鉴定意见.doc

熔融沉积成型机床设计【12张CAD图纸】【优秀】

收藏

压缩包内文档预览:
预览图 预览图 预览图
编号:301360    类型:共享资源    大小:5.09MB    格式:RAR    上传时间:2014-08-01 上传人:J**** IP属地:江苏
45
积分
关 键 词:
熔融 沉积 成型机床 设计 cad图纸
资源描述:

熔融沉积成型机床设计

36页 15000字数+说明书+任务书+12张CAD图纸【详情如下】

任务书.doc

传动轴.DWG

入嘴.DWG

喷嘴.DWG

垫片.DWG

外文翻译.doc

大齿轮.DWG

小齿轮.DWG

左顶板.DWG

挤压头左板.DWG

接头.DWG

滚珠丝杆.dwg

熔融沉积成型机床设计论文.doc

装配图.DWG

评阅表.doc

转接头.DWG

鉴定意见.doc

目录

1  绪论3

1.1  引言3

1.2  熔融沉积成型技术概论3

1.2.1 熔融沉积成型技术的特点4

1.2.2 熔融沉积成型技术 - 工艺过程5

1.2.3 熔融沉积成型技术的应用6

1.3  熔融沉积成型技术存在问题及发展方向7

1.3.1 熔融沉积成型技术的现状7

1.3.2 熔融沉积成型技术的发展方向8

2 总体方案及结构设计10

2.1  引言10

2.2  总体设计要求10

2.3  熔融沉积成型机床的结构运动方案11

3 电机方案的选择及选型13

3.1  电机方案的比较13

3.2  步进电机的选型13

4 挤出装置的设计18

4.1  结构尺寸的确定18

4.2  挤出机构的设计要求18

4.3  挤出装置的组成19

4.4  挤出机构齿轮组设计20

4.4.1 按齿面接触强度来设计20

4.4.2 按齿根弯曲强度设计23

4.5  轴设计26

4.5.1 作用在齿轮上的力26

4.5.2 初步确定大齿轮轴的最小直径26

4.5.3 轴的结构设计27

4.6  挤出机构流道口设计28

4.7  加热腔的设计30

4.7.1 加热腔入口溢料问题的分析30

4.7.2 流涎问题的分析31

4.7.3 解决方案31

参 考 文 献33

摘 要

    熔融沉积成型技术(FDM)是目前国内外应用最为广泛的快速成型技术之一。它可以快速、精确地将设计思想从CAD模型物化为具有一定功能的原型或零件,从而实现对产品的快速测评及修改,有效的缩短了产品的开发周期。在熔融沉积快速成型中,成型精度对最终产品的质量起着决定性的作用,但是目前成型机的成型精度往往不高,如何提高成型精度是当今快速成型研究的一个重要方向。

    本课题围绕熔融成型机,重点研究了该设备的机械系统,提出一套完整的机械设计方案。具体工作如下:

   (1)结合传统的FDM熔融沉积成型设备,从整机的外形尺寸、最大成形空间、成形精度、主要运动结构和方式等方面,进行了细致和分析。在吸收了不同机型之间的优点和缺点之后,大致拟定了熔融成型机机械系统总体设计方案中的机械传动结构、三轴运动方式以及加热挤出头结构,确定了机械结构设计中的几个关键技术问题。

   (2)以机械设计原理为依据,结合对FDM整个机械系统的几大构件制定的设计方案,按照整机设计需求参数,分别对运动系统、导向系统、机械结构和包装造型进行了具体的参数化选择,着重设计了加热挤出头结构,解决与优化了流涎问题,然后按照机身结构设计原则设计并完成了全部零部件的三维实体建模、装配以及工程图。

关键字:快速成型;FDM;加热挤出头

ABSTRACT

The fused deposition?rapid prototyping?technology?(FDM)?is?one?of?the?at home and abroad?the most widely used?rapid prototyping technology. It can?quickly and accurately?Design ideas from the CAD model materialized as proto types or parts of certain functions in order to achieve the rapid evaluation and modification of the product, effectively shortening the product development cycle. In fused deposition modeling, forming precision on the final product quality plays a decisive role, but the current forming machine precision is not high, how to improve the precision of the rapid prototyping is an important direction of research.

This topic around the molten molding machine, mainly studies the mechanical system of the device, puts forward a complete set of mechanical design.Specific work is as follows:(1) combined with the traditional FDM fused deposition molding equipment, from the appearance of the whole machine size, maximum forming space, forming precision, main structure and movement mode, are detailed and analyzed.In absorbing the advantages and disadvantages between different models, roughly sketched the melting machine mechanical system overall design scheme of mechanical transmission structure, three axis movement mode and heating extrusion head structure, identified several key technical problems in mechanical structure design.(2)And in accordance with FDM based on principle of mechanical design, the whole of several major components of design scheme of mechanical system, on the demand of the whole machine design parameters, respectively, on the sports system, guiding system, mechanical structure and packaging for the specific parameterized choice, mainly design the structure of heat extrusion head, solving and optimizing the salivate, then design and completed in accordance with the principle of the fuselage structure design all components of the three-dimensional entity modeling, assembly, and engineering drawing.

