2016年中考圆选择题分类2.doc_第1页
2016年中考圆选择题分类2.doc_第2页
2016年中考圆选择题分类2.doc_第3页
2016年中考圆选择题分类2.doc_第4页
2016年中考圆选择题分类2.doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.2016年中考圆选择题分类一选择题(共30小题)1(2016永州)对下列生活现象的解释其数学原理运用错误的是()A把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D将车轮设计为圆形是运用了“圆的旋转对称性”的原理2(2016台湾)如图,圆O通过五边形OABCD的四个顶点若=150,A=65,D=60,则的度数为何?()A25B40C50D553(2016舟山)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A120B135C150D1654(2016济宁)如图,在O中,=,AOB=40,则ADC的度数是()A40B30C20D155(2016自贡)如图,O中,弦AB与CD交于点M,A=45,AMD=75,则B的度数是()A15B25C30D756(2016达州)如图,半径为3的A经过原点O和点C(0,2),B是y轴左侧A优弧上一点,则tanOBC为()AB2CD7(2016绍兴)如图,BD是O的直径,点A、C在O上,=,AOB=60,则BDC的度数是(A60B45C35D308(2016娄底)如图,已知AB是O的直径,D=40,则CAB的度数为()A20B40C50D709(2016乐山)如图,C、D是以线段AB为直径的O上两点,若CA=CD,且ACD=40,则CAB=()A10B20C30D4010(2016杭州)如图,已知AC是O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交O于点E,若AOB=3ADB,则()ADE=EBBDE=EBCDE=DODDE=OB11(2016广安)如图,AB是圆O的直径,弦CDAB,BCD=30,CD=4,则S阴影=()A2BCD12(2016泰安)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF等于()A12.5B15C20D22.513(2016聊城)如图,四边形ABCD内接于O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为()A45B50C55D6014(2016安徽)如图,RtABC中,ABBC,AB=6,BC=4,P是ABC内部的一个动点,且满足PAB=PBC,则线段CP长的最小值为()AB2CD15(2016连云港)如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点)如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A2rBr3Cr5D5r16(2016丽水)如图,已知O是等腰RtABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A3B2C1D1.217(2016台湾)如图,四边形ABCD中,AB=AD,BC=DC,A=90,ABC=105若AB=5,则ABD外心与BCD外心的距离为何?()A5B5CD18(2016邵阳)如图所示,AB是O的直径,点C为O外一点,CA,CD是O的切线,A,D为切点,连接BD,AD若ACD=30,则DBA的大小是()A15B30C60D7519(2016衢州)如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点E,若A=30,则sinE的值为()ABCD20(2016湖州)如图,圆O是RtABC的外接圆,ACB=90,A=25,过点C作圆O的切线,交AB的延长线于点D,则D的度数是()A25B40C50D6521(2016台湾)如图,菱形ABCD的边长为10,圆O分别与AB、AD相切于E、F两点,且与BG相切于G点若AO=5,且圆O的半径为3,则BG的长度为何?()A4B5C6D722(2016台州)如图,在ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A6B2+1C9D23(2016临沂)如图,AB是O的切线,B为切点,AC经过点O,与O分别相交于点D,C若ACB=30,AB=,则阴影部分的面积是()ABCD24(2016德州)九章算术是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A3步B5步C6步D8步25(2016台湾)如图,正六边形ABCDEF中,P、Q两点分别为ACF、CEF的内心若AF=2,则PQ的长度为何?()A1B2C22D4226(2016凉山州)已知,一元二次方程x28x+15=0的两根分别是O1和O2的半径,当O1和O2相切时,O1O2的长度是()A2B8C2或8D2O2O2827(2016泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()ABCD28(2016南京)已知正六边形的边长为2,则它的内切圆的半径为()A1BC2D229(2016台湾)如图,有一圆O通过ABC的三个顶点若B=75,C=60,且的长度为4,则BC的长度为何?