控制发动机离合器的转矩以改善混合动力电动车的特性.pdf
外文翻译--控制发动机离合器的转矩以改善混合动力电动车的特性【中英文文献译文】
收藏
资源目录
压缩包内文档预览:
编号:30607406
类型:共享资源
大小:1.58MB
格式:ZIP
上传时间:2019-12-12
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
12
积分
- 关 键 词:
-
中英文文献译文
外文
翻译
控制
发动机
离合器
转矩
改善
混合
动力
电动车
特性
中英文
文献
译文
- 资源描述:
-
外文翻译--控制发动机离合器的转矩以改善混合动力电动车的特性【中英文文献译文】,中英文文献译文,外文,翻译,控制,发动机,离合器,转矩,改善,混合,动力,电动车,特性,中英文,文献,译文
- 内容简介:
-
【中文3870字】 控制发动机离合器的转矩以改善混合动力电动车的特性H. S. HWANG1), D. H. YANG2), H. K. CHOI2), H. S. KIM2) and S. H. HWANG2)*1)Korea Automotive Technology Institute, 74 Yongjeong-ri, Pungse-myeon, Cheonan-si, Chungnam 330-912, Korea2)School of Mechanical Engineering, Sungkyunkwan University, Gyeonggi 440-746, Korea(Received 28 June 2010; Revised 24 March 2011)摘要:作为混合动力电动车(HEV)的传动系统,自动变速器不仅便于驱动,也可以降低成本,因为可以使用目前的流水线生产自动变速器。然而,由于扭矩转换器的存在增大了能耗。为克服这一缺点,这篇论文研究一种不使用扭矩转换器的自动变速器,即混合动力电动汽车。在这种情况下需要另外的扭矩控制来防止驱动质量下降。这篇论文提出三种不同的扭矩控制方法并开发了混合动力电动汽车的模拟器,当发动机离合器工作时可以模拟混合动力电动汽车的传动。混合动力电动汽车传动系统由AMESim模拟,控制器模型利用MATLAB/Simulink建立。建立了一个联合仿真环境。通过使用开发的HEV模拟器,分析HEV的动力的控制方法。关键词:混合动力电动汽车,发动机离合器,驱动质量,传动轴扭矩,扭矩控制,驱动控制,电机控制。正文:1 介绍因为能源消耗问题和环保意识增强,像混合动力电动车这样的环保车辆的需求量迅速增加。1997年,丰田普锐斯在日本首次面世,成为首个大批量生产的混合动力电动汽车。在40多个国家和地区都有销售,其中最大的市场在日本和北美。2008年全球销售量达到100万,在2010年初累计销量达到160万。丰田普锐斯使用有分动力装置的混合动力系统;因此,它可以被归类为分输入系统,因为发动机的动力是分别传送给传动装置。这种分动力系统装配简单,但是有一些缺点。例如,最大速度受到较小电动机的速度限制。此外,传输效率主要依赖于传送给电力的能量总和,但相对于纯机械方式,多重方式转换降低了效率。特别是在高速行驶时,效率低于通用自动变速器的水动力耦合器。为了克服这些缺点,需要开发一个可以减少杂交带来的额外的能耗并且可以用目前的生产线生产的新的混合动力系统。HEV系统的动力系统的自动传送(AT)有许多优点,包括平稳启动,便利的驱动和良好的安全性。此外,目前的生产线可以生产AT系统,所以可以减少混合费用。因为具有转矩变换器,所以AT系统具有优良的加速和换挡性能。然而,因为转矩控制器的传送功率低,当它用于HEV系统是会阻碍能源经济性的改善。为了克服这个缺点,许多研究都致力于开发不需要变矩器的AT系统。没有了变矩器,就需要另外的转矩控制来阻止发动起离合器衔接时的驱动质量的退化。现在一直在研究发动机离合器的油压控制方法和通过电动机转矩控制改善变速质量。在这项研究中,制作了一个HEV系统的模拟器来模拟HEV系统的动态行为,此系统装配的AT系统不具有发动机离合器衔接时的变矩器。转矩波动会降低发动机离合器衔接时的驱动质量,为减少波动,提出了三种不同的转矩控制方式:离合器接合前同步控制发动机和电动机速度;接合后控制电动机转矩;同时控制发电机和电动机扭矩。通过仿真,分析在这几种控制方式下HEV系统的动态特性。2. HEV仿真模型 图1. 带有AT系统的平行传动HEV的结构图图1显示了HEV系统的结构。它是一个二级传动的具有AT系统的HEV系统。可以以电动汽车模式运行,即只驱动电机,也可以通过控制安装在发动机和电动机之间的离合器改成HEV模式。2.1 发动机、电动机和ISG仿真模型因为燃料注入时间、点火周期和燃料特性等问题,引擎具有复杂的特征。在本文中,一个简单的引擎模型用来估测转矩的产生。曲轴的振动特征和简单的模型用来模拟引擎的转矩振动。基于时间推迟引起的速度变化的考虑,通过稳态转矩的近似拟合曲线将驱动马达和集成启动发电机模拟为第一个传递函数。图2显示本文中发动机和ISG的特性曲线。图2. 发动机和ISG的特性曲线2.2 扭矩阻尼器和发动机离合器本文中的HEV的发动机离合器使用AMESim模型,即多盘式离合器。传递扭矩和摩擦系数通过下列方程计算摩擦系数,s动摩擦系数,k静摩擦系数,N离合板的数量,P离合器压力,Ac离合器面积,Ro 离合器外圆半径,Ri离合器内圆半径,滑动时的相对转速,s稳态时的转速发动机离合器的操作具有以下3不同的范围:发动机传动轴脱离范围;动力传送的滑动范围;发动机和电动机轴线间的作用范围。扭矩阻尼器模拟为一个弹簧和减震器,减震器具有不同的由扭矩阻尼器末端产生的相对扭转角。图3显示扭矩阻尼器的滞后特性。 图3. 扭矩阻尼器的特性曲线2.3 自动变速器和车辆动力模型车辆动态模型使用广泛运用于车辆和水力模型的AMESim建模。在车辆模型中,用惯性、刚度和阻尼效应详细描述HEV的动态特性。如图4所示,HEV采用6速自动传动装置。图5显示使用AMESim的HEV动力系统模型。传动装置由三个程序生成系统构成,OWC、LRB、UD/B和OD/C。图6表示试验和车辆模型仿真中传动轴扭矩的比较结果。图4 自动传动装置的原理图图5 AMESim环境下的HEV动力模型图6 试验和仿真的对比分析在相同的发动机扭矩、电机扭矩和油压条件下取得仿真结果。测试条件中,加速器位置是100%,即阀门完全开放,并包括传动方式和齿轮传动条件。2.4 控制器模型该控制器利用MATLAB / Simulink进行了建模,并建立了模拟环境。混合动力控制系统决定发动机管理系统电动机控制单元需要的扭矩;这些扭矩根据驱动器的指令和驱动策略计算得出。本研究运用一个简单的驱动策略,因为我们只关心在发动机离合器衔接时驱动轴变化的效果。表1显示了本研究运用的驱动策略,操作条件和四个驱动模式的动作。依据发动机的驱动模式,EMS根据计算出的从HCU到发动机所需的转矩传送节流阀打开的信号,TCU根据换挡动作传送油压信号。MCU传送所需扭矩,然后从HCU传送到电机和ISG。图7所示为利用MATLAB / Simulink构建的HEV控制器模型。图7 利用MATLAB / Simulink构建的HEV控制器模型图8 无转矩控制的仿真结果3. 仿真结果各种仿真研究在以下几种条件下进行,并为了减少驱动轴的扭矩振动采用了扭矩控制算法。输入的加速踏板条件是一踏功能为100%APS。3.1 无控制图8显示的仿真结果没有通过控制算法来减少发动机离合器衔接时的振动。