Key Words: Rapid Prototyping;Fused Deposition;Heating extrusion head

1  绪论

1.1 引言

     进入21世纪后,因为一方面,消费者日益个性化、多样化的需求,工业产品要求创造更多需求。另一方面,制造商不仅要设计的产品满足需求的迅速,而且还要缩短设计周期和生产周期抢占市场,市场环境发生了翻天覆地的变化。制造业竞争加剧。    

    全球市场一体化的形成和提高产量的主要因素通常是有关竞争的成功或失败。为了保持和加强产品在市场上的竞争力,不仅需要设计师可以设计新产品迅速满足市场的需求,并能在短时间内,生产的产品或样品在投放市场之前进行必要的测试。在这种情况下,如果使用传统的制造方法,不仅需要各种各样的机械加工机床、工具、模具、及高水平的技术工人,生产成本高,生产周期长,不能适应快速发展的时代,因此,研究低成本、高效率的生产技术是解决这一问题的关键。        

    在1980年代末,随着制造业信息化,快速成型技术(Prototypical)应运而生。由于这种技术事新的制造理念,生产速度产品快速灵活的模型的关注。这种技术采用CAD设计、辅助制造、数控、精密的伺服驱动和新型材料等先进技术,成功地实现了产品制造自动化,更大程度提高生产效率和灵活的制造。在响应速度化市场作为第一个目标,市场可以缩短开发周期,降低开发成本,提高企业的生产效率。由于符合现代先进制造技术的发展核心,成型技术发展非常迅速,在发达国家已经成为行业的一个新分支和先进制造技术的支柱产业,制造技术是近年来最热门的研究课题。

1.2  熔融沉积成型技术概论

   快速原型设计、快速成型、RP)技术是在1980年代末开发[1]的一种先进制造技术。级联的想法积累分层制造、材料粘合层层叠加形成实体,和3 d产品原型。三维分层制造实体的思想,最早出现在19世纪制造技术发展足够的。早在1892年,地质学家Anther[2]提出了使用新方法的3 d地图分层切片模型。然而,随着社会的发展和科技的进步,快速原型系统及其组成材料的相关研究有了长足的进步,取得了RP技术的快速发展。

   这种新兴的制造技术不受成型几何实体外形限制,直接将三维的立体模型加工变为平面加工,形状特别复杂的物体和简单的物体可以用同样的方法进行制造。具体来说就是通过计算机三维造型系统获得产品的三维实体模型数据,然后经过面化处理,把它变成许多个三角形面化模型得到STL文件,接着以此面化模型为基础,切出沿某一方向的一系列连续截面作为二维切片薄层,再通过数控加工得到那些薄层切片,并将层与层之间粘接起来,如此层层叠加便形成了产品的三维原型。快速成形技术具有传统制造技术无法比拟的优势,于是受到工程界的高度重视, 并在国内外得到迅速的发展。在这个商业市场竞争越来越激烈,商品更新换代越来越快的时代,快速成形技术对制造业的发展起着巨大的影响,产品应用方面的成果也十分显著,这种技术的商品化成为其必然的趋势。

   快速成形技术的发展其实也是经历了一个漫长曲折的过程。从二十世纪七十年代末到八十年代初期,几个不同国家的研究学者均独立提出了分层制造的快速成形概念。当时Charles. Hull[3]在美国UVP公司的支持下,完成了第一台能自动建造零件的完整系统(SLA-1),并在1986年申请获得该系统的专利,这个研究成果可以看做是快速成形技术发展史上的一个重要里程碑。同年,Charles W. Hull和UVP公司合作建立了3D System公司,许多关于快速成形的概念和技术在3D System公司中逐步发展成熟。同时许多其它相关学者和公司对快速成形原理及相应的成形系统也相继开发成功,直到九十年代后期共出现了十多种不同的快速成形技术。其中作为主流的是SLA、LOM、SLS、FDM和3DP这五种典型快速成形技术。快速成形技术涉及知识面极广,包括机械工程、激光、自动控制、计算机、材料学等多个前沿学科。随着现代设计和现代制造技术的迅速发展,该技术迅速在工业制造、建筑、艺术、医学、航空航天等领域得到广泛良好的应用。

1.2.1 熔融沉积成型技术的特点

快速成型技术能得到飞速的发展与它自身的特点有很大关系

(1)快速性

   采用快速成型技术,从设计思想转变为具有一定结构功能的产品原型原型,一般只需几个小时至几十个小时,从而可以对产品设计进行快速评估、测试及功能试验,以缩短产品开发的研制周期,减少开发费用,提高企业参与市场竞争的能力。