()A8B8C16D1630(2016无锡)如图,AB是O的直径,AC切O于A,BC交O于点D,若C=70,则AOD的度数为()A70B35C20D402016年中考圆选择题分类参考答案与试题解析一选择题(共30小题)1(2016永州)对下列生活现象的解释其数学原理运用错误的是()A把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D将车轮设计为圆形是运用了“圆的旋转对称性”的原理【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B【点评】本题考查了圆的认识、三角形的稳定性、确定直线的条件等知识,解题的关键是熟练掌握这些定理,难度不大2(2016台湾)如图,圆O通过五边形OABCD的四个顶点若=150,A=65,D=60,则的度数为何?()A25B40C50D55【分析】连接OB,OC,由半径相等得到三角形OAB,三角形OBC,三角形OCD都为等腰三角形,根据A=65,D=60,求出1与2的度数,根据的度数确定出AOD度数,进而求出3的度数,即可确定出的度数【解答】解:连接OB、OC,OA=OB=OC=OD,OAB、OBC、OCD,皆为等腰三角形,A=65,D=60,1=1802A=180265=50,2=1802D=180260=60,=150,AOD=150,3=AOD12=1505060=40,则=40故选B【点评】此题考查了圆心角、弧、弦的关系,弄清圆心角、弧、弦的关系是解本题的关键3(2016舟山)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A120B135C150D165【分析】直接利用翻折变换的性质结合锐角三角函数关系得出BOD=30,再利用弧度与圆心角的关系得出答案【解答】解:如图所示:连接BO,过点O作OEAB于点E,由题意可得:EO=BO,ABDC,可得EBO=30,故BOD=30,则BOC=150,故的度数是150故选:C【点评】此题主要考查了翻折变换的性质以及弧度与圆心角的关系,正确得出BOD的度数是解题关键4(2016济宁)如图,在O中,=,AOB=40,则ADC的度数是()A40B30C20D15【分析】先由圆心角、弧、弦的关系求出AOC=AOB=50,再由圆周角定理即可得出结论【解答】解:在O中,=,AOC=AOB,AOB=40,AOC=40,ADC=AOC=20,故选C【点评】本题考查了圆心角、弧、弦的关系,圆周角定理;熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键5(2016自贡)如图,O中,弦AB与CD交于点M,A=45,AMD=75,则B的度数是()A15B25C30D75【分析】由三角形外角定理求得C的度数,再由圆周角定理可求B的度数【解答】解:A=45,AMD=75,C=AMDA=7545=30,B=C=30,故选C【点评】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键6(2016达州)如图,半径为3的A经过原点O和点C(0,2),B是y轴左侧A优弧上一点,则tanOBC为()AB2CD【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tanCDO,根据圆周角定理得到OBC=CDO,等量代换即可【解答】解:作直径CD,在RtOCD中,CD=6,OC=2,则OD=4,tanCDO=,由圆周角定理得,OBC=CDO,则tanOBC=,故选:C【点评】本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、熟记锐角三角函数的定义是解题的关键7(2016绍兴)如图,BD是O的直径,点A、C在O上,=,AOB=60,则BDC的度数是(A60B45C35D30【分析】直接根据圆周角定理求解【解答】解:连结OC,如图,=,BDC=AOB=60=30故选D【点评】本题考查了圆周角定理定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径8(2016娄底)如图,已知AB是O的直径,D=40,则CAB的度数为()A20B40C50D70【分析】先根据圆周角定理求出B及ACB的度数,再由直角三角形的性质即可得出结论【解答】解:D=40,B=D=40AB是O的直径,ACB=90,CAB=9040=50故选C【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键9(2016乐山)如图,C、D是以线段AB为直径的O上两点,若CA=CD,且ACD=40,则CAB=()A10B20C30D40【分析】根据等腰三角形的性质先求出CDA,根据CDA=CBA,再根据直径的性质得ACB=90,由此即可解决问题【解答】解:ACD=40,CA=CD,CAD=CDA=(18040)=70,ABC=ADC=70,AB是直径,ACB=90,CAB=90B=20,故选B【点评】本题考查圆周角定理、直径的性质、等腰三角形的性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型10(2016杭州)如图,已知AC是O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交O于点E,若AOB=3ADB,则()ADE=EBBDE=EBCDE=DODDE=OB【分析】连接EO,只要证明D=EOD即可解决问题【解答】解:连接EOOB=OE,B=OEB,OEB=D+DOE,AOB=3D,B+D=3D,D+DOE+D=3D,DOE=D,ED=EO=OB,故选D【