高楼火灾救生装备设计论文.doc

高楼火灾救生装备设计【7张CAD图纸】【优秀】

收藏

压缩包内文档预览:(预览前20页/共30页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:299559    类型:共享资源    大小:558.15KB    格式:RAR    上传时间:2014-07-27 上传人:上*** IP属地:江苏
45
积分
关 键 词:
高楼 火灾 救生装备设计 cad图纸
资源描述:

高楼火灾救生装备设计

30页 12000字数+说明书+任务书+开题报告+7张CAD图纸【详情如下】

上连杆.dwg

中连杆.dwg

主动轴.dwg

从动轴.dwg

任务书.doc

外文翻译--齿轮和轴的介绍.doc

摇杆.dwg

板件.dwg

装配图.dwg

评阅表.doc

鉴定意见.doc

高楼火灾救生装备设计开题报告.doc

高楼火灾救生装备设计论文.doc

目  录

摘要……………………………1

Abstract………………………1

第一章 绪论…………………2

 1.1设计背景及意义2

1.2国内外研究概况………3

 1.3高楼逃生装置的实例4

第二章 整体方案设计6

 2.1整体方案设计6

 2.2装置的原理.........7

 2.3装置的优点与不足8

第三章  装置零部件设计10

 3.1轴的设计10

 3.2齿轮设计13

 3.3棘轮的设计16

 3.4其他零部件的设计19

第四章  计算和验证20

4.1静力学平衡计算20

4.2绕绳计算21

4.3速度计算22

结论25

致谢26

参考文献27

摘   要

   本文从开始介绍了高楼逃生装置的背景和研究意义,并对现有的一些高楼逃生装置进行了分析和对比,发现大多数的装置有成本高、机构复杂、安全系数低等一些不足之处。本设计根据机械创新理论,设计出一种基于负反馈闭环系统的高楼逃生装置,该装置具有成本低、操作简单、安全系数高、纯机械无电气结构等优点,最后通过对设计机构的零部件进行计算,得出整个机构的图形,在多次试验和计算之后,确定了不论是小孩还是老人都能从高楼平安降落到地面,达到了本次设计的目的。

关键词:  机械创新理论  负反馈闭环系统 高楼逃生器  纯机械无电气结构                    

Abstract

   Firstly,this paper describes the background and significance of tall building escape device.And some of the existing tall building escape devices are analyzed and compared,most of the devices are costly, complex organization, the safety factor and low number of shortcomings are found. The design applied theory of inventive problem solving. To design a negative feedback loop system based on tall building escape device. The device has many advantages such as low cost, simple operation, high safety factor, purely mechanical no electrical structure. Finally, the components of the calculated design agency .The graphics get in the whole body ,after many tests and analysis, determining whether children or the elderly can safely descend to the ground from high buildings. the purpose of this design has achieved.

Key words: Machinery innovation theory  Negative feedback loop system  Tall building escape device   Purely mechanical without electrical structure

第一章  绪论

1.1 设计背景及意义

   随着建筑高度的增加和日趋密集,建筑的安全隐患也越来越多,即使在发达国家的高楼遇有火灾、爆炸等事件时,由于时间、空间等诸多因素的限制,人员自救逃生也是一个急待解决的重要问题。高楼火灾的有效救援和应急逃生,已经成为人们高度关注的社会问题。高层建筑一般功能较多,内部通道和外部环境情况复杂,一旦发生火灾,由于烟囱效应,火势和浓烟就会迅速扩大,很短时间内蔓延到内部楼梯和走廊,封锁正常的疏散通道,至使楼上被困人员无法逃生。所以逃生人员自救是一个亟待解决的重要问题。高楼突然失火或其他灾难发生时 ,电梯不能用,楼梯阻塞,而一般地面救援装备的举高和投射能力又远远的落后于高层建筑的高度发展而且装备体积庞大受道路交通,建筑周边环境等方面的影响因而延误救援时机,这样的情况每年都有发生 ,也有很多人因无法逃生而遇难,所以怎样快速有效的逃离火灾建筑成了决定生死的问题,而高楼逃生装置在这样的环境下应运而生。然而在人们将越来越多的精力和时间都投入到对安全问题保障研究的同时,却忽略了最基础的一种手段 ,在人们越来越多的用到各种高科技和现代手法进行安全保障的同时,却忽略意外事件的发生,是不可以借助外力和各种现代手段解决的 ,要靠最基础和最简单的方式 ,也就是机械传动的方式才是最安全和稳定的。

