视的来源图表,使您可以修改他们,如果有必要,可以满足您的特殊的需要。运动工具箱同时还具有一个可视窗口,基于安装程序和一个全面的用户手册,可以帮助您运行得更好更快。软件电脑辅助运动应用软件compucamcompucam是基于微软的编程包,它能从 CAD程序、示波器文档、数控程序和产生6000系列数控电机密码相兼容的运动控制器中输入几何图形。购买数控电机是可行的,因为compucam是一个附加模块,是运动建筑师的菜单栏,它是作为公用部分而被引用的。程序从compucam开始运行CAD软件包。一旦程序被起草创作,它就会被保存为DXF文件,或惠普-吉尔段文档,或G代码数控程序。这些几何图形然后输入compucam中,产生6000系列代码。在程序运行之后,你可使用的运动建筑师功能块,如编辑或下载代码等执行程序。运动执行者软件可轻松编程6000系列运动执行者革命性控制运动编程。这一具有创新意义的软件允许程序员以他们所熟悉的- 流程图式的方法编程。 运动执行者降低了学习曲线,并使运动控制编程变得相当容易。运动执行者是一套微软软件,基于图形化窗口的发展,让专家和新手程序员容易学习计划6000系列产品新的编程语言。 简单地拖放代表议案职能的视觉图标,你可以随时的进行你所需要的操作。运动执行者是一个完整的应用开发环境的软件。除了视觉编程6000 系列产品,用户还可以配置,调试,下载, 策划和执行的议案计划。电机类型及其应用下一节将会给你介绍一些的适用特别场合的电机,而某些应用是最好避免。应当强调说,在一个广范的应用范围,电机是可同样满足一个以上的汽车类型, 而选择往往是由客户偏好、以往经验或与现有的设备的兼容性决定的。一个非常有用的工具箱,可供你选择适当的运动,为你选择电机与选择软件包是compumotor软件包。使用这个软件,使用户可以轻松找出适当的电机大小和类型。高扭矩,低转速连续脉冲适宜于步进电机时,在低速时,就相对于扭矩输出规模和输入功率而言,它是非常高效率。 微步,在低速应用,可以用来提高平滑度。如可作为计量泵驱动非常精确的流量控制。 高扭矩,高转速连续脉冲适应于伺服电机时,其实步进电机应避免使用在这种情况下。这是因为高速可导致负荷。简捷,快速,重复性动作仅是自然域的步进电机由于其在低速时高转矩,因而存在惯性比例大,及缺乏折算的问题。直流电动机的电刷可限制其潜在的频繁开始,停止和方向的改变。低速,高光滑的应用这是最适合于微步或直接驱动伺服电机。适用于危险环境或在真空中可能不能够使用电刷电机。步进或无刷电机是无所谓的,靠的是对负荷的需求。牢记当负载过高时,热耗散可能是个问题。选择适合你的电机导言运动控制,在其最广泛的意义上说,可能与任何移动式起重机中焊接机器人液压系统有关。在电子运动控制领域,我们的主要关切系统范围内的有限功率的大小, 通常高达约10hp ( 7千瓦),并要求在一个或多个方面有严格精密。这可能涉及精确控制的距离或速度,但很多时候是双方的,有时还涉及其它参数如转矩或加速率。在以下所举的两个例子中,焊接机器人,需要精确的控制双方的速度和距离;吊臂液压系统采用驱动作为反馈系统,因此,它的准确度会随着操作者的技能的不同而不同。在严格
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。