




已阅读5页,还剩61页未读, 继续免费阅读
(光学工程专业论文)核电结构材料应力腐蚀裂纹尖端应力应变分析研究.pdf.pdf 免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(scc, stress corrosion cracking) (1)abaqus (2)k (3)k k k (4) k (5087520711072191)(09jk591) subject: analysis of stress and strain at the tip of stress corrosion cracking in structural materials of nuclearpower plant specialty: vehicleengineering name: zhaodan(signature) supervisor : xuehe(signature) abstract austenitic stainless steel and nickel- based alloy have been widely used in structural materials of nuclear power plant, due to their good corrosion resistance and mechanical properties. however, the stress corrosion cracking (scc) in these materials in high temperature water environments of nuclear pressure vessels and piping is a key issue of safety and life in nuclear power plant. the micro- mechanical state at the scc tip is one of important factors of affecting scc growth rate. using multi- scale method to analyze fracture process zone at the scc tip has also become a popular approach in the scc researches. based on the numerical simulation method, combined macro with micro scale model, the stress and strain at the scc tip in structural materials of nuclear power plant is analyzed in this dissertation. main studying contents and conclusions are as follows: (1)based on the numerical simulation method, the global macro model of standard compact tension specimen (ct specimen) and micro sub- model of fracture process zone are constructed by finite element software abaqus. the research is focused on the stress and strain at the scc tip composed by oxide film and base metal. (2)the scc tip is analyzed under a constant stress intensity factor k. the effect of the yield stress of base metal material, the yield stress of oxide film material and the thickness of oxide film on stress and strain at the scc tip is discussed respectively. the results indicate that the yield stress increasing of base metal material will induce the stress and strain decreasing in theoxide film zone, the stress increasing and strain decreasing in the base metal zone; the yield stress increasing of the oxide film material will induce the stress increasing and strain decreasing in oxide film zone, the stress and strain decreasing in the base metal zone; the thickness increasing of the oxide film will induce the stress and strain decreasing in both oxide film and base metal zone. (3)the scc tip is analyzed under different stress intensity factor k. the effects of different loading conditions on stress and strain at the scc tip are discussed. the results indicate that the increasing of k will induce the stress and strain increasing in both oxide film and base metal zone. the increased extent of stress will decrease, and the increased extent of strain will keep basically constant as k increase. (4)the equivalent plastic strain rate at the scc tip is analyzed. the results indicate that the closer of distance from the crack