




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17 The Fourier Transform Assessment Problems AP 17.1 a F() = Z 0 /2(Ae jt)dt + Z /2 0 Aejtdt = A j 2 ej/2 ej/2 = 2A j 1 ej/2+ ej/2 2 # = j2A 1 cos(/2) b F() = Z 0 teatejtdt = Z 0 te(a+j)tdt = 1 (a + j)2 AP 17.2 f(t) = 1 2 ?Z 2 34e jt d + Z 2 2e jt d + Z 3 24e jt d ? = 1 j2t 4ej2t 4ej3t+ ej2t ej2t+ 4ej3t 4ej2t = 1 t 3ej2t 3ej2t j2 + 4ej3t 4ej3t j2 # = 1 t(4sin3t 3sin2t) AP 17.3 a F() = F(s) |s=j= Leatsin0ts=j = 0 (s + a)2+ 2 0 ? ? ? ?s=j= 0 (a + j)2+ 2 0 b F() = Lf(t)s=j= 1 (s + a)2 # s=j = 1 (a j)2 171 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 172CHAPTER 17. The Fourier Transform c f+(t) = teat,f(t) = teat Lf+(t) = 1 (s + a)2 ,Lf(t) = 1 (s + a)2 ThereforeF() = 1 (a + j)2 1 (a j)2 = j4a (a2+ 2)2 AP 17.4 a f0(t) = 2A , 2 t 0;f0(t) = 2A ,0 t 2 . .f0(t) = 2A u(t+ /2) u(t) 2A u(t) u(t /2) = 2A u(t + /2) 4A u(t) + 2A u(t /2) . .f00(t) = 2A ? t + 2 ? 4A + 2A ? t 2 ? b Ff00(t) = ?2A ej/2 4A + 2A ej/2 ? = 4A ej/2+ ej/2 2 1 # = 4A ? cos ? 2 ? 1 ? c Ff00(t) = (j)2F() = 2F();thereforeF() = 1 2 Ff00(t) Thus we haveF() = 1 2 ?4A ? cos ? 2 ? 1 ? AP 17.5 v(t) = Vm ? u ? t + 2 ? u ? t 2 ? F ? u ? t + 2 ? = () + 1 j # ej/2 F ? u ? t 2 ? = () + 1 j # ej/2 ThereforeV () = Vm () + 1 j # h ej/2 ej/2 i = j2Vm()sin ? 2 ? + 2Vm sin ? 2 ? = (Vm)sin(/2) /2 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems173 AP 17.6 a Ig() = F10sgnt = 20 j b H(s) = Vo Ig Using current division and Ohms law, Vo= I2s = ? 4 4 + 1 + s ? (Ig)s = 4s 5 + sIg H(s) = 4s s + 5, H(j) = j4 5 + j c Vo() = H(j) Ig() = j4 5 + j ! 20 j ! = 80 5 + j d vo(t) = 80e5tu(t)V e Using current division, i1(0) = 1 5ig = 1 5(10) = 2A f i1(0+) = ig+ i2(0+) = 10 + i2(0) = 10 + 8 = 18A g Using current division, i2(0) = 4 5(10) = 8A h Since the current in an inductor must be continuous, i2(0+) = i2(0) = 8A i Since the inductor behaves as a short circuit for t 0 f(t) = 2 ? 2 ? = 1 t 0 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems1713 b Fe|t| = 1 1 + j + 1 1 j = 2 1 + 2 ThereforeFea|t| = (1/a)2 (/a)2+ 1 ThereforeFe0.5|t| = 4 42+ 1, Fe|t| = 2 2+ 1 Fe2|t| = 1/0.252+ 1, yes as “a” increases, the sketches show that f(t) approaches zero faster and F() fl attens out over the frequency spectrum. P 17.15 a Ff(t a) = Z f(t a)ejtdt Let u = t a, then du = dt, t = u + a, and u = when t = . Therefore, Ff(t a) = Z f(u)e j(u+a) du = eja Z f(u)e ju du = ejaF() b Fej0tf(t) = Z f(t)ej(0)tdt = F( 0) c Ff(t)cos0t = F ( f(t) ej0t+ ej0t 2 #) = 1 2F( 0) + 1 2F( + 0) P 17.16 Y () = Z ?Z x()h(t )d ? ejtdt = Z x() ?Z h(t )e jt dt ? d 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 1714CHAPTER 17. The Fourier Transform Let u = t , du = dt, and u = , when t = . ThereforeY () = Z x() ?Z h(u)e j(u+)du ? d = Z x() ? ej Z h(u)e ju du ? d = Z x()e jH()d = H()X() P 17.17 Ff1(t)f2(t) = Z ? 