投资学第4章最优资产组合选择ppt课件_第1页
投资学第4章最优资产组合选择ppt课件_第2页
投资学第4章最优资产组合选择ppt课件_第3页
投资学第4章最优资产组合选择ppt课件_第4页
投资学第4章最优资产组合选择ppt课件_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4章最优资产组合选择,1,第一节资产组合的效率边界,一、一个无风险资产与一个风险资产的组合投资组合的收益可以写为:其中,为风险资产的收益,这是一个随机变量;rf为无风险资产的收益,这是一个常数。资产组合的期望收益和标准差就可以写成下述形式:其中,为风险资产的标准差,2,第一节资产组合的效率边界,一、一个无风险资产与一个风险资产的组合根据以上两个式子:,3,第一节资产组合的效率边界,一、一个无风险资产与一个风险资产的组合在资本配置线的推导中,我们假设投资者能以无风险收益率借入资金。然而,在实际的资本市场中,投资者在银行的存贷款利率是不同的。一般来讲,存款利率要低于贷款利率:,4,第一节资产组合的效率边界,二、两个风险资产的组合投资组合的收益可以写为:资产组合的期望收益和标准差就可以写成下述形式:其中,S,B为股票和债券收益率的相关系数,5,第一节资产组合的效率边界,二、两个风险资产的组合投资权重w为:资产组合期望收益和标准差之间的关系式:其中:,6,第一节资产组合的效率边界,当S,B取不同的值时,上述关系式在期望收益标准差平面中的形状也有所不同1、S,B=1该关系式在期望收益标准差平面中是一条通过S点和B点的线段,7,第一节资产组合的效率边界,2、S,B=-1资产组合期望收益和标准差之间的关系如下:上式对应着两条斜率相反的折线(见图43),折线的一部分通过S点和E1点;另一部分则通过B点和E1点,8,第一节资产组合的效率边界,3、-1S,B1在期望收益标准差平面中对应着两条双曲线。考虑到经济含义,我们只保留双曲线在第一象限的部分(见图43)。这条双曲线的顶点E2是-1S,B1时资产组合可行集内的最小方差点。,9,第一节资产组合的效率边界,从图43可以看出,在情形二和情形三中,我们可以根据最小方差点将可行集分为两个部分:位于最小方差点上方的部分(SE1和SE2)及位于最小方差点下方的部分(E1B和E2B)。很显然,在最小方差点下方的可行集中,期望收益随标准差的增大而降低。对于风险规避的投资者而言,这部分的资产组合显然是无效率的,投资者只会选择可行集中最小方差点上方的资产组合。我们将这部分资产组合称为全部资产组合的效率边界(efficientfrontier)。,10,第一节资产组合的效率边界,三、一个无风险资产与两个风险资产的组合,11,第二节最优资产组合选择,一、不同市场环境下最优资产组合的选择在可行集范围内能够使投资者效用达到最大的资产组合,也就是我们寻找的最优资产组合1、一个无风险资产和一个风险资产,12,第二节最优资产组合选择,2、两个风险资产对于风险规避程度较高的投资者而言,他们会选择效率边界左侧、风险较低的资产组合(如E1);风险规避程度较低的投资者则会选择效率边界右侧、风险较高的资产组合(如E2),13,第二节最优资产组合选择,3、一个无风险资产和两个风险资产最优资产组合就是无差异曲线与资本配置线的切点(如图47),14,第二节最优资产组合选择,二、分离定理从图47可以看出,当市场中存在无风险资产和多个风险资产时,只要投资者是风险规避者,不管他具体的效用函数如何,所选择的风险资产组合都是一样的,也就是过无风险资产与效率边界相切的P点。投资者的效用函数或者说风险规避程度决定了他持有的无风险资产和风险资产组合P的比例,这一性质就是所谓的分离定理(separationtheorem),15,第三节马科维茨资产组合选择模型,一、马科维茨资产组合选择模型马科维茨资产组合模型中有如下假设:市场中存在N2个风险资产投资者是风险规避的,在收益相等的情况下,投资者会选择风险最低的投资组合投资期限为一期,在期初时,投资者按照效用最大化的原则进行资产组合的选择市场是完善的,无交易成本,而且风险资产可以无限细分投资者在最优资产组合的选择过程中,只关心风险资产的均值、方差以及不同资产间的协方差,16,第三节马科维茨资产组合选择模型,在以上假设条件下,最优资产组合的选择问题就可以写成下述优化问题:其中,w为风险资产组合中各资产的权重构成的向量;V为风险资产收益率的方差协方差矩阵;e为风险资产组合中各资产期望收益率构成的向量;1为单位向量,17,第三节马科维茨资产组合选择模型,二、存在无风险资产时的最优资产组合选择托宾假定市场中除了N个风险资产外,还存在一个无风险资产,投资者可以按照无风险资产收益率rf借入或者借出资金。这样一来,最优化问题就变成如下形式:其中,w为风险资产的投资权重;1-w1为无风险资产的投资权重,18,第四节资产组合风险分散化,一、资产收益率的相关性与资产组合的风险分散当两个风险资产放到一起的时候,资产组合的期望收益等于组合中各资产期望收益的加权平均值,即而组合的方差并不像期望收益那样是两个资产方差的加权平均值,而是只要两个风险资产不是完全正相关的,那么由它们组成的资产组合的风险收益机会总是优于资产组合中各资产单独的风险收益机会,19,第四节资产组合风险分散化,上述结论对于包含N个风险资产的资产组合同样适用根据N个风险资产的方差公式:用矩阵表示为:,20,第四节资产组合风险分散化,当N较大时,协方差项的数目将远远超过方差项。此时,资产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论