tip, the greater the strain rate; both the yield stress increasing of the base metal and oxide film, and the k decreasing will also induce plastic strain rate decrease at the same distance from the crack tip. the results and conclusions in this dissertation provide a base for quantitative prediction of scc growth rate in austenitic stainless steel and nickel- based alloy in high temperature environments of the nuclear power plant. keywords:stress corrosion crackingoxide filmstress and strain finite element method research type :basic research application the project was supported by the national natural science foundation of china (50875207, 11072191) and scientific research program of shaanxi provincial department (09jk591) 1 1 1 1.1 21 2010 1- 3 20076438 31372gw18% 4 2005- 20202020 4000kw2%4% 50 19791986 2011311 (scc, stress corrosion cracking) 5 () 40 2 () scc 1.2 1.2.1 (eac, environment assisted cracking) 50 eac 6 80 7,8 9 10- 12 20069732010 973 1.2.2 1 3 50a508(a533b)304(316) 600(690) () 13,14 (oxide film rupture model)(coupled environment fracture model)(enhanced surface mobility model) (internal oxidation model)(selective dissolution- vacancy creep model)(film- induced cleavagemodel) (ford)15 90 (fri)(tetsuo shoji) 16 fri shoji(crack tip strain rate model)17 1.2.3 10 18,19 4 20 dumoulin (coupled oxidation- deformation fe analysis) (mesoscale) 21 jivkov 22 jo ef stefan kova 23 dao 24 kwon 25 ding 26 ding 27 28,29 1.3 1.3.1 (50875207,11072191) (1) (2) 1 5 (3) abaqus (4)k (5)kk (6)kk rr0 (7) 1.3.2 abaqus (b) 1.1 (a)1t- ct oxide film nickel base alloy 6 (1)abaqus 1.1(a) (2)1.1(b) (3) 1.4 1.2 1.2 abaqusscc kk 1 7 (1) (2)scc (3)(1t- ct) (4)k (k) (5) (6) 8 2 2.1 2020(griffith) 50 ()30 2.1.2 2.1 (1)(i) (2)(ii) 2.1 (a)(b) (c) 2 9 (3)(iii) i i (i) 2.1.2 (1) 31 )()( 2 2 1 ij m ij fr k (2.1) rkm m)( ij f km afkm(2.2) f( )a() )(mkkkk mcmici (2.3) kic(2.3) kic (2) k k 60 wells60 (cod)irwin 1968rice j 10 jhrr j epri1991 32 33 j j jkigi 2 1 2 1 k e gj i (2.4) gieki 2.2abaqus 2.2.1abaqus 50 34 askapafec systusabaqusadina ansys bersafe bosor cosmoselas marcstardyne 35 abaqus abaqushibbitt, karlsson & sorensen(hks) abaqus 2 11 abaqus(/) ()( /) 2.2.2 abaqus() 34 (1) (2) (1) (2) (3) (4) 2.3 12 36 ( multiscale materials modeling) 2.2 37 ct 2.4 2.4.1 2.3 2.2 1m 10- 910- 710- 6 10- 4 2.3 scc 2 13 90% 10% 2.4.2 (l)() (2) 2- 1 2- 1 naohh2s h2shcn h2snaoh naclnaohnh3h2so4h2s nacl n2o4nacl kcl+k2cro4 nano2 naoh i-br-cl-ccl4chcl3 (3)(ki) b( kic) (4) (5) ki 14 38 (6)10- 610- 3mm/min 106 ki2.5 iscci kk da/dtkiki da/dtki ki ic kk 2.4.3 (hic) scc logansullyparkins 39 scc (1)() 2.4 38 kiscckikic iiiiii lg dt da 0 2.5da/dtki 2 15 (2) scc (3) scc scc 2.5 scc 2.5.1 (tem)(sem)scc scc 40 temsemscc scc 16 2.5.2 scc (1)scc (2) (3) 2.5.3 60brown scc scc kisccda/dt (1) scc scc (2) scc scc scc scc (3)ssrt scc(slow strain rate testssrt)20 60r.n.parkinsscc 2 17 ssrt scc scc (ssrt)13 41 2.6 20002001 ringhalsvc summer 42 ford- andresen shoji 2.6.1ford- andresen