复合轴类零件数控加工工艺与编程设计[配合件-2件]【含CAD图纸全套】
收藏
资源目录
压缩包内文档预览:
编号:30790772
类型:共享资源
大小:2.84MB
格式:ZIP
上传时间:2019-12-06
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
配合件-2件
含CAD图纸全套
复合
零件
数控
加工
工艺
编程
设计
配合
CAD
图纸
全套
- 资源描述:
-
【温馨提示】 dwg后缀的文件为CAD图,可编辑,无水印,高清图,压缩包内含CAD图的预览图片,仅用于预览,压缩包内文档可直接点开预览,需要原稿请自助充值下载,压缩包内的文件及预览,所见即所得,请细心查看有疑问可以咨询QQ:414951605或1304139763
- 内容简介:
-
工 艺 规 程(机械加工) 零件名称 复合轴类 编制 2013.5.1 校核 审查 共17张数控加工工序卡产品名称或代号零件名称零件图号轴1轴1车间使用设备数控车间CK6140工艺序号程序编号10%0001夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1车端面,钻中心孔端面T0101500r/min 0.3mm/r1mm 编制共15 页第 1页数控加工工序卡产品名称或代号零件名称零件图号轴2轴2车间使用设备数控车间CK6140工艺序号程序编号20%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1车右端外圆,钻中心孔外圆T0101800r/min0.3mm/r1.5mm编制共 15页第10 页数控加工工序卡产品名称或代号零件名称零件图号轴2轴2车间使用设备数控车间CK6140工艺序号程序编号20%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1钻孔,深39mm内圆T0606450r/min12.5mm编制共15页第11 页数控加工工序卡产品名称或代号零件名称零件图号轴2轴2车间使用设备数控车间CK6140工艺序号程序编号20%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1粗车内圆保留0.5mm余量内圆T0404800r/min0.3mm/r1.5mm编制共 15 页第12 页数控加工工序卡产品名称或代号零件名称零件图号轴2轴2车间使用设备数控车间CK6140工艺序号程序编号20%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1精车内圆保证尺寸精度,粗糙度Ra3.2um内圆T0404800r/min0.3mm/r0.25mm编制共 15 页第13 页数控加工工序卡产品名称或代号零件名称零件图号轴1、2轴1、2车间使用设备数控车间CK6132S工艺序号程序编号30%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1车配合部位T0404500r/min0.3mm/r2mm编制共 15 页第14 页数控加工工序卡产品名称或代号零件名称零件图号轴1、2轴1、2车间使用设备数控车间CK6132S工艺序号程序编号30%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1 粗车R30外轮廓T0404500r/min0.3mm/r2mm2 精车R30外轮廓T0404800r/min 0.15mm/r0.5mm编制共 15 页第15页数控加工工序卡产品名称或代号零件名称零件图号轴1轴1车间使用设备数控车间CK6140工艺序号程序编号10%0001夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1 钻孔, 车内孔内孔T0101500r/min 0.3mm/r1mm 编制共15 页第 2页数控加工工序卡产品名称或代号零件名称零件图号轴1轴1车间使用设备数控车间CK6140工艺序号程序编号10%0001夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1 粗车各表面保留0.5mm余量粗糙度Ra6.3um外圆T0101500r/min 0.3mm/r1.5mm 编制共 15 页第 3页数控加工工序卡产品名称或代号零件名称零件图号轴1轴1车间使用设备数控车间CK6140工艺序号程序编号10%0001夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1 精车各表面并保证精度,粗糙度Ra1.6um外圆T0101800r/min 0.3mm/r0.25mm 编制共15 页第 4页数控加工工序卡产品名称或代号零件名称零件图号轴1轴1车间使用设备数控车间CK6140工艺序号程序编号20%0001夹具名称夹具编号专用夹具1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1车左端面及外圆外槽T02500r/min0.3mm/r2.5mm 编制 共15页第5页 数控加工工序卡产品名称或代号零件名称零件图号轴1轴1车间使用设备数控车间CK6132S工艺序号程序编号20%0001夹具名称夹具编号专用夹具1工步号 工步作业内容加工面刀具号刀补量主轴转速进给速度背吃刀量备注1车内孔及台阶并保证精度外圆T0303500r/min 2mm/r1.3mm编制共 15页第6 页数控加工工序卡产品名称或代号零件名称零件图号轴2轴2车间使用设备数控车间CK6140工艺序号程序编号10%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1车端面,保证全长端面T01800r/min0.3mm/r 1mm编制 共 15页第7 页数控加工工序卡产品名称或代号零件名称零件图号轴2轴2车间使用设备数控车间CK6140工艺序号程序编号20%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1 粗车各表面保留余量0.5mm粗糙度Ra6.3um外圆T01500r/min0.3mm/r2.5mm编制共 15 页第8 页数控加工工序卡产品名称或代号零件名称零件图号轴2轴2车间使用设备数控车间CK6140工艺序号程序编号20%0002夹具名称夹具编号三爪卡盘1工步号 工步作业内容加工面刀具号刀补量主轴转速进给量背吃刀量备注1 精车各表面并保证尺寸精度,粗糙度Ra3.2um 外圆T01800r/min0.2mm/r 0.5mm编制 共15 页第9页数控加工工艺过程卡产品型号及名称轴1零件生产批量单件第 1 页零件名称轴1零件图号共 1 页毛坯种类棒料材料名称 45#每件毛坯制坯数1成品外形尺寸 6052毛坯外形尺寸7057零件重量1.5公斤毛坯数量1产品件数1车间名称工序号工序名称工种单件工时机床型号夹具名称及编号刀具名称及编号量具名称数控技术中心10加工右端内外轮廓数控车工1.1hCK6132S三爪卡盘 1T0101-90外圆车刀T0404内孔车刀T0606麻花钻 游标卡尺千分尺环规数控技术中心20掉头,加工左侧外轮廓数控车工1hCK6132S专用夹具 1T0101-90外圆车刀游标卡尺千分尺塞规数控技术中心30去毛刺钳工0.5min毛刷数控技术中心40检验检查员1min游标卡尺千分尺环规塞规编制 