(2)集成性

  快速成型机通过计算机直接执行CAD模型的数控指令,避免了数控中的复杂编程,真正实现了设计制造一体化,大大提高了加工效率。与反求工程(Bioengineering)、Tao技术、网络技术、虚拟现实等相结合,成为产品快速开发的有力工具。

(3)高度柔性

   若要生产不同形状的零件模型,只需改变CAD模型,重新调整和设置参数即可,成型过程中不需要专门的夹具和工具,成型零件与CAD模型具有直接关联,零件可随时修改,随时制造。

(4)无限制性

   快速成型不受零件的形状和复杂程度的限制,可成型任意形状的造型,这就摆脱了传统夹具、工具加工的限制,使高难度、高复杂度的模型的加工变得相对较容易。

(5)材料的广泛性

   快速成型技术可以制造树脂类、塑料原型,还可以制造出纸类、石蜡类、复合材料以及金属材料和陶瓷的原型。

(6)低造价性

   其制造周期一般为传统的数控切削方法的l/5一1/10,而成本仅为1/3一1/5,它在保证一定精度和零件制作精度的基础上,具有最优的性能价格比,这也是快速成型的到飞速发展的一个重要原因。

1.2.2熔融沉积成型技术 - 工艺过程

产品三维模型的构建

   由于RP系统是由三维CAD模型直接驱动,因此首先要构建所加工工件的三维CAD模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E,I-DEAS,Fieldworks,UG等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。

三维模型的近似处理

   由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用3个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。STL文件有二进制码和ASCll码两种输出形式,二进制码输出形式所占的空间比ASCII码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。典型的CAD软件都带有转换和输出stl格式文件的功能。

三维模型的切片处理。

  根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一定间隔的平行面切割近似后的模型,以便提取截面的轮廓信息。间隔一般取0.05mm~0.5mm,常用0.1mm。间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。

成型加工。

  根据切片处理的截面轮廓,在计算机控制下,相应的成型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工作台上一层一层地堆积材料,然后将各层相粘结,最终得到原型产品。

成型零件的后处理。

  从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,

参 考 文 献

     J.A. Lewis, G.M. Grat son, Materials Today 7 (2004) 32.

     王雪莹. 3D打印技术与产业的发展及前景分析[J] . 中国高新技术企,2012-09-10张剑峰,张建华,赵剑峰,沈以赴,花国然,黄因慧. 激光快速成形制造技术的应用研究进展[J] . 航空制造技术,2002-07-15    

    张爱英,王连才,刘厚利,魏宏亮,冯增国. 基于快速成型技术的组织工程支架制备进展[J] . 化工进展,2004-03-30  

    Kathy Lu *, William T. Reynolds 1, 3DP process for fine mesh structure printing, Powder Technology 187 (2008) 11–18