   本课题要求针对高层建筑实际情况,设计一种在发生火灾情况下,能帮助人方便、快捷的逃生的工具。要求设计出的逃生器能适合各种结构的建筑物,运行实现自动化,并且要求操作方便,可以折叠,体积和重量在一个人可以操作的限度范围内。可以多次往返高层建筑进行营救。从而能最大限度的减少火灾中的人员伤亡。通过分析比较现有的一些高楼逃生器,大多数装置虽然能达到高楼逃生这一功能,但其结构原理复杂,操作繁琐,安全性差,生产成本高,部分装置还需要电力控制,局限性大(发生地震或火灾时很有可能断电,也不允许操作人员进行复杂的操作)。所以本设计采用一种基于负反馈闭环系统的高楼逃生装置,装置结构简单,操作简便,且无需电力或其他能源驱动,纯机械结构。其原理是利用逃生人员的重力,通过机构的转换,产生阻止逃生人员快速下落的阻力,随着下降中绕绳层数的减少,包角增大,阻力增大,使逃生人员依次有加速、匀速、减速下降的过程,最终以安全速度到达地面。装置的仰角大小可以人为调节。当从动轴与安全绳的粗糙度、安全绳的直径发生改变时可以通过改变仰角的大小使装置仍然可以正常使用,适应了各种环境。通过计算,结果达到预期要求,借助本装置逃生人员可以以安全的速度平稳的下落到地面。因而可以在灾难发生的时候保证人的生命安全。符合设计要求。

1.2国内外研究概况

   在我国,目前主要的救生设备有逃生缓降器,这种设备主要针对普通家庭和个人使用,其构造由调速器、安全带、安全钩、钢丝绳等组成。每次可以承载约100公斤重的单人个体自由滑下,其下滑速度约为每秒1.5米,从二十层楼上降到地面约需40多秒/每人,根据人体重量的不同,略有差异。40秒虽然在平时看似不多,但在火灾逃生分秒必争的情况下还是略显漫长。目前这种逃生缓降器的使用状况不甚理想,其原因除家庭消防意识、经济因素之外,主要是难以适用老幼病残者,多户同时使用可能发生相互缠绕,以及安装问题、定期保养等,难以走进百姓家门。

   还有一个主要的设备是救生气垫,它主要是一种利用充气产生缓冲效果的高空救生设备。一般采用高强度纤维材料,经缝纫、粘合制成,其气源一般采用高压气瓶。但是救生气垫仅限于高度为3-4层的楼房使用,随着高度的增加,其缓冲效果、作用面积也将大打折扣,同时此装备要求有相当大的窗户作为人们逃生的出路,在一定程度上受到很大的限制。因此应用范围非常有限,当然对于高楼逃生就有很大的危险性。  它包括一固定内凸轮(外径200mm),其特征在于所述的内凸轮型腔内设置有一导轨支架,所述的导轨支架的中部横向设置有滑动芯阀,所述的内凸轮型腔的内周壁由若干个依次连续并沿同一圆周均匀分布的拱形曲面组成,两相邻拱形曲面的交接处至内凸轮中心连线的延长线恰好通过延长方向所对的拱形曲面的顶点,所述的内凸轮型腔内过内凸轮中心点的径向线的长度与滑动芯阀的长度相等,所述的导轨支架体内设置有油腔,所述的滑动芯阀上下侧固定联接有位于油腔内的阻尼片。当内凸轮驱动滑动芯阀作往复横向移动时,使得油脂从油腔的一侧自缝隙翻越阻尼片流到油腔的另一侧,再从另一侧翻越阻尼片流回油腔的原侧端,在此过程中产生很大的阻尼,以此来限制内凸轮的速度。将该内凸轮与任何需要限速的回转件联接,即可达到自动限制该回转件转速的目的。

   优点:体积小,无噪声,成本低,生产安装及维修方便,持久耐用,实用性高。

   缺点:结构复杂,部件多,制造费工费时,下降速度不稳定,安全系数低。

1.3.2蜗轮蜗杆式高楼逃生装置

   原理:利用蜗轮蜗杆的自锁性,蜗杆能带动蜗轮,但蜗轮不能带动蜗杆,使逃生人员在逃生过程中,控制自己的下落;

   优势:结构简单;具有自锁性,安全性高,制造成本不高;

缺点:摩擦磨损大,材料要求高,操作复杂,普通人不易操作。

1.3.3心摩擦式高楼安全逃生器的设计

   原理:重力带动卷轴转动,使得卷轴上的活动快由于离心力产生正压力,摩擦片与外壳产生摩擦力,在下降速度达到一定值,摩擦力矩与人体重力力矩平衡,匀速下滑;