1 2 Z F1(u)e jtudu ? f2(t)ejtdt = 1 2 Z ?Z F1(u)f2(t)e jtejtudu ? dt = 1 2 Z ? F1(u) Z f2(t)e j(u)tdt ? du = 1 2 Z F1(u)F2( u)du P 17.18 a F() = Z f(t)ejtdt dF d = Z d d h f(t)ejtdt i = j Z tf(t)ejtdt = jFtf(t) Thereforej dF() d = Ftf(t) d2F() d2 = Z (jt)(jt)f(t)e jtdt = (j)2Ft2f(t) Note that(j)n= 1 jn Thus we havejn dnF() dn # = Ftnf(t) b (i)Featu(t) = 1 a + j = F(); dF() d = j (a + j)2 Thereforej dF() d # = 1 (a + j)2 ThereforeFteatu(t) = 1 (a + j)2 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems1715 (ii)F|t|ea|t| = Fteatu(t) Fteatu(t) = 1 (a + j)2 j d d 1 a j ! = 1 (a + j)2 + 1 (a j)2 (iii)Ftea|t| = Fteatu(t) + Fteatu(t) = 1 (a + j)2 + j d d 1 a j ! = 1 (a + j)2 1 (a j)2 P 17.19 a f1(t) = cos0t,F1(u) = (u+ 0) + (u 0) f2(t) = 1,/2 t 0,io= 400e40tA P 17.25 a Vo= IgR(1/sC) R + (1/sC) = IgR RCs + 1 H(s) = Vo Ig = 1/C s + (1/RC) = 2 106 s + 40 H(j) = 2 106 40 + j ;Ig() = 400 106 j Vo() = H(j)Ig() = 400 106 j ! 2 106 40 + j ! = 800 j(40 + j) = 20 j 20 40 + j vo(t) = 10sgn(t) 20e40tu(t)V b Yes, at the time the current source jumps from 200 to +200A the capacitor is charged to 10 V. That is, at t = 0, vo(0) = (50 103)(200 106) = 10 V. At t = the capacitor will be charged to +10 V. That is, vo() = (50 103)(200 106) = 10 V The time constant of the circuit is (50 103)(0.5 106) = 25 ms, so 1/ = 40. The function vo(t) is plotted below: 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems1721 P 17.26 a Vo Vg = H(s) = 4/s 0.5 + 0.01s + 4/s H(s) = 400 s2+ 50s + 400 = 400 (s + 10)(s + 40) H(j) = 400 (j + 10)(j + 40) Vg() = 6 j Vo() = Vg()H(j) = 2400 j(j + 10)(j + 40) Vo() = K1 j + K2 j + 10 + K3 j + 40 K1= 2400 400 = 6;K2= 2400 (10)(30) = 8 K3= 2400 (40)(30) = 2 Vo() = 6 j 8 j + 10 + 2 j + 40 vo(t) = 3sgn(t) 8e10tu(t) + 2e40tu(t)V b vo(0) = 3V c vo(0+) = 3 8 + 2 = 3V d For t 0+: Vo 3/s 0.5 + 0.01s + (Vo+ 3/s)s 4 = 0 Vo ? 100 s + 50 + s 4 ? = 300 s(s + 50) 0.75 Vo= 1200 3s2 150s s(s + 10)(s + 40) = K1 s + K2 s + 10 + K3 s + 40 K1= 1200 400 = 3;K2= 1200 300 + 1500 (10)(30) = 8 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 1722CHAPTER 17. The Fourier Transform K3= 1200 4800 + 6000 (40)(30) = 2 vo(t) = (3 8e10t+ 2e40t)u(t)V e Yes. P 17.27 a Io= Vg 0.5 + 0.01s + 4/s H(s) = Io Vg = 100s s2+ 50s + 400 = 100s (s + 10)(s + 40) H(j) = 100(j) (j + 10)(j + 40) Vg() = 6 j Io() = H(j)Vg() = 600 (j + 10)(j + 40) = 20 j + 10 20 j + 40 io(t) = (20e10t 20e40t)u(t)A b io(0) = 0 c io(0+) = 0 d Io= 6/s 0.5 + 0.01s + 4/s = 600 s2+ 50s + 400 = 600 (s + 10)(s + 40) = 20 s + 10 20 s + 40 io(t) = (20e10t 20e40t)u(t)A e Yes. 