ford- andresen()43,44(ge) peter fordpeterandresen 18 f f t q zf m dt da (2.5) mzf(96500 /) f t f q f t q t dttiq 0 )(2.6) )(ti )(ti m t t iti)()( 0 0 (2.7) m 0 i 0 t f t ct ff t/(2.8) f ctdtd ct / dt da m ct m f t mzf im dt da )()( )1 ( 00 (2.9) () peter fordpeterandresen 2.6.2fri ford- andresen 90 (fri)(tetsuo shoji) (gao- huang field)45 16 frishoji 2 19 (crack tip strain rate model)17 fri() 1 )ln( n n p y ct r r e (2.10) y erk n p r 2 )/( yp kr rk 1 1 2 2 )ln(2( 1 n y y ct r k r a k k n n edt d (2.11) m n y ym f r k r a k k n n e t mfz im dt da 1 1 2 0 2 0 00 )ln()2( 1 )( )1 ( (2.12) 2.7 46 (1) ph (2) (3) 20 (4) scc 2.8 abaqus 3 21 3 abaqus 3.1 kic igb4161- 1977 ckic (ct) (1t- ct) (1) (2)sccda/dt( ki)da/dt (3)kiscc scc 3.2 3.2.1 abaqus 22 3.1 p p 3- 1 si/mm 3- 1 sisi/mmus unit/ftus unit/inch mmmftin nnlbflbf kgtonne(103kg)sluglbf s2/in ssss pa(n/m2)mpa(n/mm2)lbf/ft2psi(lbf/in2) jmj(10- 3j)ft lbfin lbf kg/m3tonne/mm3slug/ft3lbf s2/in 3.1 uup (1)(w- a)“” 3 23 (2) 2 )/(5 . 2 sic kb 3.2 3.2.2 ramberg- osgood 000 n (3.1) n 00 e=190gpa=0.3 =436mpan=5.29=1 3.2(a=w/2, w=50mm, b=w/2=25mm) 24 3.2.3 k ki30mpa m1/247 ki30mpa m1/2 30mpam1/2 (3.2) 30 )(w a f wb p k(3.2) kipbwa mma25wb5 . 0mmw50 )(w a f= 2/3 432 )1 ( )(6 . 5)(72.14)(32.1364 . 4 886 . 0 )2( w a w a w a w a w a w a (3.3) )/(waf3- 25 . 0/wa66 . 9 )/(waf 3- 2)/(waf wa/)(wafwa/)(wafwa/)(waf 0.4508.340.4859.230.52010.29 0.4558.460.4909.370.52510.45 0.4608.580.4959.510.53010.63 0.4658.700.5009.660.53510.80 0.4708.830.5059.810.54010.98 0.4758.960.5109.960.54511.17 0.4809.090.51510.120.55011.36 1000n3.2ki ki=)(w a f wb p =66 . 9 501 1000 1366 n/mm3/2 abaquski 3 25 ki=1360 n/mm3/2 ki abaqus kip 30mpam1/2697.5n 3.2.4 (1) (2) (3) abaqus abaqus (quad) (quad- dominated) (tri)abaqus abaqus(structure) (sweep)(free) 26 tri ()tet() quad()hex() quad(medial axis) (advancing front)medial axis cad advancing front (advancing front) ct3.38 cpe89789 3.3 3.3.1 scc 3.3 3 27 crfe()ni(ni) 48- 50 51 (1)robertson 316 320pwr(pressure water reactor) (2)winkle 304288 / fe3o4 316l 52 robertsonwinkler robertsonwinklerrobertson winkler crfe 3.3.2 3.43.4(a) 28 () 3.4(b) (x) jjj j jj t j 53 0 j dn t (3.4) n d0.35 (3.5) t r 2 2 (3.5) crack tip x y oxide film at crack tip water environment grain boundary oxide film base metal crack tip area 3.4 (a)(b) 3 29 r3 m 12 m49 2 m100*100 m3.5(a)3.5(b) () 3.3.3 scc 600ramberg- osgood 000 n (3.6) n 00 e=190gpa=0.3 =436mpan=5.29=1 1/1054e=19gpa=0.3 =43.6mpan=5.29=1 3.5 (a)(a) oxide film r=3m nickel base alloynickel base alloy oxide film 30 3.3.4 3.6(a)8cpe8 289943.6(b)( ) 0.167 m 3.6(c) 3.4 (ct) (ct) (600) 3.6 (b)(c)(a) (b) 4k 31 4 k kkkk k da/dtk30mpa m1/2 4.1 55 4.13 1(measured line 1)() 0.5 m2(measured line 2) 0.5 m3(measured line 3)() 4.2mises mises 130mpa 4.1 oxide film measured line 2 nickel base alloy measured line 1 measured line 3 r=3m 32 (43.6mpa) 4.3(peeq) (peeq) ()(peeq) xx 4.4mises mises 11001200mpa 4.3 4.2(mpa) 4k 33 (436mpa)mises misesx 