点评】本题考查圆的有关知识、三角形的外角等知识,解题的关键是添加除以辅助线,利用等腰三角形的判定方法解决问题,属于中考常考题型11(2016广安)如图,AB是圆O的直径,弦CDAB,BCD=30,CD=4,则S阴影=()A2BCD【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知DOE=60,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODBSDOE+SBEC【解答】解:如图,假设线段CD、AB交于点E,AB是O的直径,弦CDAB,CE=ED=2,又BCD=30,DOE=2BCD=60,ODE=30,OE=DEcot60=2=2,OD=2OE=4,S阴影=S扇形ODBSDOE+SBEC=OEDE+BECE=2+2=故选B【点评】考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键12(2016泰安)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF等于()A12.5B15C20D22.5【分析】根据平行四边形的性质和圆的半径相等得到AOB为等边三角形,根据等腰三角形的三线合一得到BOF=AOF=30,根据圆周角定理计算即可【解答】解:连接OB,四边形ABCO是平行四边形,OC=AB,又OA=OB=OC,OA=OB=AB,AOB为等边三角形,OFOC,OCAB,OFAB,BOF=AOF=30,由圆周角定理得BAF=BOF=15,故选:B【点评】本题考查的是圆周角定理、平行四边形的性质定理、等边三角形的性质的综合运用,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、等腰三角形的三线合一是解题的关键13(2016聊城)如图,四边形ABCD内接于O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为()A45B50C55D60【分析】先根据圆内接四边形的性质求出ADC的度数,再由圆周角定理得出DCE的度数,根据三角形外角的性质即可得出结论【解答】解:四边形ABCD内接于O,ABC=105,ADC=180ABC=180105=75=,BAC=25,DCE=BAC=25,E=ADCDCE=7525=50故选B【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键14(2016安徽)如图,RtABC中,ABBC,AB=6,BC=4,P是ABC内部的一个动点,且满足PAB=PBC,则线段CP长的最小值为()AB2CD【分析】首先证明点P在以AB为直径的O上,连接OC与O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题【解答】解:ABC=90,ABP+PBC=90,PAB=PBC,BAP+ABP=90,APB=90,点P在以AB为直径的O上,连接OC交O于点P,此时PC最小,在RTBCO中,OBC=90,BC=4,OB=3,OC=5,PC=OC=OP=53=2PC最小值为2故选B【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型15(2016连云港)如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点)如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A2rBr3Cr5D5r【分析】如图求出AD、AB、AE、AF即可解决问题【解答】解:如图,AD=2,AE=AF=,AB=3,ABAEAD,r3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,故选B【点评】本题考查点由圆的位置关系、勾股定理等知识,解题的关键是正确画出图形,理解题意,属于中考常考题型16(2016丽水)如图,已知O是等腰RtABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A3B2C1D1.2【分析】利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定ADE和BCE边长之间的关系,利用相似比求出线段AE的长度即可【解答】解:等腰RtABC,BC=4,AB为O的直径,AC=4,AB=4,D=90,在RtABD中,AD=,AB=4,BD=,D=C,DAC=CBE,ADEBCE,AD:BC=:4=1:5,相似比为1:5,设AE=x,BE=5x,DE=5x,CE=2825x,AC=4,x+2825x=4,解得:x=1故选:C【点评】题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练17(2016台湾)如图,四边形ABCD中,AB=AD,BC=DC,A=90,ABC=105若AB=5,则ABD外心与BCD外心的距离为何?