    孙勇,王秀峰. 快速原型制造技术在陶瓷制件上的研究进展[N] . 陕西科技大学学报,2004-10-25  

    陈步庆,林柳兰,陆齐,胡庆夕. 三维打印技术及系统研究[J] . 机电一体化,2005-07-20

    王葵,谭威. 快速成型技术及发展[N] . 科技创新导报,2008-03-21

    刘厚才,莫健华,刘海涛. 三维打印快速成形技术及其应用[J] . 机械科学  与技术,2008-09-15

    汪洋,叶春生,黄树槐. 熔融沉积成型材料的研究与应用进展[J] . 塑料工业,2005-11-30  

张会. ZPrinter310系统X-Y执行机构中的Y轴设计[J] . 机械管理开发,2008-06-15  

张昌明. 三维打印机ZPrinter310系统Z向升降台的结构设计[J] . 机械管理开发,2008-08-15  

刘海涛. 光固化三维打印成形材料的研究与应用[D] . 华中科技大学,2009-05-11  

林静. 数字光处理投影系统[D] . 大连理工大学,2008-05-26

蒋玮,徐志祥,赵福令. 直接金属激光烧结成形的机理及实验研究[J] . 中国机械工程,2003-08-15

任乃飞,张福周,王辉,邢志杰. 金属粉末选择性激光烧结技术研究进展[J] . 机械设计与制造,2010-02-08  

杨俊杰,邓海兵. 熔融挤压快速成形支撑参数的研究[J] . 机械设计与制造  2006-11-08  

罗晋. 熔融沉积成型控制系统的研究[D] . 华中科技大学,2006-04-01

纪良波. 熔融沉积成型有限元模拟与工艺优化研究[D] . 南昌大学,2011-06-01  

陈明. 熔丝沉积快速成形的控制及软件系统的研究[D] . 华中科技大学, 2004-04-01

朱利松,叶春生,黄树槐. FDM快速成形系统的控制系统研究[J] . 机床与液压2005,(1):28-29

门东升. 熔融挤压快速成形机喷头的研究[D] .北京化工大学,2003

吴良伟. CAD模型驱动高聚物熔融挤压快速成形技术研究[D] . 清华大学,1998

吴任东. 高速熔融挤压成形工艺及设备研究[D] . 清华大学,2000

黄小毛. 熔丝沉积成形若干关键技术研究[D] . 华中科技大学,2009-06-01  

濮良贵,纪名刚. 机械设计[M] . 高等教育出版社,2006-05

内容简介:
湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目: 熔融沉积成型机床设计 学号: 2010962918 姓名: 李舒扬 专业: 机械设计制造及其自动化 指导教师: 周里群 系主任: 刘柏希 一、主要内容及基本要求 对FDM 整个机械系统的几大构件制定的设计方案,按照我们最初的整机设计需求参数,分别对主运动系统、导向系统、机身结构和包装造型进行了具体的参数化结构设计,主要内容有以下几点: (1)结合数控机床的设计原理,制定熔融沉积成型机床机械系统设计的五大基本设计原则:实现设计功能、保证稳定性和精度、提高经济性、人性化设计、要有独创性。另外提出整机的初步设计需求参数。 (2)完成了主运动系统的结构设计,包括滚珠丝杠的选取以及丝杠的强度和寿命校核;伺服驱动电机型号的选用和校核;导向系统的设计和直线导轨的选用。 (3)按照机身结构设计原则,将机身分为底板基座、立板基座、工作平台几个大部分分布进行结构设计,并完成熔融沉积成型机床机械系统的整体装配图 二、重点研究的问题 很多技术都有自己的关键技术,熔丝沉积成形也不例外,挤出技术是熔丝沉积成形工艺的关键使能技术。挤出机构是实现熔丝沉积成形的关键部件,在机械运动控制的精密控制下,从原材料的棒料形态转换到堆积路径单元的形态,层层堆积粘结形成三维实体。 挤出机构系统在熔丝沉积成形系统的基本要求是:将原料丝材送入加热腔中,在其中及时而充分地熔化,变为熔融态,然后从满足精度要求的喷嘴中挤出成细丝状,按预设的扫描路径填充堆积成形。送丝速度要与扫描速度相匹配,以形成均匀一致的材料堆积路径,满足成形工艺要求。采用功能分解思想,挤出头系统的功能要求可以分解为以下几点: l)将原料丝材从丝筒上拉出,提供成形原料,即原料丝材的供应功能。 2)将原料丝材送入加热腔,称为原料丝材送进功能,简称送丝功能。 3)将送进的固态原料丝材及时而充分地熔化成为熔融态,简称熔丝功能。 4)提供熔融态材料稳定流动的通道,简称流道功能。 5)将熔融材料挤出喷嘴,简称挤出功能。 6)对挤出熔融态物料进行定径,变为满足要求的更细小直径的丝材以进行堆积,简称定径功能。 7)出丝速度应该可控,并能根据扫描速度进行调整,以相互匹配,简称速度匹配功能。 8)出丝应能根据路径扫描要求及时起停,以保证高质量的成形路径,尤其在路径起停处,简称出丝起停控制功能 。 三、进度安排序号各阶段完成的内容完成时间1查阅资料、调研两周2开题报告、制订设计方案一周3计算设计两周4分析、调试一周5写出初稿一周6修改,写出第二稿一周7写出正式稿一周8答辩2014.5.30四、应收集的资料及主要参考文献1 孙勇,王秀峰. 快速原型制造技术在陶瓷制件上的研究进展N . 陕西科技大学学报,2004-10-25 2 陈步庆,林柳兰,陆齐,胡庆夕. 三维打印技术及系统研究J . 机电一体化,2005-07-20 3 王葵,谭威. 快速成型技术及发展N . 科技创新导报,2008-03-21 4 刘厚才,莫健华,刘海涛. 三维打印快速成形技术及其应用J . 机械科学 与技术,2008-09-15 5 汪洋,叶春生,黄树槐. 熔融沉积成型材料的研究与应用进展J . 塑料工业,2005-11-30 6 任乃飞,张福周,王辉,邢志杰. 金属粉末选择性激光烧结技术研究进展J . 机械设计与制造,2010-02-08 7 杨俊杰,邓海兵. 熔融挤压快速成形支撑参数的研究J . 机械设计与制造 2006-11-08 8 罗晋. 熔融沉积成型控制系统的研究D . 华中科技大学,2006-04-01 9 纪良波. 熔融沉积成型有限元模拟与工艺优化研究D . 南昌大学,2011-06-01 10 陈明. 熔丝沉积快速成形的控制及软件系统的研究D . 华中科技大学, 2004-04-01 11 朱利松,叶春生,黄树槐. FDM快速成形系统的控制系统研究J . 机床与液压2005,(1):28-2912 门东升. 熔融挤压快速成形机喷头的研究D .北京化工大学,200313 吴良伟. CAD模型驱动高聚物熔融挤压快速成形技术研究D . 清华大学,199814 吴任东. 高速熔融挤压成形工艺及设备研究D . 清华大学,200015 黄小毛. 熔丝沉积成形若干关键技术研究D . 华中科技大学,2009-06-01 16 濮良贵,纪名刚. 机械设计M . 高等教育出版社,2006-05附录 翻译 附录一:英文文献原文Optimized Kinematics of Mechanical Presses with Noncircular GearsE. Dodge ( l ) , M. HinderanceReceived on January 8, 1997Abstract:The quality of parts manufactured using metal forming operations depends to a large degree on the kinematics of the press ram. Non-circular Geary to obtain those stroke-time behaviorisms we aim at as an optimum for the various metal forming ope with a rotational-angle-dependent speed ratio in the press drive mechanism offer a new WA rations in terms of manufacturing. The paper explains the principle using a prototype press which was built by the Institute for Metal Forming and Metal Forming Machine Tools at Hanover University. It will present the kinematics as well as the forces and torques that occur in the prototype. Furthermore, the paper demonstrates using one example of deep drawing and one of forging that the press drive mechanism with non-circular gears may be used advantageously for virtually all metal forming operations.Keywords: Press, Gear, Kinematics1 introductiveIncreasing demands on quality in all areas of manufacturing engineering, in sheet metal forming as well as in forging, go hand in hand with the necessity to make production