  优势:逃生人员下降过程中不需要人来控制;

  缺点:局限性大重力越大下落到地面速度越大安全系数低且最小使用重量为20kg.第二章 整体方案设计

   机械系统是由原动机、传动系统、执行系统、控制系统和其它辅助系统组成的,所以,机械系统总体方案设计的内容应是这几部分的方案设计及其各部分间的协调设计。即执行系统的方案设计、原动机类型的选择、传动系统的方案设计、控制系统的方案设计和其它辅助系统的方案设计。  

   机械系统整体方案设计的特点:1.协调性:整体系统由各个子系统组成,虽然各子系统的功能不同、性能各异,但它们在组合时必须按照整体功能的需要。2.相关性:构成系统的各要素之间也是互相关联的,它们之间有着相互作用、相互制约的特定关系。某个要素性能的变化将影响对相关要素的作用,从而对整个系统产生影响。3.内外结合性:任何系统必定存在于一定的社会和物质环境中,机械系统也不例外。环境的变化必将引起系统输入的变化,从而也将导致其输出的变化。   整体方案的设计包括了原动机、传动系统、执行系统、控制系统和其它辅助系统的设计。由于本设计是无需其他能源,仅依靠逃生人员的自身重力,所以没有使用原动机。传动系统选择了齿轮传动,齿轮传动-稳定,结构紧凑,而且使用双向传动,传动更加稳定,受力更加均匀,更能保证逃生人员的安全。控制系统主要有齿轮外侧的手柄。辅助系统主要有轴边棘轮机构和手柄机构,在轴上绕绳的时候更加方便。整个机构的立体图如上图:

参考文献

[1] 甘永立.几何量公差与检测[M].上海:上海科学技术出版社,2010.

[2] 孙训方.材料力学[M].北京:高等教育出版社,2010.

[3] 王铎.理论力学[M].北京:高等教育出版社,2009.

[4] 任家隆,李菊丽.机械制造基础[M].北京:高等教育出版社,2009.

[5] 邱宣怀.机械设计[M].北京:高等教育出版社,2008.

[6] 张策.机械动力学究[M] .北京:高等教育出版社,2007.

[7] 范思冲,周建平,丛肇助.画法几何及机械制图[M].北京:机械工业出版社,2006.

[8] 姜勇.AutoCAD中文版机械制图基础培训教程[M].北京:人民邮电出版社,2006.

[9] 霍达.高层建筑结构设计[M].北京:高等教育出版杜,2004.

[10] 朱龙根.机械系统设计[M] .北京:机械工业出版社,2004.

[11] 吕广庶,张远明.工程材料及成型技术基础[M].北京:高等教育出版社,2001.

[12] 朱龙根.简明机械设计零件手册[M].北京:机械工业出版社 2000.