模式改变时,发动机扭矩不会随着阀门位置改变,电机转矩取决于APS。图8(a)显示了发动机和电机的速度以及驱动轴转矩,是本文中驱动特性的参考值。在图中,发动机转速和电机转速相同的点是在引擎完全衔接时。驱动轴转矩变化是从滑动点到衔接点。图8(b)显示发动机和电机的输出转矩。初始的负转矩值是摩擦引起的转矩损耗,ISG包括了转矩的损失。3.2 啮合前的发动机转速控制发动机的转速控制方法是控制对发动机启动后离合器啮合前的电机转速的跟踪。这种控制算法可以计算出发动机的输出转矩,需要用电机转速的反馈值和通过计算转矩得出的阀门位置信号来计算(图9)。图9 发动机转矩控制框图图10显示了发动机转速控制的仿真结果。结果表明,发动机离合器接合后,带有控制结构的驱动轴比不带有控制结构的驱动轴的转矩的波动要小。3.3 接合时的电机转矩控制接合时需要电机转矩控制;框图如图11所示。图12显示了通过接合时驱动轴转矩的反馈值得出的电机转矩控制仿真结果。在离合器接合前,发动机转速、电机转速和驱动轴转矩与无控制结构的相同,但离合器接合后,因为电机转矩控制使的转矩波动降低。图10 发动机转速控制的仿真结果图11. 用于减少扭矩振动的电机扭矩控制框图图12 电机转矩控制仿真结果3.4 同时控制发动机转速和电机转矩图13显示了同时控制发动机转速和电机转矩的仿真结果。离合器接合前的结果与单纯应用发动机转速控制的结果相同,接合后与单纯控制电机转矩的结果相同。在离合器接合后驱动轴转矩余震消失。4 仿真结果分析上述控制方法的仿真结果依据HEV的速度和加速度进行对比分析。图13 同时控制发动机转速和电机转矩的仿真结果图14显示了从发动机启动到离合器接合时的离合器的油压力剖面图。控制方法虽然不同,但具有相同的油压剖面图。图15和图16显示了不同的控制方法下车辆的速度和加速度。加速度的变化趋势与驱动轴转矩的变化趋势相似。从速度图中可以看出具有控制结构的车辆加速度要比没有控制结构的低。这是因为引擎发动后发动机转矩减少。在控制转矩的情况下,离合器接合后车辆速度随着驱动轴转矩的减少而缓慢增大。表3显示了车辆加速度的波动,显示出发动机离合器发动时的加速度峰值和发动机离合器接合的相对时间为1时的速度峰值不同。结果按照不同的控制方法列表,并以不进行控制时的结果的百分数表示。图14 离合器的油压力剖面图图15 车速对比图16 车辆加速度对比表3 减少车速和驱动转矩比值的控制方法因此,尽管控制电机和发动机会降低车辆加速度,但却可以通过减少驱动轴转矩振动提高驱动特性。因此,汽车设计师可以通过权衡加速度和驱动特性来选择恰当的控制方法设计控制器。5. 总结本文中,对配有不带有转矩控制的AT系统的HEV进行建模,并基于电机和电动机不同的控制方法对HEV进行了动态分析。通过AMESim制造HEV模拟器模拟模拟系统并使用MATLAB / Simulink开发了控制器模型;建立了仿真环境。为减少电动机离合器接合时低驱动特性的车辆的转矩波动,提出了三种不同的转矩控制方法。根据不同的控制方法对驱动轴转矩和车辆速度进行对比分析。从仿真结果可以看出,尽管控制电机和发动机会降低车辆加速度,但却可以通过减少驱动轴转矩振动提高驱动特性。将来,车辆设计师可以根据设计要求,像减速度和驱动特性,通过HEV模拟器来设计控制系统。参考文献:Ahn, J., Jung, K., Kim, D., Jin, H., Kim, H. and Hwang, S.(2009). Analysis of a regenerative braking system forhybrid electric vehicles using an electro-mechanicalbrake. Int. J. Automotive Technology 10, 2, 229234.Deur, J., Petric, J., Asgari, J. and Hrovat, D. (2005). Modeling of wet clutch engagement including a through experimental validation. SAE Paper No. 2005-01-0877.International Business Times (2009). Toyota captures 75%of US hybrid share./articles/20090311/toyota-captures-75-pct -us-hybrid-share.htm.Kim, S., Park, J., Yun, S., Lee, M. and Sim, H. (2008a). A study of control strategy for hybrid electric vehicle during mode change. Annual Conf. Proc., Korean Society of Automotive Engineers, 25712576.Kim, Y., Jo, C., Hong, J. and Kim, H. (2008b). Shift and acceleration response lag for a hybrid elecetric vehicle with 5-speed automatic transmission. Annual Conf. Proc., Korean Society of Automotive Engineers 20242029.Muta, K., Yamazaki, M. and Tokieda, J. (2004). Development of new-generation hybrid system THS II - drastic improvement of power performance and fuel economy. SAE Paper No. 2004-01-0064.Toyota (2009). Worldwide sales of TMC hybrids top 2 million units. http:/www2.toyota.co.jp/en/news/ 09/09/0904.html.Yang, Y., Lam, R. C. and Fujii, T. (1998). Prediction oftorque response during the engagement of wet frictionclutch. SAE Paper No. 981097.International Journal of Automotive Technology, Vol. 12, No. 5, pp. 763768 (2011)DOI 10.1007/s1223901100887Copyright 2011 KSAE12299138/2011/06016763TORQUE CONTROL OF ENGINE CLUTCH TO IMPROVETHE DRIVING QUALITY OF HYBRID ELECTRIC VEHICLESH. S. HWANG1), D. H. YANG2), H. K. CHOI2), H. S. KIM2) and S. H. HWANG2)*1)Korea Automotive Technology Institute, 74 Yongjeong-ri, Pungse-myeon, Cheonan-si, Chungnam 330-912, Korea2)School