4.5(peeq) (peeq) (peeq) (peeq)x 4.6scc 4.6(a)mises 0 0 mises( )mises104.6(b) 4.5 4.4(mpa) 34 0 0 scc scc 16 4.2 6000.8 1.01.2 56 4- 1 4- 1 materiale/mpa 0/mpa n 190 0000.33495.291 190 0000.34365.291nickel base alloy 190 0000.35235.291 oxide film19 0000.343.65.291 4.2.1 4.7 mises89mises 60mpamises140mpa 7mises70mpa 80mpa 90mpa 100mpa 110mpa 120mpa 4.6 (a)(mpa)(b) 4k 35 130mpamises 4.8 (peeq)89 0.10.97 0.8 (peeq) 4.9 (measured line 2) 0 0 (x) 0 90 4.9(a)4.9(b)scc 4.9 (a)(mpa) (b) 4.8 mpa436 0 mpa349 0 mpa523 0 4.7(mpa) mpa349 0 mpa523 0mpa436 0 36 4.2.2 4.10 89mises 500mpamises1300mpa 7mises650mpa700mpa800mpa900mpa1000mpa 1100mpa1200mpa1300mpamises 4.11 (peeq)89 0.0270.070.120.17 0.220.270.320.37(peeq) 0.070.12 4.10(mpa) mpa349 0 mpa436 0 mpa523 0 4.11 mpa523 0mpa436 0mpa349 0 4k 37 4.12 (measured line 1) 0 0 (x) 0 90 4.12(a)4.12(b)scc 4.2.3 4.13(measured line 3) scc2 m2 m4.13(a) scc () 4.12 (a)(mpa)(b) (a)(mpa)(b) 4.13 38 4.3 4.21/10 4- 2 4- 2 materiale/mpa 0/mpa n 19 0000.334.95.291 190000.343.65.291oxide film 19 0000.352.35.291 nickel base alloy19 0000.34365.291 4.3.1 4.14mises 89mises 60mpamises140mpa7 mises70mpa80mpa90mpa100mpa110mpa120mpa 130mpamises 4.15 4.14(mpa) mpa349 0 mpa523 0 mpa436 0 4.15 mpa349 0 mpa436 0mpa523 0 4k 39 (peeq)89 0.10.97 0.8 (peeq) 4.16(measured line2) 4.16(a)=0 mises mises4.16(b)=0 mises=+900.3 =00.48(measured line2)4.16(a)4.16(b) 4.3.1 4.17(mpa) mpa349 0 mpa436 0 mpa523 0 (a)(mpa)(b) 4.16 40 4.17 89mises 500mpa7600mpa700mpa800mpa 900mpa1000mpa1100mpa1200mpamises4.17 mises 4.18 (peeq)89 0.0500.25 0.300.350.404.18 4.19(measured line 1) 4.19(a)=0 4.18 mpa349 0 mpa436 0 mpa523 0 (a)(mpa)(b) 4.19 4k 41 30mises- 90- 303090 mises830mpa1230mpa (measured line 1) mises4.19(b) =030- 90- 30 30900.060.26 (measured line 1)4.19(a)4.19(b) 4.3.3 4.20(measured line 3) scc2 m2 m4.20(a) mises 4.20(b) 0.01mm0 4.4 (a)(mpa)(b) 4.20 42 4.4.1 4.21mises 89mises70mpa 150mpa7 mises80mpa90mpa100mpa110mpa120mpa130mpa140mpa mises 110mpa 4.22 890.1 1.780.3 mises 4.23(measured line 2) 4.23(a)=0 misesmises 4.16(b)=0 (measured line 2)4.23 4.21(mpa) um0 . 2um5 . 1 um0 . 1 4.22 um0 . 1 um5 . 1um0 . 2 4k 43 mises4.23(a)4.23(b) 4.4.2 4.24mises 89mises 500mpa7600mpa700mpa800mpa 900mpa1000mpa1100mpa1200mpa mises mises 4.25 (peeq)89 0.050.457 00.250.300.350.404.25 (peeq)0.10.45 (a)(mpa)(b) 4.23 4.24(mpa) um1um5 . 1um2 44 4.26(measured line 1) 4.26(a)=030 mises(measured line 1)mises4.23(b)=0 30 (measured line 1)4.26(a)4.23(b) 4.5 k30mpam1/2 (a)(mpa) 4.26 (b) 4.25 um1um5 . 1um2 4k 45 (1) scc() (2) (3) (4) 46 5k k k 5.1 k 5.1kmises 89mises60mpa 140mpa8 mises70mpa80mpa90mpa100mpa110mpa120mpa130mpa kmises 80mpamises 5.2k 2/1 20mmpak i 2/1 30mmpaki 2/1 40mmpaki 2/1 25mmpaki 2/1 35mmpaki 2/1 45mmpaki 5.1(mpa) 2/1 20mmpaki 2/1 30mmpaki 2/1 40mmpaki 2/1 25mmpaki 2/1 35mmpaki 2/1 45mmpaki 5.2 5k 47 (peeq)890.2 1.87 1.0k (peeq)0.8 5.3k(measured line 2) 5.3(a)=0 misesk misesk5.3(b) =0 k 5.2 k 5.4kmises 89mises 550mpa950mpa7 