economical. Increasing market orientation requires that both technological and economic requirements be met. The improvement of quality, productivity and output by means of innovative solutions is one of the keys to maintaining and extending ones market position.In the production of parts by metal forming, we need to distinguish between the period required for the actual forming process and the times needed to handle the part.With some forming processes we have to add time for necessary additional work such as cooling or lubrication of the dies. This yields two methods of optimization, according to the two aspects of quality and output. In order to satisfy both aspects, the task is to design the kinematics taking into account the requirements of the process during forming; also to be considered is the time required for changing the part as well as for auxiliary operations in line with the priority of a short cycle time.2 Pressing Machine RequirementsOne manufacturing cycle, which corresponds to one stroke of the press goes through three stages: loading,forming and removing the part. Instead of the loading and removal stages we often find feeding the sheet, especially in sheer cutting. For this, the press ram must have a minimum height for a certain time. During the forming period the ram should have a particular velocity curve,which will be gone into below. The transitions between the periods should take place as quickly as possible to ensure short cycle time. The requirement of a short cycle time is for business reasons, to ensure low parts costs via high output. For this reason stroke numbers of about 24/min for the deep drawing of large automotive body sheets and 1200/min for automatic punching machines are standard practice.Increasing the number of strokes in order to reduce cycle times without design changes to the pressing machine results in increasing strain rates, however. This has a clear effect on the forming process, which makes it necessary to consider the parameters which determine the process and are effected by it.In deep drawing operations, the velocity of impact when striking the sheet should be as low as possible to avoid the impact. On the one hand, velocity during forming must be sufficient for lubrication. On the other hand, we have to consider the rise in the yield stress corresponding to an increase in the strain rate which creates greater forces and which may cause fractures at the transition from the punch radius to the side wall of the part.In forging, short pressure dwell time is desirable. As the pressure dwell time drops the die surface temperature goes down and as a result the thermal wear This is counteracted by the enhanced mechanical wear due to the greater forming force, but the increase due to the strain rate is compensated by lower yield stress because of the lower cooling of the part. The optimal short pressure dwell can nowadays be determined quantitatively using the finite element method 3. In addition to cost avoidance due to reduction in wear, short pressure dwell time is also an important technological requirement for the precision forging of near net shape parts, which has a promising future.The requirements of high part quality and high output will only be met by a machine technology which takes into account the demands of the metal forming process in equal measure to the goal of decreasing work production costs. Previous press designs have not simultaneously met these technological and economical requirements to a sufficient extent, or they are very costly to design andmanufacture, such as presses with link drives 6. This makes it necessary to look for innovative solutions for the design of the press. Its design should be largely standardized and modularized in order to reduce costs 6. Fig 1. Prototype press3 Press Drive with Noncircular Gears3.1 PrincipleThe use of non-circular gears in the drive of mechanical crank presses offers a new way of meeting the technological and economic demands on the kinematics of the press ram. A pair of non-circular gears with a constant center distance is thus