of Mechanical Engineering, Sungkyunkwan University, Gyeonggi 440-746, Korea (Received 28 June 2010; Revised 24 March 2011)ABSTRACTAs a powertrain for hybrid electric vehicles (HEVs), the automatic transmission (AT) is not only convenient forthe driver but also reduces hybridization costs because the existing production line is used to produce the AT. However, it haslow fuel economy due to the torque converter. To overcome this disadvantage, this paper studies HEVs equipped an ATwithout a torque converter. In this case, additional torque control is needed to prevent the driving quality from deteriorating.This paper suggests three different torque control methods and develops a simulator for an HEV that can simulate the dynamicbehaviors of the HEV when the engine clutch is engaged. The HEV drive train is modeled with AMESim, and a controllermodel is developed with MATLAB/Simulink. A co-simulation environment is established. By using the developed HEVsimulator, simulations are conducted to analyze the dynamic behaviors of the HEV according to the control methods.KEY WORDS : Hybrid electric vehicle (HEV), Engine clutch, Driving quality, Drive shaft torque, Torque control, Enginecontrol, Motor control1. INTRODUCTIONThe need for eco-friendly vehicles such as hybrid electricvehicles (HEVs) has increased rapidly due to resourceexhaustion and increased awareness of environmentalissues. The Toyota Prius first went on sale in Japan in 1997,making it the first mass-produced hybrid vehicle. It is soldin more than 40 countries and regions, with its largestmarkets in Japan and North America. In 2008, globalcumulative Prius sales reached the 1 million salesmilestone, and by early 2010, the worldwide cumulativesales reached 1.6 million units (Toyata, 2009; InternationalBusiness Times, 2009).The Toyota Prius has the Toyota Hybrid System (THS),which has a single power-split device (incorporated as asingle 3 shaft planetary gearset); thus, it can be classified asan input-split system because the power of the engine issplit at the input to the transmission. This power-splitsystem makes the setup very simple in mechanical termsbut has some drawbacks. For example, the maximum speedis mainly limited by the speed of the smaller electric motor.Additionally, the transmission efficiency depends heavilyon the amount of power being transmitted over theelectrical path because multiple conversions cause the pathto have a lower efficiency than the purely mechanical path.In particular, in higher speed regions, the efficiency, therefore,drops below that of a generic automatic transmission with ahydrodynamic coupler. To overcome these drawbacks, it isnecessary to develop a new hybrid electric system that canreduce additional costs due to hybridization and can beproduced using the existing production line effectively(Muta et al., 2004).As a powertrain for the HEV, the automatic transmission(AT) has some advantages, including a smooth start,convenience for the driver and safety. Furthermore,because the existing production line can be used to producethe AT, the hybridization costs can be reduced. AT hasexcellent accelerating and shifting performance because