审核批准年月日2013.5.1共2页第1页数控加工工艺过程卡产品型号及名称轴1零件生产批量单件第 2 页零件名称轴1零件图号共 2 页毛坯种类棒料材料名称 45#每件毛坯制坯数1成品外形尺寸 70130毛坯外形尺寸80135零件重量2.5公斤毛坯数量1产品件数1车间名称工序号工序名称工种单件工时机床型号夹具名称及编号刀具名称及编号量具名称数控技术中心10加工左端外轮廓数控车工1.1hCK6132S三爪卡盘 1T0101-90外圆车刀 T0202-外切槽刀T0303外螺纹刀游标卡尺千分尺环规数控技术中心20掉头,加工右侧内外轮廓数控车工1hCK6132S三爪卡盘 1T0101-90外圆车刀T0404内孔车刀T0505-内切槽刀T0707内螺纹刀T0606麻花钻游标卡尺千分尺塞规数控技术中心30加工两件配合处配车数控车工1.1hCK6132S三爪卡盘 1T0101-90外圆车刀 游标卡尺千分尺环规数控技术中心40去毛刺钳工0.5min毛刷数控技术中心50检验检查员1min游标卡尺千分尺环规塞规编制 审核批准年月日2013.5.1共2页第2页毕业设计(论文)中期报告 题目: 复合轴类零件数控加工工艺与编程设计系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 2013 年 3 月 17 日1. 设计(论文)进展状况1.1零件图、零件精度及技术要求分析在制订零件的机械加工工艺规程之前,对零件进行工艺性分析,以及对产品零件图提出修改意见,是制订工艺规程的一项重要工作。此次设计的是一个轴类组合零件,此件几何要素间的相互关系明确,条件充分;采用一个主视图和一个剖视图完整的表达零件,尺寸表达完整,符合国家制图标准。有利于编制程序时的数据分析和计算;表面粗糙度的标注明确了各加工面的加工精度要求。检查零件图的完整性和正确性,在了解零件形状和结构之后,应检查零件视图是否正确和完整,是否能足够表达的直观、清楚,绘制是否符合国家标准,尺寸、公差以及技术要求的标注是否齐全、合理等。对图纸资料进行分析包括零件技术要求分析和结构工艺性分析两个方面。这是制订机械加工工艺的重要步骤,也是学生应当掌握的基本技能。分析技术要求包括四个方面。(1)加工表面的尺寸精度。(2)主要加工表面的形状精度。(3)主要加工表面的相互位置精度。(4)零件的表面质量1.2 轴类零件的材料、毛坯及热处理轴类零件材料常用45钢,对于中等精度而转速较高的轴,可选用40Cr等合金结构钢;精度较高的轴,可选用轴承钢GCr15等,也可选用球墨铸铁,对于高转速、重载荷条件下工作的轴,选用20CrMnTi、20Cr等低碳合金钢或38CrMoAL氮化钢。低碳钢经渗碳淬火处理后,具有很高的表面硬度、心部强度和耐冲击韧度,但是热处理变形较大。而氮化钢经调质和表面氮化后,有很高的心部强度、优良的耐磨性和耐疲劳强度,热处理变形却很小。轴类零件最常用的毛坯是圆棒料和锻件;有些大型轴或结构复杂的轴采用铸件,毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,从而获得较高的抗拉、抗弯及抗扭强度,故一般比较重要的轴,多采用锻件。故本次设计采用零件材料为45钢,加工切削性能较好,无热处理和硬度要求。1.3夹具的设计根据本设计所要加工零件的特点,查阅相关资料设计出复合加工要求的夹具。本设计中选粗、精车零件1的外圆及台阶作为设计夹具的参照物。完成如下夹具: 图1. 夹具二维图 图 2.夹具三维图1.4数控设备的选择选择数控机床时,一般应考虑以下几个方面的问题:(1)数控机床主要规格的尺寸应与工件的轮廓尺寸相适应。即小的工件应当选择小规格的机床加工,而大的工件则选择大规格的机床加工,做到设备的合理使用。(2)机床的工作精度与工序要求的加工精度相适应。根据零件的加工精度要求选择机床,如精度要求低的粗加工工序,应选择精度低的机床,精度要求高的精加工工序,应选用精度高的机床。(3)装夹方便、夹具结构简单也是选择数控设备是需要考虑的一个因素。选择采用卧式数控机床,还是选择立式数控机床,将直接影响所选择的夹具的结构和加工坐标系,直接关系到数控编程的难易程度和数控加工的可靠性。 应当注意的是,在选择数控机床时应充分利用数控设备的功能,根据需要进行合理的开发,以扩大数控机床的功能,满足产品的需要。然后,根据所选择的数控机床,进一步优化数控加工方案和工艺路线,根据需要适当调整工序的内容。1.5加工方案的制定及工序卡、工艺卡 零件加工过程中,为满足零件的几何尺寸、形位精度以及其它各项技术要求,首先必须制订出经济、合理的工艺路线。由于零件生产类型为单件生产,并采用了工序集中的工艺加工倾向安排,即采用通用数控机床,配以通用的工装夹具和专用夹具,来保证零件的加工质量,同时也可以提高劳动生产率,尽量降低生产成本。 数控车工步的安排原则:先粗后精、先近后远、内外交叉、保证工件加工刚度的要求、同一把刀能加工内容连续加工原则。工序一:车零件1左端外轮廓(1)车端面(2)钻中心孔(3)粗车外轮廓,留0.5mm精车余量(4)精车外轮廓,保证其加工精度及表面粗糙度(5)切槽(宽3.5mm),保证其加工精度工序二:车零件2左端外轮廓(1)粗车端面、外轮廓(2)钻20mm的通孔(3)精车端面、外轮廓(4)粗车内孔,留0.5mm精车余量(5)精车内孔保证其加工精度及表面粗糙度工序三:车零件2右端轮廓(1)粗车内孔,留0.5mm精车余量(2)精车内孔,保证其加工精度及表面粗糙度(3)粗车外轮廓,留0.5mm的精车余量(4)精车外轮廓,保证其加工精度及表面粗糙度工序四:车零件1右端(1)车端面、外圆(2)钻30深37mm的孔(3)粗车内孔,留0.5mm精车余量(4)精车内孔,保证其加工精度及表面粗糙度(5)切内槽(宽4mm),保证其加工精度(6)车M361.5的内螺纹保证其加工精度工序五:车零件1、零件2配合件的外轮廓(1)粗车外轮廓,留0.5mm精车余量(2)精车右内轮廓保证其加工精度及表面粗糙度2. 存在问题及解决措施 本课题主要研究的是复合轴零件的数控加工,主要难点就在于不太熟悉的夹具设计,刀具的选择等。还有就是自己的数控模拟仿真技术软件的运用还不太熟练。解决措施:认真下功夫进行软件的学习并进行多次的模拟实践,和老师进行沟通,自己查阅书籍,对刀具和切削用量进行更深一步的了解,借鉴别人经验进行对自己的复合轴加工方案进行的修改。3. 后期工作安排(1)9 -12周:确定对刀、换刀点,切削用量的选择;(2)13-14周:编制数控加工程序,撰写毕业设计论文; (3)15 周: 核对各零件图、装配图,校正格式,准备论文答辩。 指导教师签字: 年 月 日注:1. 正文:宋体小四号字,行距22磅;标题:加粗 宋体四号字2. 中期报告由各系集中归档保存,不装订入册。毕业设计(论文)外文资料翻译系 别: 机电信息系 专 业: 机械设计制造及其自动化 班 级: 姓 名: 学 号: 外文出处: Pneumatic Tips No.87/1994 附 件: 1. 原文; 2. 译文 2013年3月1.