powered by the electric motor, or by the fly wheel, and drives the crank mechanism itself.The uniform drive speed is transmitted cyclically andnon-uniformly to the eccentric shaft by the pair of noncircular gears. If the non-circular gear wheels are suitably designed, the non-uniform drive of the driven gear leads to the desired stroke-time behaviour of the ram. Investigations at the Institute for Metal Forming and Metal Forming Machine Tools (IFUM) of Hanover University have shown that in this simple manner all the relevant uninterrupted motions of the ram can be achieved for various forming processes 2. Apart from, the advantages of the new drive, which result from the kinematics and the shortened cycle time, the drive concept is distinguished by the following favorable Propertius. Because it is a mechanical press, high reliability and low maintenance may be expected. In companion to linkage presses the number of parts and bearings is clearly reduced. Above all, a basic press type can be varied without further design changes by installing different pairs of gears, designed according to the demandsof the customer. Unlike link drives, bearing locations and installations do not change within one loadclass as a result of different kinematics. Thus the above mentioned requirement of popularization and standardization is taken into account Reductions in time and costs are possible for the design and press manufacture.3.2 PrototypeAt the Institute for Metal Forming and Metal Forming Machine Tools (IFUM) a C-frame press has been remodeled and a pair of non-circular gears was installed. The previous back gears were replaced by a planetary gear set for this purpose. The work carried out shows that remodeling of existing presses for the new drive is possible. The state of the press at the end of the modelli is shown in figure 1. The press is designed for a nominal ram force of 1,000 N and 200 N of the die cushion. The center distance of the non-circular gears is 600 mm. The pair of non-circular gears has an average transmission ratio of 1.Each gear wheel has 59 gear teeth, straight-toothed,module 10 mm (fiacre 2). The face width is 150 mm. The gears have involute gear teeth. We assume a non-circular base curve for the design of the flank geometry. As a result the tooth geometry of a non-circular gear varies along the circumference. In spite of this, it can be derived from the well-known trapezium rack, however 4, 51. An algorithm for the computation, which takes the addendum and addendum into account exactly, has been developed. Fig. 2 View of the gears from the rearThe press is designed for deep drawing of flat parts in single stroke operation mode. The maximum ram stroke is 180 mm, the number of strokes 32/min. At a stroke of 140 mm the ram velocity almost remains constant 71 mammals from 60 mm before lower dead center until lower dead center, see figure 3. Thus the velocity corresponds to the working velocity of hydraulic presses. The velocity of incidence of a crank mechanism with the same number of strokes would be 220 mammals, in comparison. In order to keep the same average velocity with a crank press, the number of strokes would have to be halved. The shortcycle time of the jodelled machine results from the fast upward motion. Because the press is run in single stroke operation mode, no particular requirements were made concerning handling time during design.The drive mechanism of the prototype with non-circular gears has in addition a favorable effect on the ram forces and the driving torques (failure 4). For a crank press the nominal force is normally available at 30 rotation of the crank shaft before the lower dead center. This corresponds to a section under nominal force of only 7 5% relative to the stroke. To reach the nominal force of 1,000 N, the drive has to supply a torque of 45 kam at the crank shaft. The prototype only requires 30 kam on account of the additional transmission of the non-circular gears. They are transmitted to a cyclic. non-uniform crank shaft torque, resulting in a nominal force range from 60 to the lower dead center. This