ofthe torque converter. However, because the torqueconverter transmits power with low efficiency, it serves asan obstructing element in the improvement of fueleconomy when it is applied to the HEV. To overcome thisdefect, some studies have focused on an AT without thetorque converter. Without the torque converter, additionaltorque control is required to prevent the deterioration ofdriving quality upon engagement of the engine clutch. Oilpressure control methods upon engagement of the engineclutch have been investigated (Kim et al., 2008a).Improvement of the shift quality (SQ) with motor torquecontrol when shifting gears has also been investigated(Kim et al., 2008b).In this study, an HEV simulator is developed that cansimulate the dynamic behaviors of the HEV equipped withan AT without a torque converter upon engagement of theengine clutch. To reduce the torque fluctuation that causes*Corresponding author. e-mail: hshme.skku.ac.kr764H. S. HWANG et al.low driving quality upon engagement of the engine clutch,three different torque control methods are suggested:sychronized control of the engine and motor speeds beforeengagement of the engine clutch; motor torque control afterengagement of the engine clutch; and combined control ofthe engine and motor torques. Simulations were performedto analyze the dynamic behaviors of the HEV according tothe control methods.2. HEV SIMULATION MODELFigure 1 illustrates the structure of the test HEV. It is a 2-shaft parallel hard HEV with an AT. It can be operated inelectric vehicle (EV) mode, in which only the motor isdriven, and can be changed into the HEV mode bycontrolling the engine clutch installed between the engineand the motor.2.1. Engine, Motor and ISG Simulation ModelAn engine has complex characteristics depending on the fuelinjection time, ignition period and combustion characteristics,for example. In this paper, a simple model of the engine isused that approximates a torque-generating device with steadystate characteristics. The vibration characteristic of the crankshaft and that of the simple model are considered to simulatethe explosive torque vibration of the engine.The driving motor and integrated starter generator (ISG)are modeled as a 1st order transfer function by approximatefitting curves with a steady state torque characteristic withrespect to speed considering the time delay. Figure 2 showsthe characteristic curves of the motor and ISG used in thispaper.2.2. Torsional Damper and Engine Clutch Model The engine clutch of the HEV in this paper uses theAMESim model, which is a wet multi-disk clutch. Thetransmitted torque and friction coefficient are calculatedusing the following equations (Deur et al., 2005; Yang etal., 1998).