原文 Lathes And Its Cutting Process Lathes are machine tools designed primarily to do turning, facing,and boring. Very little turning is done on other types of machine tools,and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the workpiece. Consequently, more lathes of various types are used in manufacturing than any other machine tool. The essential components of a lathe are the bed, headstock assembly, tailstock assembly, carriage assembly, and the leadscrew and feed rod. The bed is the backbone of a lathe. It usually is made of well-normalized or aged gray or nodular cast iron and provides a heavy, rigidframe on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one fiat way in one or both sets. They are precision-machined to assure accuracy of alignment. On most modem lathes the ways are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.The headstock is mounted in a fixed position on the inner ways,usually at the left end of the bed. It provides a powered means of rotating the work at various speeds. Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission-through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modem lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy beatings, usuallypreloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size d this hole is an important dimension of a lathe because it detemtines the maximum size of bar stock that can be machined when the material must be fed through spindle.The tailstock assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location. An upper casting fits on the lower one and can be movedtransversely upon it, on some type of keyed ways, to permit aligning the tailstock and headstock spindles. The third major component of the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76 mm (2 to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a handwheel and screw.The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways. The second size dimension is the maximum distance between centers. The swing thus indicates the maximum workpiece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of workpieee that can be mounted between centers.Engine lathes are the type most frequently used in manufacturing. llley are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mtn ( 12 to 24 inches) swing and from 610 to 1 219 mm (24 to 48 inches) center distances, but swings up to 1 270 mm (50 inches) and center distances up to 3 658 mm ( 12 feet) are not tmcommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes-with swings usually not over 330 mm ( 13 inches)-also are available in bench type,designed for the bed to be mounted on a bench or cabinet.Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the workpiece, they ale not suitable for quantity production. Often the actual chip-production time is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operators time is consumed by simple, repetitious adjustments and in watching chips being made. Consequently, to reduce or eliminate the amount of skilled labor that is required, turret lathes, screw machines, and other types of semiautomatic and automatic lathes have been highly developed and are widely used in manufacturing.The engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.The engine lathe has been replaced in todays production shops by a wide variety of automatic lathes such as automatic tracer lathes, turret lathes, and automatic screw machines. All the advantages of single-point