corresponds to 27.5% of the stroke. We always find similar conditions if the pair of non-circular gears is stepped down in the operating range of the press. This will almost always be the case with sheet metal forming and stamping. It is thus possible to design some machine parts in a weaker form and to save costs this way.4 Further Design ExamplesUsing the examples of two stroke-time behaviorisms the design is illustrated in the following. A range of parts is assumed which are to be manufactured by the press. For this purpose the ram velocity requirements and the forming section of the assumed stroke need to be quantified.Furthermore, the time needed for the handling of the part needs to be determined, and also the minimum height which the ram has to assume during the handling. From this, we design the sequence of movements, and we describeit mathematically. At the IFUM, a software program developed by the institute is used. From this mathematical description of the stroke-time behaviour we can calculate the speed ratio of the non-circular gears needed.From this we obtain the outcurves of the gears l, 2, 7.In a first example the ram velocity in deep drawing is supposed to be constant during the sheet metal forming at least over 100 mm before the lower dead center and it is supposed to be about 400mm/s. Let the number of strokes be fixed at 30/min. Above 450mm section of stroke, let the time for the handling of the part be the same as for a comparable crank press with 25 strokes per minute. figure 5 shows the stroke-time behaviour , which is attained by the sketched pair of gears. The gear wheels are represented by their outcurves. The conventional cosine curve at 25/min is given for comparison. In addition to the reduction of cycle time by 20%, the ram velocity of impact onto the sheet is also considerably reduced.110 mm before the lower dead center, the velocity of impact is 700 mammals when using the crank mechanism and only 410 mm/s when operated with non-circular gears. A second example shows a drive mechanism as is used for forging. In figure 6, stroke-time behaviour of a conventional forging crank press is compared with the kinematics of the press with non-circular gears illustrated in the picture.The cycle time of the crank press is 0.7 s, the number of strokes is 85/min and the nominal force is 20 MN.Its pressure dwell time is 86 ms with a forming section of 50 mm. The pressure dwell of the press depicted with non-circular gears decreases by 67% to 28 ms. It thus reaches the magnitude familiar from hammers. By increasing the number of strokes by a factor of 1.5, the cycle time decreases by 33% to 46 ms. In spite of this,the handling time remains the same compared to conventional crank press on account of the kinematics of the non-circular gears. In order to achieve these kinematics in this case, a conventional circular gear may be used as driving gear, arranged eccentrically. This reduces the costs for gear manufacture.These examples show that different kinematics can be achieved by using non-circular gears in press drives At the same time the potential of this drive with respect to the realization of the desired kinematics becomes clear as does the reduction of cycle times in production. By varying the examples it is also possible to increase the velocity after impact in deep drawing operations if :his sequence of motions is advantageous for the range of pans to be produced on the press, for reasons of lubrication, for example.5 ConclusionsThe requirements of high productivity, reduced costs and the guarantee of high product quality to which all manufacturing companies are exposed, applies particularly to companies in the field of metal working. This situation leads us to reconsider the press drive mechanism in use up to now.The new drive for crank presses with non-circular gears described here allows us to optimize the kinematics of simple mechanical presses. This means that the cycle time is shortened to achieve high productivity and the kinematics follows the requirements of the forming process.The design effort needed is low. In