(1)(2)where is the friction coefficient, s and k are the staticand dynamic friction coefficients, N is the number of clutchplates, P is the acting pressure on the clutch, Ac is the actingarea of the clutch, Ro and Ri are the external and internalradii of the clutch, is the relative rotational velocity dueto slip, and s is the rotational velocity in the steady state.The operation of the engine clutch has the following 3different ranges: the disengaging range from the powershaft of the engine; the slip range as power is transmitted;and completely engaged range between the engine andmotor axes. A torsional damper is modeled as a spring and a damperwith various stiffnesses w.r.t. the relative twisting anglebetween the torsional damper ends. Figure 3 shows thehysteresis characteristic of the torsional damper.2.3. Automatic Transmission and Vehicle Dynamics ModelVehicle dynamics modeling is performed using AMESim,which is used widely with vehicle and hydraulic models. Inthe vehicle model, the inertia, stiffness and damping effectare considered to describe the dynamic behaviors of theTtransNAP23- -Ro3Ri3()Ro2Ri2()-=sk()s-kexp=Figure 1. Structure of a parallel HEV with AT.Figure 2. Characteristic curves of the motor and ISG.Figure 3. Characteristic curve of torsional damper.Figure 4. Schematic diagram of an automatic transmission.TORQUE CONTROL OF ENGINE CLUTCH TO IMPROVE THE DRIVING QUALITY 765HEV in detail. The HEV has adopted the 6 speed automatictransmission, as shown in Figure 4. Figure 5 shows theHEV powertrain model that is used in AMESim. Thetransmission was constructed with three PGs (PlanetaryGears), OWC (One Way Clutch), LRB (Low and ReverseBrake), UD/B (Under Drive Brake), and OD/C (OverDrive Clutch). Figure 6 shows the results of the comparison of the driveshaft torque between experiment and simulation, which areused to validate the vehicle model.The simulation results were obtained with the sameinput conditions for the engine torque, motor torque, andoil pressure profile. In the test condition, the acceleratorposition is 100%, which is the wide open throttle (WOT)condition, and the driving mode and gear shifting conditionsare included.2.4. Controller Model The controller was modeled using MATLAB/ Simulink,and the co-simulation environment was established. Thehybrid control unit (HCU) determines the torquesdemanded for the engine management system (EMS) andmotor control unit (MCU); these torques are calculatedaccording to the drivers command and driving strategy(Ahn et al., 2009). This study applied a simple drivingstrategy because we were only concerned with the effect ofvariations of drive shaft torque on the driving qualityduring engagement of the engine clutch. The drivingstrategy used is shown in Table 1, which shows theoperating conditions and actions of the four driving modes.The EMS transmits the throttle open signal, which iscalculated according to the demand torque from the HCUto the engine. The TCU transmits an oil pressure profilesignal according to the gear shifting schedule, whichdepends on the driving mode (e.g., the EV or HEV mode),to the engine. The MCU transmits the demand torques,which are transferred from the HCU to the motor and ISG.Figure 7 shows the HEV controller model built withMATLAB/ Simulink.Figure 5. HEV Powertrain model used in AMESim.Figure 6. Comparison between the experiment and thesimulation.Table 1. Driving strategy.DrivingmodeCondition and actionEVmodeCondition 0 APS thresholdActionStarting engine and engine clutch is on slip conditionHEVmodeCondition Engagement of an engine clutchActionDriving motor and engine simulta-neouslyBrakingmodeCondition