内容简介:
湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目: 高楼火灾救生装备设计 学号: 2010962941 姓名: 周 兴 专业: 机械设计制造及其自动化 指导教师: 张高峰 系主任: 刘柏希 一、主要内容及基本要求 随着建筑高度的增加和日趋密集,建筑的安全隐患也越来越多,而大多数高楼逃生装置结构原理复杂,操作繁琐,安全性差,生产成本高。本课题要求设计一种结构简单,操作简便,且无需电力或其它能源驱动,纯机械结构的逃生装备。 基本要求: 1 熟悉逃生装备工作状况和设计要求,对其结构进行分析,得出设计方案。 2对各零部件进行设计校核计算。 3 利用制图软件画出零件图和装配图。 二、重点研究的问题 高楼火灾救生装备的结构设计及逃生原理。 三、进度安排序号各阶段完成的内容完成时间1查阅资料 调研第1, 2周2制定设计方案第3,4周3分析与计算第5, 6周4绘部件装配图第7,8,9周5绘零件图第10,11周6撰写设计说明书第12,13周7准备答辩材料第14周8毕业答辩第15周 四、应收集的资料及主要参考文献 1. 机械设计零件手册 2. 机械传动设计手册 3. 朱龙根机械系统设计 4. 吕广庶,张远明工程材料及成型技术基础 5. 范思冲,周建平,丛肇助画法几何及机械制图 GEAR AND SHAFT INTRODUCTIONSi TuzhongAbstract: The important position of the wheel gear and shaft can falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, useding for many situations respectively.So we must be the multilayers to the understanding of the wheel gear and shaft in many ways .Key words: Wheel gear;ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand. Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered. Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft” covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows: 1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3. Band type4. Disk or axial type5. Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary: 1. Assume or determine the distribution of pressure on the frictional surfaces.2. Find a relation between the maximum pressure and the pressure at any point3. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth. Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained.齿轮和轴的介绍司徒忠摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。齿轮和轴主要安装在主轴箱来传递力的方向。通过加工制造它们可以分为许多的型号,分别用于许多的场合。所以我们对齿轮和轴的了解和认识必须是多层次多方位的。关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。我们将研究作用力具有三维坐标的齿轮。因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。而在锥齿轮的情况中各回转轴线互相不平行。像我们要讨论的那样,尚有其他道理需要学习,掌握。斜齿轮用于传递平行轴之间的运动。倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。齿的形状是一溅开线螺旋面。如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。在直齿圆柱齿轮中,接触是平行于回转轴线的。在斜齿轮中,该先是跨过齿面的对角线。它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。斜齿轮使轴的轴承承受径向和轴向力。当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。他们产生相反的轴向推力作用,这样就消除了轴向推力。当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。因此他们只能传递小的载荷和主要用于仪器设备中,而且肯定不能推荐在动力传动中使用。交错轴斜齿轮与斜齿轮之间在被安装后互相捏合之前是没有任何区别的。它们是以同样的方法进行制造。一对相啮合的交错轴斜齿轮通常具有同样的齿向,即左旋主动齿轮跟右旋从动齿轮相啮合。在交错轴斜齿设计中,当该齿的斜角相等时所产生滑移速度最小。然而当该齿的斜角不相等时,如果两个齿轮具有相同齿向的话,大斜角齿轮应用作主动齿轮。蜗轮与交错轴斜齿轮相似。小齿轮即蜗杆具有较小的齿数,通常是一到四齿,由于它们完全缠绕在节圆柱上,因此它们被称为螺纹齿。与其相配的齿轮叫做蜗轮,蜗轮不是真正的斜齿轮。蜗杆和蜗轮通常是用于向垂直相交轴之间的传动提供大的角速度减速比。蜗轮不是斜齿轮,因为其齿顶面做成中凹形状以适配蜗杆曲率,目的是要形成线接触而不是点接触。然而蜗杆蜗轮传动机构中蜗杆蜗轮机构有单包围和双包围机构。单包围机构就是蜗轮包裹着蜗杆的一种机构。当然,如果每个构件各自局部地包围着对方的蜗轮机构就是双包围蜗轮蜗杆机构。着两者之间的重要区别是,在双包围蜗轮组的轮齿间有面接触,而在单包围的蜗轮组的轮齿间有线接触。一个装置中的蜗杆和蜗轮正像交错轴斜齿轮那样具有相同的齿向,但是其斜齿齿角的角度是极不相同的。蜗杆上的齿斜角度通常很大,而蜗轮上的则极小,因此习惯常规定蜗杆的导角,那就是蜗杆齿斜角的余角;也规定了蜗轮上的齿斜角,该两角之和就等于90度的轴线交角。当齿轮要用来传递相交轴之间的运动时,就需要某种形式的锥齿轮。虽然锥齿轮通常制造成能构成90度轴交角,但它们也可产生任何角度的轴交角。轮齿可以铸出,铣制或滚切加工。仅就滚齿而言就可达一级精度。在典型的锥齿轮安装中,其中一个锥齿轮常常装于支承的外侧。这意味着轴的挠曲情况更加明显而使在轮齿接触上具有更大的影响。另外一个难题,发生在难于预示锥齿轮轮齿上的应力,实际上是由于齿轮被加工成锥状造成的。直齿锥齿轮易于设计且制造简单,如果他们安装的精密而确定,在运转中会产生良好效果。然而在直齿圆柱齿轮情况下,在节线速度较高时,他们将发出噪音。在这些情况下,螺旋锥齿轮比直齿轮能产生平稳的多的啮合作用,因此碰到高速运转的场合那是很有用的。当在汽车的各种不同用途中,有一个带偏心轴的类似锥齿轮的机构,那是常常所希望的。这样的齿轮机构叫做准双曲面齿轮机构,因为它们的节面是双曲回转面。这种齿轮之间的轮齿作用是沿着一根直线上产生滚动与滑动相结合的运动并和蜗轮蜗杆的轮齿作用有着更多的共同之处。轴是一
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:高楼火灾救生装备设计【7张CAD图纸】【优秀】
链接地址:https://www.renrendoc.com/p-299559.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!