tooling for maximum metal removal, and the use of form tools for finish and accuracy, are now at the designers fingertips with production speeds on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Production machining equipment must be evaluated now, more than ever before, in terms of ability to repeat accurately andrapidly. Applying this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating.In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turret lathe, the designer should strive for a minimum of operations.Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and automatic chucking machines.Originally designed for rapid, automatic production of screws and similar threaded pans, the automatic screw machine has long since exceeded the confines of this narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important pmt in the economy of the parts machined on the automatic screw machine.Quantities less than 1 000 parts may be more economical to set up on the turret lathe than on the automatic screw machine. The cost of the pans machined can be reduced if the minimum economical lot size is calculated and the proper machine is selected for these quantities.Since surface roughness depends greatly upon material tumed, tooling, and feeds and speeds employed,minimum tolerances that can be held on automatic tracer lathes are not necessarily the most economical tolerances.In some cases, tolerances of 0.05mm are held in continuous production using but one cut. Groove width can be held to 0.125mm on some parts. Bores and single-point finishes can be held to 0.0125mm. On high-production runs where maximum output is desirable, a minimmn tolerance of 0. 125mm is economical on both diameter and length of turn.Metal-cutting processes are extensively used in the manufacturing industry. They are characterized by the fact that the size of the original workpieee is sufficiently large that the final geometry can be circumscribed by it, and that the unwanted material is removed as chips, particles, and so on. The chips are a necessary means to obtain the desired tolerances, and surfaces. The amount of scrap may vary from a few percent to 70% - 80% of the volume of the original work material.Owing to the rather poor material utilization of the metal-cutting processes, the anticipated scarcity of materials and energy,and increasing costs, the development in the last decade has been directed toward an increasing application of metal-forming processes. However, die costs and the capital cost of machines remain rather high; consequently, metal-cutting processes are, in many cases, the most economical, in spite of the high material waste, which only has value as scrap. Therefore,it must be expected that the material removal processes will for the next few years maintain their important position in manufacturing.Furthermore,the development of automated production systems has progressed more rapidly for metal-cutting processes than for metal-forming processes.In metal-cutting processes, the imprinting of information is carried out by a rigid medium of transfer (the tool), which is moved relative to the workpiece, and the mechanical energy is supplied through the