BPS 0ActionRegenerative braking according to conditions APS: Accelerator Position Sensor (%)BPS: Brake Position Sensor (%) Figure 7. HEV controller model built with MATLAB/Simulink.766H. S. HWANG et al.3. SIMULATION RESULTSVarious simulations were performed under the followingconditions with the applied torque control algorithms toreduce the torque vibrations of the drive shaft. Table 2shows the various simulation conditions according to thecombination of engine and motor controls.The input condition of the accelerator pedal is a stepfunction of 100% APS.3.1. Without ControlFigure 8 shows the simulation results without the controlalgorithm to decrease the vibrations upon engagement ofthe engine clutch. During the mode change, the enginetorque is constant according to the throttle position, and themotor torque is determined according to the APS.Figure 8 (a) shows the speeds of the engine and themotor as well as the drive shaft torque, which is a referencevalue for the driving quality in this paper. In this figure, thepoint at which the engine speed coincides with the motorspeed is the point of complete engagement of the engine.The variation of the drive shaft torque can be observedfrom the slip range just prior to the complete engagementpoint. Figure 8 (b) shows the mean output torques of themotor and the engine. The negative values of initial enginetorque are the torque losses due to the friction loss of theengine, and the ISG covers the loss torque.3.2. Engine Speed Control Prior to EngagementThe engine speed control method controls the tracking ofthe motor speed prior to engagement of the engine clutchafter the engine is started. This control algorithm calculatesthe engine output torque using the feedback on the motorspeed and then generates the command signal for the enginethrottle position based on the calculated torque (Figure 9).Figure 10 shows the simulation results from enginespeed control. These results illustrate that the drive shafttorque with control has less fluctuation than one withoutcontrol after engagement of the engine clutch.3.3. Motor Torque Control during EngagementMotor torque control is applied during engagement; itsblock diagram is shown in Figure 11.Figure 12 shows the simulation results with motorTable 2. Simulation conditions.NoSimulation conditions1Without control2Engine speed control prior to engage3Motor torque control during engaging4Combination of engine and motor torque controlsFigure 8. Simulation results without control.Figure 9. Control block diagram of the engine torque control.Figure 10. Simulation results with engine speed control.Figure 11. Block diagram of the motor torque control toreduce torque fluctuation.TORQUE CONTROL OF ENGINE CLUTCH TO IMPROVE THE DRIVING QUALITY 767torque control from the feedback on the drive shaft torqueduring engagement. Before engagement of the engineclutch, the results on the engine speed, motor speed anddrive shaft torque are similar to those without control, butafter engagement of the engine clutch, they show anincrease in the reduction in the torque fluctuation becauseof the motor torque control.3.4. Combination of Engine Speed and Motor TorqueControls