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems1723 P 17.28 a ig= 3e5|t| . .Ig() = 3 j + 5 + 3 j + 5 = 30 (j + 5)(j + 5) Vo 10 + Vos 10 = Ig . . Vo Ig = H(s) = 10 s + 1 ;H() = 10 j + 1 Vo() = Ig()H() = 300 (j + 1)(j + 5)(j + 5) = K1 j + 1 + K2 j + 5 + K3 j + 5 K1= 300 (4)(6) = 12.5 K2= 300 (4)(10) = 7.5 K3= 300 (6)(10) = 5 Vo() = 12.5 j + 1 7.5 j + 5 + 5 j + 5 vo(t) = 12.5et 7.5e5tu(t) + 5e5tu(t)V b vo(0) = 5V c vo(0+) = 12.5 7.5 = 5V d ig= 3e5tu(t),t 0+ Ig= 3 s + 5 ;H(s) = 10 s + 1 vo(0+) = 5V;C = 0.5 Vo 10 + Vos 10 = Ig+ 0.5 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 1724CHAPTER 17. The Fourier Transform Vo(s + 1) = 30 s + 5 + 5 Vo= 30 (s + 5)(s + 1) + 5 s + 1 = 7.5 s + 5 + 7.5 s + 1 + 5 s + 1 = 12.5 s + 1 7.5 s + 5 . .vo(t) = (12.5et 7.5e5t)u(t)V e Yes, for t 0+the solution in part (a) is also vo(t) = (12.5et 7.5e5t)u(t)V P 17.29 a Io= Vg 10 + 10/s = Vgs 10s + 10 H(s) = Io Vg = 0.1 s + 1 H(j) = 0.1 j + 1 Vg() = 30 j + 5 + 30 j + 5 Io() = H(j)Vg(j) = 0.1j j + 1 30 j + 5 + 30 j + 5 # = 3j (j + 1)(j + 5) + 3j (j + 1)(j + 5) = K1 j + 1 + K2 j + 5 + K3 j + 1 + K4 j + 5 K1= 3(1) 6 = 0.5;K2= 3(5) 6 = 2.5 K3= 3(1) 4 = 0.75;K4= 3(5) 4 = 3.75 . .Io() = 1.25 j + 1 + 2.5 j + 5 + 3.75 j + 5 io(t) = 2.5e5tu(t) + 1.25et+ 3.75e5tu(t)A b io(0) = 2.5V c io(0+) = 2.5V 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems1725 d Note since io(0+) = 2.5 A, vo(0+) = 30 25 = 5 V. Io= Vg (5/s) 10 + (10/s) = sVg 5 10s + 10 ;Vg= 30 s + 5 . .Io= 25s 25 10(s + 1)(s + 5) = 2.5(s 1) (s + 1)(s + 5) = 1.25 s + 1 + 3.75 s + 5 io(t) = (1.25et+ 3.75e5t)u(t)A e Yes, for t 0+the solution in part (a) is also io(t) = (1.25et+ 3.75e5t)u(t)A P 17.30 Vo Vg 2s + 100Vo s + Vos 100s + 125 104 = 0 . .Vo= s(100s + 125 104)Vg 125(s2+ 12,000s + 25 106) Io= sVo 100s + 125 104 H(s) = Io Vg = s2 125(s2+ 12,000s + 25 106) H(j) = 8 1032 (25 106 2) + j12,000 Vg() = 300( + 5000) + ( 5000) Io() = H(j)Vg() = 2.42( + 5000) + ( 5000) (25 106 2) + j12,000 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 1726CHAPTER 17. The Fourier Transform io(t) = 2.4 2 Z 2( + 5000) + ( 5000) (25 106 2) + j12,000 ejtd = 1.2 ( 25 106ej5000t j(12,000)(5000) + 25 106ej5000t j(12,000)(5000) ) = 6 12 (ej5000t j + ej5000t j ) = 0.5ej(5000t+90 ) + ej(5000t+90 ) io(t) = 1cos(5000t + 90)A P 17.31 a Vo Vg sL1 + Vo sL2 + Vo R = 0 . .Vo= RVg L1 ? s + R ? 1 L1 + 1 L2 ? Io= Vo sL2 . . Io Vg = H(s) = R/L1L2 s(s + R(1/L1) + (1/L2) R L1L2 = 12 105 R ? 