mises600mpa650mpa700mpa750mpa800mpa850mpa 900mpakmises (a)(mpa)(b) 5.3 k 48 5.5k (peeq)89 0.050.457 00.250.300.340.40 k(peeq) 5.6k(measured line 1) 5.6(a)=0 40mises- 90- 404090mises k(measured line 1)mises 5.4(mpa) 2/ 1 20mmpaki 2/ 1 30mmpaki 2/ 1 25mmpaki 2/ 1 40mmpaki 2/1 35mmpaki 2/ 1 45mmpaki 5.5 2/1 20mmpaki 2/1 25mmpak i 2/1 30mmpaki 2/1 35mmpaki 2/1 40mmpak i 2/1 45mmpak i 5k 49 5.6(b)=0 40- 90- 404090 k(measured line 1) 5.6(a)5.6(b)(measured line 1) k 5.3 5.7k(measured line 3) scc2 m2 m 5.7(a) mises 5.7(b) (a)(mpa)(b) 5.6 k (a)(mpa)(b) 5.7k 50 0.01mm2 m 5.4 k (1)kk (2) kk 6 51 6 6.1 / scc 6.1 i0t0m scc(6.1) m ct m f t m i fz m dt da )()( 1 00 (6.1) mzf(96500 /) f t ct (6.1)ford (6.1) ct r0 (6.1) i0 t0 tf t i qf m 0 0 ) t t (i) t ( i 6.1 57 52 m m p a dr d dt da 1 (6.2) m m f m aa t m i fz m 1 1 00 1 1 )( 1 ()( dr d p r r r0 rr0 (d p/dr) (d p/da) (dp/dr) (dp/da)hrrgao- hwang gao- zhang- hwang 58 6.2 k 57 r6 m7 m8 m 6.2 (a)(b) 6 53 6.2(a)349mpa436mpa523mpa 43.6mpak30mpam1/2 r 6.2(b)34.9mpa43.6mpa52.3mpa 436mpak30mpam1/2 r 6.3 k 6.3436mpa43.6mpa k20mpam1/225mpam1/230mpam1/235mpam1/2 40mpam1/245mpam1/2 k r r kr r 6.3k 54 6.4 rr0 (1)k30mpam1/2 rr (2)k (r) r0 r0 r0 7 55 7 7.1 scc (1) scc() (2)k30mpa m1/2 (3)k k (4)k(r) r k 7.2 (1) 56 (2) (3) 57 (50875207)(11072191) (09jk591) 58 1.j., 2009, 21(2):31- 35 2.j., 2010, 41(5):459- 463 3.j., 2010, 28(16):122 4,.j., 2008, 2:48- 52 5,. a.2006c. 2006:100- 105 6.j., 1995, 7(2):87- 92 7,.j. , 2001, 22(3):259- 263 8 9,.j.,1995,7(2):97- 101 10,. j., 2003, 15(4):223- 227 11,t.shoji.304l j., 2004, 40(7):763- 767 12,.j., 2006, 39(5):53- 58 13 d.d. macdonald and p.c. lu. theoretical estimation of crack growth rates in type 304 stainless steel in bwr coolant environmentsj.corrosion, 1996, 52:768- 785 14 y. sato, h. xue, y. takeda and t. shoji. development of a stress corrosion crack test methodology using tube- shaped specimenj.astm international-journal of testing and evaluation, 2007, 35(3):254- 258 15 f.p. ford. quantitative prediction of environmentally assisted crackingj.corrosion, 1996, 52:375- 395 16 q.j. peng, j. kwon and t. shoji. development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated waterj.journal of nuclear materials, 2004, 324(1):52- 61 17 k. chopra and h.m. chung. current research on environmentally assisted cracking in 59 lightwaterreactorenvironmentsj.nuclearengineeringanddesign,1999, 194:205- 223 18.m.:, 1995 19,.j. , 2006, 23(6):654- 658 20 s. saxena and n. ramakrishnan. a comparison of micro, meso and macro scale fem analysis of ductile fracture in a ct specimen (mode i)j.computational materials science, 2007, 39:1- 7 21 s.p. xiao and t. belytschko. a bridging domain method for coupling continua with molecular dynamicsj.computer methods in applied mechanics and engineering, 2004, 193:1645- 1669 22 s. dumoulin, e.p. busso and n.p. o dowd. a multiscale approach for coupled phenomena in fcc materials at high temperaturej. philosophical magazine, 2003, 83(31- 34):3895- 