tool. The final geometry is thus determined from the geometry of the tool and the pattem of motions of the tool and the workpiece. The basic process is mechanical: actually, a shearing action combined with fracture.As mentioned previously, the unwanted material in metal-cutting processes is removed by a rigid cutting tool, so that the desired geometry, tolerances, and surface finish are obtained. Examples of processes in this group are turning, drilling, reaming, milling,shaping, planing, broaching, grinding, honing, and lapping.Most of the cutting or machining processes are based on a tw, dimensional surface creation, which means that two relative motions are necessary between the cutting tool and the work material. These motions are defined as the primary motion, which mainly determines the cutting speed, and the feed motion, which provides the cutting zone with new material.In turning the primary motion is provided by the rotation of the workpiece, and in planing it is provided by the translation of the table; in turning the feed motion is a continuous translation of the tool, and in planing it is an intermittent translation of the tool.The cutting speed v is the instantaneous velocity of the primary motion of the tool relative to the workpieee (at a selected point on the cutting edge).The cutting speed for turning, drilling, and milling processes can be expressed as v = dn m/min Where v is the cutting speed in m/min,d the diameter of the workpiece to be cut in meters, and n the workpiece or spindle rotation in rev/min. Thus v, d, and n may relate to the work material or the tool, depending on the specific kinematic pattern. In grinding the cutting speed is normally measured in m/s.The feed motion f is provided to the tool or the workpiece and, when added to the primary motion, leads to a repeated or continuous chip removal and the creation of the desired machined surface. The motion may proceed by steps or continuously. The feed speed vf is defined as the instantaneous velocity of the feed motion relative to the workpiece (at a selected point on the cutting edge).For mining and drilling, the feed f is measured per revolution (mm/rev) of the workpiece or the tool; for planing and shaping f is measured per stroke (mm/stroke) of the tool or the workpiece. In mining the feed is measured per tooth of the cutter fz(mm/tooth); that is, fzis the displacement of the workpiece between the cutting action of two successive teeth. The feed speed vf(mm/rain) of the table is therefore the product of the number of teeth z of the cutter, the revolutions per minute of the cutter n, and the feed per tooth(vf=nzfz).A plane containing the directions of the primary motion and the feed motion is defined as the working plane, since it contains the motions responsible for the cutting action.In turning the depth of cut a (sometimes also called back engagement) is the distance that the cutting edge engages or projects below the original surface of the workpiece. The depth of cut determines the final dimensions of the workpiece. In taming, with an axial feed, the depth of cut is a direct measure of the decrease in radius of the workpiece and with radial feed the depth of cut is equal