1 L1 + 1 L2 ? = 3 104 . .H(s) = 12 105 s(s + 3 104) H(j) = 12 105 j(j + 3 104) Vg() = 125( + 4 104) + ( 4 104) Io() = H(j)Vg() = 1500 105( + 4 104) + ( 4 104) j(j + 3 104) 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems1727 io(t) = 1500 105 2 Z ( + 4 104) + ( 4 104)ejt j(j + 3 104) d io(t) = 750 105 ( ej40,000t j40,000(30,000 j40,000) + ej40,000t j40,000(30,000 + j40,000) ) = 75 106 4 108 ( ej40,000t j(3 + j4) + ej40,000t j(3 + j4) ) = 75 400 ( ej40,000t 5/ 143.13 + ej40,000t 5/143.13 ) = 0.075cos(40,000t 143.13)A io(t) = 75cos(40,000t 143.13)mA b In the phasor domain: Vo 125 j200 + Vo j800 + Vo 120 = 0 12Vo 1500 + 3Vo+ j20Vo= 0 Vo= 1500 15 + j20 = 60/ 53.13V Io= Vo j800 = 75 103/ 143.13A io(t) = 75cos(40,000t 143.13)mA P 17.32 a (Vo Vg)s 106 + Vo 4s + Vo 800 = 0 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 1728CHAPTER 17. The Fourier Transform . .Vo= s2Vg s2+ 1250s + 25 104 Vo Vg = H(s) = s2 (s + 250)(s + 1000) H(j) = (j)2 (j + 250)(j + 1000) vg= 45e500|t|;Vg() = 45,000 (j + 500)(j + 500) . .Vo() = H(j)Vg() = 45,000(j)2 (j + 250)(j + 500)(j + 1000)(j + 500) = K1 j + 250 + K2 j + 500 + K3 j + 1000 + K4 j + 500 K1= 45,000(250)2 (250)(750)(750) = 20 K2= 45,000(500)2 (250)(500)(1000) = 90 K3= 45,000(1000)2 (750)(500)(1500) = 80 K4= 45,000(500)2 (750)(1000)(1500) = 10 . .vo(t) = 20e250t 90e500t+ 80e1000tu(t) + 10e500tu(t)V b vo(0) = 10V;Vo(0+) = 20 90 + 80 = 10V vo() = 0V c IL= Vo 4s = 0.25sVg (s + 250)(s + 1000) H(s) = IL Vo = 0.25s (s + 250)(s + 1000) H(j) = 0.25(j) (j + 250)(j + 1000) IL() = 0.25(j)(45,000) (j + 250)(j + 500)(j + 1000)(j + 500) = K1 j + 250 + K2 j + 500 + K3 j + 1000 + K4 j + 500 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Problems1729 K4= (0.25)(500)(45,000) (750)(1000)(1500) = 5mA iL(t) = 5e500tu(t); . .iL(0) = 5mA K1= (0.25)(250)(45,000) (250)(750)(750) = 20mA K2= (0.25)(500)(45,000) (250)(500)(1000) = 45mA K3= (0.25)(1000)(45,000) (750)(500)(1500) = 20mA . .iL(0+) = K1+ K2+ K3= 20 + 45 20 = 5mA Checks, i.e.,iL(0+) = iL(0) = 5mA At t = 0: vC(0) = 45 10 = 35V At t = 0+: vC(0+) = 45 10 = 35V d We can check the correctness of out solution for t 0+by using the Laplace transform. Our circuit becomes Vo 800 + Vo 4s + (Vo Vg)s 106 + 35 106+ 5 103 s = 0 . .(s2+ 1250s + 24 104)Vo= s2Vg (35s + 5000) vg(t) = 45e500tu(t)V;Vg= 45 s + 500 . .(s + 250)(s + 1000)Vo= 45s2 (35s + 5000)(s + 500) (s + 500) . .Vo= 10s2 22,500s 250 104 (s + 250)(s + 500)(s + 1000) = 20 s + 250 90 s + 500 + 80 s + 1000 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 5576-2025橡胶和胶乳命名法
- GB/T 11354-2025钢件渗氮层深度测定和金相组织检验
- 大学生心理健康教育 课件 第七章 大学生健康恋爱及性心理的培养
- 应急安全体验馆培训课件
- 2024年浙江省东阳市中考物理高频难、易错点题(A卷)附答案详解
- 秋季腹部保暖与肠道功能关联研究
- 水利设施管养人员考前冲刺试卷附参考答案详解【夺分金卷】
- 2025自考专业(汉语言文学)复习提分资料带答案详解(典型题)
- 2024-2025学年计算机二级过关检测试卷附答案详解【B卷】
- 2025年教育行业并购动态:投资策略与整合路径研究报告
- 抖音:短视频与直播运营全套教学课件
- 公对私转账合同
- 综合实践活动(2年级下册)第3课时 自动浇水器的设计与制作-课件
- 保密室及保密要害部位搬迁发案
- 拍卖行业发展趋势PPT
- 《人力资源管理全套课件》
- 眼科常见疾病诊疗指南
- 厂级岗前安全培训教材
- 征兵宣传主题PPT
- 全桥LLC自动计算表格
- 高中数学竞赛讲义-高中数学竞赛
评论
0/150
提交评论