3916 23 a.p. jivkov, n.p.c. stevens, t.j. marrow. athree- dimensional computational model for intergranular crackingj.computational materials science, 2006, 38(2):442- 453 24 m.kovaandl.cizelj.mesoscopicapproachtomodelingelastic- plastic polycrystalline material behaviora.proceedings of international conference of nuclear energy in central europe, portoro , slovenia, 2001 25 m. dao and m li. a micromechanics study on strain- localization- induced fracture initiation in bending using crystal plasticity modelsj.philosophical magazine a, 2001, 81(8):1997- 2020 26 y.w. kwon. multi- scale modeling of mechanical behavior of polycrystalline materials j.journal of computeraided materials design, 2004, 11:43 57 27 r. ding, z.x. guo and m. qian. coupled mesoscopic constitutive modeling and finite elementsimulationforplasticflowandmicrostructureoftwo- phasealloys j.computational materials science, 2007, 40(2):201- 212 28,.j. , 1998, 12(4):258- 260 29,.m.:, 1999 30.m.:, 1997 31.m.:, 2003 32,.m.:, 1996 60 33,.m.:, 2009 34.abaqus 6.6m.:, 2007 35,.abaqusm.:, 2005 36,.j., 2008, 25(4):76- 79 37,.j., 2001, 15(7):9- 11 38.x70d.:, 2009 39 r.n. parkins and b.s. greenwell. interface between corrosion fatigue and stress- corrosion crackingj.material science, 1977, 11(8):405- 413 40.d.:, 2008 41.m.:, 2005 42. d.:, 2009 43 p. ford. mechanisms of environmentally- assisted crackingj.international journal of pressure vessels and piping, 1989, 40(55):343 362 44 p.l. andresen and f.p. ford. life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systemsj. materials science and engineering, 1988,a103:167- 184 45 y.c. gao and k.c. hwang. elastic- plastic fields in steady crack growth in a strain hardening materiala.in: d. francois (ed.), proceedings of fifth international conference on fracture, 1981:669- 682 46.m.:, 1984 47 h. xue, k. ogawa and t. shoji. effect of welded mechanical heterogeneity on local stress and strain in stationary and growing crack tipsj.nuclear engineering and design,2009, 236(5):628- 640. 48 s.c. wang, y. takeda, t. shoji and n. kawaquchi. observation of the oxide film formed in high temperature water by applying electroless ni- p coatingj.journal of nuclear science and technology, 2004, 41(7):777- 781 49 t. terachi, k. fuji and k. arioka. micro- structural characterization of scc crack tip and oxide film for sus 316 stainless steel in simulated pwr primary water at 320 j.journal of nuclear science and technology, 2005, 42(2):225- 228 50 a. machet,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业企业环保升级改造方案
- 第三方监测系统合同管理要点
- 互联网小微企业融资解决方案
- 数据库事务的数据库的事务的隔离级别的不同总结
- 教育技术中的概率与数理统计应用
- 鼻炎症状自查规范
- 神经网络在模式识别中的应用指南
- 模具材料质量检验规定
- 能源利用效率提升方案
- 酒店餐饮服务评议规定
- 2025广东珠海市下半年市直机关事业单位招聘合同制职员37人考试参考试题及答案解析
- 软件开发驻场合同协议
- 音乐培训机构招生
- 生产成本控制及预算管理表格模板
- 动漫艺术概论考试卷子及答案
- 山东省青岛市即墨区实验学校2025-2026学年九年级上学期开学考试英语试题(含答案)
- 浙江省浙南名校联盟2025-2026学年高二上学期开学返校联考英语试卷(含音频)
- 知道智慧树林业工程前沿进展满分测试答案
- 2025年国企中层干部竞聘笔试题及答案
- 材料返款协议书
- 工程机械行业发展深度报告
评论
0/150
提交评论