Figure 13 shows the simulation results obtained from theapplication of the combined engine speed and motor torquecontrols. The results are similar to those obtained from theapplication of engine speed control before the engagement,and they are similar to those from the motor torque controlafter the engagement. The remaining vibration of the driveshaft torque disappears after the engagement of the engineclutch.4. ANALYSIS OF SIMULATION RESULTSThe simulation results of the various control methods aboveare compared in terms of vehicle speed and acceleration ofthe HEV.Figure 14 shows the oil pressure profile of the engineclutch from the start of the engine to the completeengagement of the engine clutch. All the same pressureprofiles are provided as simulation inputs with the variouscontrol methods.Figure 15 and Figure 16 show the vehicle speed andacceleration according to the various control methods. Thetrend in the variation of the acceleration results is similar tothat of the drive shaft torque. From the vehicle speed graph,Figure 12. Simulation results with motor torque control.Figure 13. Simulation results with a combination of enginespeed and motor torque controls.Figure 14. Oil pressure profile acting on the engine clutch.Figure 15. Comparison of vehicle speeds.Figure 16. Comparison of vehicle acceleration.768H. S. HWANG et al.the acceleration performances of the vehicles with controlare worse than those without control. This performancedecrease is caused by the reduction of the engine torqueaccording to the control algorithm after the start of theengine. In the case of torque control, the vehicle speedincreases slowly due to driving torque reduction aftercomplete engagement of the engine clutch.Table 3 shows the fluctuation in vehicle acceleration,which indicates differences in peak to peak values whilethe engine clutch is being engaged and the speed when theengagement of engine clutch is completed at a relative timeof 1. The values are listed alongside the control methods,and they are expressed as a percentage of the resultswithout control.As a result, although the engine and motor control maydecrease the accelerating performance of a vehicle a little,they can improve driving quality by reducing the torquefluctuation of the drive shaft. Therefore, automotiveengineers can design the controller using an appropriatecontrol method based on their judgment of the tradeoffbetween acceleration performance and driving quality.5. CONCLUSIONIn this paper, an HEV equipped with AT without a torqueconverter is modeled, and the dynamic characteristics ofthe HEV are investigated based on the control method ofthe engine and motor. An HEV simulator was developed inwhich AMESim was used to model the HEV drive trainand MATLAB/Simulink was used to develop the controllermodel; a co-simulation environment was established. To reduce the torque fluctuation, which is responsiblefor low driving quality at the engagement of the engineclutch, three different torque control methods weresuggested. The drive shaft torque and
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
2:不支持迅雷下载,请使用浏览器下载
3:不支持QQ浏览器下载,请用其他浏览器
4:下载后的文档和图纸-无水印
5:文档经过压缩,下载后原文更清晰
|