contrast to presses with link drives, other kinematics can be achieved during the construction of the press by using other gears without changing bearing locations This allows the popularization and standardization of presses.6 AcknowledgeThe authors would like to express their appreciation to the German Machine Tool Builders Association (VDW), located in Frankfurter, for its financial assistance and to some members for their active support.7 References I Bernard, J., 1992, Optimization of Mechanism Timing Using Noncircular Gearing, Mechanical Design and Synthesis, Vol. 46, p. 565-570.2 Dodge, E., Hinderance, M., 1996, Fertigungsgerechte Kinematographs Burch Undergraduate. VDI-Z Special Antimechanist 1/96, p. 74-77.31 Dodge, E., Neagle, H., 1994, FE-Simulation of the Precision Forging Process of Bevel Gears, Annals of the CIRP, Vol. 43, p. 241-244.4 Hinderance, M., Beta, V., 1996, Arundel Nonreader- an differentiates Elementariness, Construction, Vol. 48, p. 256-262.5 Lit vin, F. L.: 1994, Gear geometry and applied theory,PTR Prentice Hall, Angleworm Cliffs (NJ, U.S.A.).6 Nietzsche, D., 1992, Forerunning an Grof3raumstufenpressen;Lichtenstein fur die Auftragsvergabe. In:Bearbaiting 92, Int. Congress 27 -28.0ct.1992,VDI-Be richt, Vol. 946, p.231-253.7 Agawam. K., Yokemate, Y., Kosice, T., 1973, Studies on the Noncircular Planetary Gear Mechanisms with Nonuniform Motion, Bulletin of the JSME, Vol. 16. p. 1433-1442. 附录二:英文文献翻译非圆齿轮与机械压力机运动学优化 1997年1月8日研制摘要:使用金属成形方法来加工生产零件的质量很大取决于压力杆。在机械压力传动时,有一种依赖于驱动旋转角度速度比的非圆齿轮,提供了一种获得这么动作时间的新途径,我们致力于为不同的优化金属成型运作的制造。本文阐述了由汉诺威的大学研究所建成的金属成形和金属成形加工机床的使用原型原则,它就是目前运动学以及在原型产生的力和力矩。此外,本文展示了如何使用拉深和锻造的一个例子,几乎所有的金属成形操作可有利用于机械传动机构的非圆齿轮。关键词:压力,齿轮,运动学。1. 简介 提高质量的要求在生产工程制造,所有的金属成形以及在锻造,有必要去携手制定生产经济。日益增长的市场定位要求技术和经济条件都得到满足。提高质量、生产力、生产手段的创新解决方案,是一种用来维持和扩大的市场地位的关键所在。 所生产的金属部件,我们需要分清期间所需的形成过程和处理零件所需的时间。随着我们必须添加一些必要的额外工作,例如冷却或润滑的模具一次成型过程。根据质量和产量两个方面,产生了两个最优化方法。为了满足这两个方面,我们的任务是设计运动学形成过程中考虑到该进程的要求,也考虑到的是改变部分以及与一个优先线辅助运作所需的时间短周期的时间。2. 压力机的要求 一个生产周期,这相当于一个冲程来回压的过程,大致经历了三个阶段:加载、成型和移除零件。相反,在加载和移除零件阶段,我们经常发现送料的薄板,尤其是在纯粹的切割时候。为此,压力泵必须要一个确定时间的最小高度。成型周期中杆应该有一个特别速度曲线,它将会降到最低。这个转变期之间应尽快来确保短周期时间。 短周期的要求是事件的原因,以确保通过高产量低成本的部分。基于这个原因,关于对大型汽车车身冲压片机和自动1200/min、拉深24/min的冲程数是标准的做法。增加冲程数是为了减少设计的周期变化导致增加的压实机械应变率, 然而,这对成形过程有很明显影响,使它必须考虑参数确定过程和被它所影响。 在拉深成形过程中,当敲打板块时的撞击速度应尽量避免产生了深远影响。一方面,速度成形时必须充分润滑。另一方面,我们必须要考虑提高产量的相应的压力来增加造成更大的应变速率力,这可能导致冲床半径一侧的一部分过渡疲劳而导致断裂。在锻造时,停留时间短的压力是可取的。随着停留时间的压力下降了模具的表面温度将降低,其结果是热磨损。这是提高抵消了由于机械磨损形成更大的力量,但由于增加的应变率是较低的,因为较低的部分冷却屈服应力补偿。目前,最佳短住压力可以用有限元分析法莱分析。此外,避免由于成本降低磨损、短压住时间也是一个重要的技术要求的精密锻造,近净形部分有一个光明的未来。 高质量的要求和高产量将只能通过一个机技术,考虑到金属成形过程的考察要求等同于减少工作的目标成本。以前按设计已经不能同时满足这些技术要求和经济的充分程度,或他们是非常昂贵的设计和制造,例如链接驱动压力机。这就需要寻找对泵创新设计的解决方案,它的设计应主要标准化,模块化,以降低成本。3非圆齿轮的压力传动 3.1 原则 使用非圆齿轮传动机械曲柄压力机,它提供了一种新方式的技术和经济需求的压力杆运动。一对非圆齿轮有不变的中心距, 因此采用了电动马达,或由飞轮、曲柄和驱动机制本身。制服驱动器的速度传送是通过一对非圆齿轮传递给非均匀的偏心轴。如果非圆齿轮的适当设计,从动齿轮的非均匀驱动器会导致泵所需的行程时间行为。调查中心的金属成形和金属成型机床(IFUM)汉诺威的大学已经表明,在这个简单的方式所有相关的压力杆的连续运动,可以达到各种成形过程。 此外从运动学和缩短生产周期,驱动概念导致新的驱动器的优点被以下的良好性能所区分。因为它是一个机械压力机,它具有高可靠性、低维护性和可预期性。对连杆压力机的数量和轴承零件显然是减少。首先,一个基本泵类型可以通过安装不同的齿轮而进一步改变设计,它根据客户的要求而设计。不同环节的驱动器,轴承的安装位置不会随着单一载荷方向的不同运动而改变。因此,上述要求的模块化和标准化是考虑到时间和成本,它降低了设计和冲压生产成本。3.2 原型 在金属成型和金属成型工具机(IFUM)1架的c型泵,它已经进行了修整和安装了非圆齿轮副。为达到这种目的,先前的背轮背一个行星齿轮组做取代。这项工作表明了存在的新型传动印刷机是可能的,在最后对标准压力泵的改造在Fig. 1中进行说明。 图表1 压力机设计是为了所受1000KN的柱塞力和200KN的冲压模具缓冲力。 这一对非圆齿轮传动比平均为1,每个齿轮轮齿有59,直齿,模数10mm(图2)齿面宽是150mm,这些齿轮有渐开线轮齿。我假设了非圆曲线设计是以侧面几何设计为基础。因此,一个非圆齿轮的齿形沿齿轮圆周而改变。尽管如此,它可以来自知名的梯形齿条. 然而4.5,提出了一种计算方法,它精确地把齿顶高和齿根高考虑在内,进行相应的调整。 压力机是为了在单一冲程模式下对零件进行深拉而设计的。最高滑块行程为180mm,行程数32/min。在140毫米的冲压速度几乎保持71mm/s不变,它是静点中心线到静点中心线之前的速度。见图3。这种速度就相当于液压机工作的速度。这个速度影响到曲柄机构,使其与击打具有相同的数目相比较,速度都是220m/。为了跟一个曲柄压力机具有相同的平均速度击打的数目不得不将减少一半。短周期内的机械改造将导致最后的向上运动。由于压力机是运行在单一的操作模式,在设计时对其做相关的处理没有提出特别的要求。 驱动机制的原型与非圆齿轮有另外一个有利的影响及其驱动力矩(图4)。对于一个曲柄压力机的公称力通常可以降低静点之前把曲柄轴按正常方式旋转。这对应于公称力作用下相对于击打力的75%。若要达到1000kN标准力,该驱动器已提供45 kam 的曲柄轴扭矩。该原型只要求对非圆齿轮传动增加额外的30kNm力矩。他们被传送一个循环,非均匀的曲柄转矩,将导致一个标准力在静点范围内变化。这相当于27.5%的行程。如果非圆齿轮副是在压力机的工作范围,我们总能找到类似的条件。这几乎总
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:熔融沉积成型机床设计【12张CAD图纸】【优秀】
链接地址:https://www.renrendoc.com/p-301360.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!