to the decrease in the length of workpiece. In drilling, the depth of cut is equal to the diameter of the drill. For milling, the depth of cut is defined as the working engagement ae and is the radial engagement of the cutter. The axial engagement (back engagement) of the cutter is called ap.The chip thickness hi in the undeformed state is the thickness of the chip measured perpendicular to the cutting edge and in a plane perpendicular to the direction of cutting. The chip thickness after cutting (i. e., the actual chip thickness h2) is larger than the undeformed chip thickness, which means that the cutting ratio or chip thickness ratio r =h1/h2 is always less than unity.Chip Width The chip width b in the tmdeformed state is the width of the chip measured along the cutting edge in a plane perpendicular to the direction of cutting.For single-point too! operations, the area of cut A is the product of the undeformed chip thickness h l and the chip width b (i.e., A = h1b). The area of cut can also be expressed by the feedf and the depth of cut a as follows: H1=f sink and b = a/sink Where k is the major cutting edge angle (i. e., the angle that the cutting edge forms with the working plane).Consequently, the area of cut is given by A =fa 2.译文 车床及其切削加工车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。车削很少在其他种类的机床上进行,而且任何一种其他机床都不能像车床那样方便地进行车削加工。由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次安装中完成几种加工。因此,在生产中使用的各种车床比任何其他种类的机床都多。车床的基本部件有:床身、主轴箱组件、尾架组件、溜板组件、丝杠和光杠。床身是车床的基础件。它通常是由经过充分正火或时效处理的灰铸铁或者球墨铸铁制成。它是一个坚固的刚性框架,所有其他基本部件都安装在床身上。通常在床身上有内外两组平行的导轨。有些制造厂对全部四条导轨都采用导轨尖顶朝上的三角形导轨(即山形导轨),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。导轨要经过精密加工,以保证其直线度精度。为了抵抗磨损和擦伤,大多数现代机床的导轨是经过表面淬硬的,但是在操作时还应该小心,以避免损伤导轨。导轨上的任何误差,常常意味着整个机床的精度遭到破坏。主轴箱安装在内侧导轨的固定位置上,一般在床身的左端。它提供动力,并可使工件在各种速度下回转。它基本上由一个安装在精密轴承中的空心主轴和一系列变速齿轮类似于卡车变速箱一所组成。通过变速齿轮,主轴可以在许多种转速下旋转。大多数车床有8-18种转速,一般按等比级数排列。而且在现代机床上只需扳动2-4个手柄,就能得到全部转速。一种正在不断增长的趋势是通过电气的或者机械的装置进行无级变速。由于机床的精度在很大程度上取决于主轴,因此,主轴的结构尺寸较大,通常安装在预紧后的重型圆锥滚子轴承或球轴承中。主轴中有一个贯穿全长的通孔,长棒料可以通过该孔送料。主轴孔的大小是车床的一个重要尺寸,因为当工件必须通过主轴孔供料时,它确定了能够加工的棒料毛坯的最大尺寸。尾架组件主要由三部分组成。底板与床身的内侧导轨配合,并可以在导轨上做纵向移动。底板上有一个可以使整个尾架组件夹紧在任意位置上的装置。尾架体安装在底板上,可以沿某种类型的键槽在底板上横向移动,使尾架能与主轴箱中的主轴对正。尾架的第三个组成部分是尾架套筒。它是一个直径通常大约在5176mm(2-3英寸)之间的钢制空心圆柱体。通过手轮和螺杆,尾架套筒可以在尾架体中纵向移人和移出几英寸。车床的规格用两个尺寸表示。第一个称为车床床面上最大加工直径。这是在车床上能够旋转的工件的最大直径。它大约是两顶尖连线与导轨上最近点之间距离的两倍。第二个规格尺寸是两顶尖之间的最大距离。车床床面上最大加工直径表示在车床上能够车削的最大工件直径,而两顶尖之间的最大距离则表示在两个顶尖之间能够安装的工件的最大长度。普通车床是生产中最经常使用的车床种类。它们是具有前面所叙述的所有那些部件的重载机床,并且除了小刀架之外,全部刀具的运动都有机动进给。它们的规格通常是:车床床面上最大加工直径为305-610mm(12-24英寸);两顶尖之间距离为6101 219mm(24-48英寸)。但是,床面上最大加工直径达到1 270mm(50英寸)和两顶尖之间距离达到3 658mm(12英尺)的车床也并不少见。这些车床大部分都有切屑盘和一个安装在内部的冷却液循环系统。小型的普通车床车床床面最大加工直径一般不超过330mm(13英寸)被设计成台式车床,其床身安装在工作台或柜子上。虽然普通车床有很多用途,是很有用的机床,但是更换和调整刀具以及测量工件花费很多时间,所以它们不适合在大量生产中应用。通常,它们的实际加工时间少于其总加工时间的30。此外,需要技术熟练的工人来操作普通车床,这种工人的工资高而且很难雇到。然而,操作工人的大部分时间却花费在简单的重复调整和观察切屑产生过程上。因此,为了减少或者完全不雇用这类熟练工人,六角车床、螺纹加工车床和其他类型的半自动和自动车床已经很好地研制出来,并已经在生产中得到广泛应用。普通车床作为最早的金属切削机床中的一种,目前仍然有许多有用的和为人们所需要的特性。现在,这些机床主要用在规模较小的工厂中,进行小批量的生产,而不是进行大批量的生产。在现代的生产车间中,普通车床已经被种类繁多的自动车床所取代,诸如自动仿形车床,六角车床和自动螺丝车床。现在,设计人员已经熟知先利用单刃刀具去除大量的金属余量,然后利用成型刀具获得表面光洁度和精度这种加工方法的优点。这种加工方法的生产速度与现在工厂中使用的最快的加工设备的速度相等。普通车床的加
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。