()A5B5CD【分析】如图,连接AC,作DFBC于F,AC与BD、DF交于点E、G,先证明E是ABD外心,G是BCD外心,在RTEGD中,根据tanEDG=即可解决问题【解答】解:如图,连接AC,作DFBC于F,AC与BD、DF交于点E、GAB=AD,CB=CD,AC垂直平分BD,BAD=90,ABD=ADB=45,ABC=105,CBD=60,CB=CD,BCD是等边三角形,ABD是等腰直角三角形,点E是BAD的外心,点G是BCD的外心,在RTABD中,AB=AD=5,BD=10,BE=DE=5,在RTEDG中,DEG=90,EDG=30,ED=5,tan30=,EG=5ABD外心与BCD外心的距离为5故选A【点评】本题考查三角形的外接圆、外心、等腰直角三角形的性质、等边三角形的判定和性质,三角函数等知识,解题的关键是掌握特殊三角形的外心的位置,属于中考常考题型18(2016邵阳)如图所示,AB是O的直径,点C为O外一点,CA,CD是O的切线,A,D为切点,连接BD,AD若ACD=30,则DBA的大小是()A15B30C60D75【分析】首先连接OD,由CA,CD是O的切线,ACD=30,即可求得AOD的度数,又由OB=OD,即可求得答案【解答】解:连接OD,CA,CD是O的切线,OAAC,ODCD,OAC=ODC=90,ACD=30,AOD=360COACODC=150,OB=OD,DBA=ODB=AOD=75故选D【点评】此题考查了切线的性质以及等腰三角形的性质注意准确作出辅助线是解此题的关键19(2016衢州)如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点E,若A=30,则sinE的值为()ABCD【分析】首先连接OC,由CE是O切线,可证得OCCE,又由圆周角定理,求得BOC的度数,继而求得E的度数,然后由特殊角的三角函数值,求得答案【解答】解:连接OC,CE是O切线,OCCE,A=30,BOC=2A=60,E=90BOC=30,sinE=sin30=故选A【点评】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值注意准确作出辅助线是解此题的关键20(2016湖州)如图,圆O是RtABC的外接圆,ACB=90,A=25,过点C作圆O的切线,交AB的延长线于点D,则D的度数是()A25B40C50D65【分析】首先连接OC,由A=25,可求得BOC的度数,由CD是圆O的切线,可得OCCD,继而求得答案【解答】解:连接OC,圆O是RtABC的外接圆,ACB=90,AB是直径,A=25,BOC=2A=50,CD是圆O的切线,OCCD,D=90BOC=40故选B【点评】此题考查了切线的性质以及圆周角的性质注意准确作出辅助线是解此题的关键21(2016台湾)如图,菱形ABCD的边长为10,圆O分别与AB、AD相切于E、F两点,且与BG相切于G点若AO=5,且圆O的半径为3,则BG的长度为何?()A4B5C6D7【分析】连接OE,由O与AB相切于E,得到AEO=90,根据勾股定理得到AE=4,根据切线长定理即可得到结论【解答】解:连接OE,O与AB相切于E,AEO=90,AO=5,OE=3,AE=4,AB=10,BE=6,BG与O相切于G,BG=BE=6,故选C【点评】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题的关键22(2016台州)如图,在ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A6B2+1C9D【分析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题【解答】解:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=90,OP1B=90,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是9故选C【点评】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型23(2016临沂)如图,AB是O的切线,B为切点,AC经过点O,与O分别相交于点D,C若ACB=30,AB=,则阴影部分的面积是()ABCD【分析】首先求出AOB,OB,然后利用S阴=SABOS扇形OBD计算即可【解答】解:连接OBAB是O切线,OBAB,OC=OB,C=30,C=OBC=30,AOB=C+OBC=60,在RTABO中,ABO=90,AB=,A=30,OB=1,S阴=SABOS扇形OBD=1=故选C【点评】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型24(2016德州)九章算术是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A3步B5步C6步D8步【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r=3(步),即直径为6步,故选C【点评】此题考查了三角形的内切圆与内心,RtABC,三边长为a,b,c(斜边),其内切圆半径r=25(2016台湾)如图,正六边形ABCDEF中,P、Q两点分别为ACF、CEF的内心若AF=2,则PQ的长度为何?()A1B2C22D42【分析】先判断出四边形FPCQ是筝形,再求出AC=,AF=2,CF=2AF=4,然后计算出PQ即可【解答】解:如图,连接PF,QF,PC,QC,P、Q两点分别为ACF、CEF的内心四边形FPCQ是筝形,PQCF,ACFECF,且内角是30,60,90的三角形,AC=,AF=2,CF=2AF=4,PQ=2=2+24=22故选C【点评】此题是三角形的内切圆与内心题,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义26(2016凉山州)已知,一元二次方程x28x+15=0的两根分别是O1和O2的半径,当O1和O2相切时,O1O2的长度是()A2B8C2或8D2O2O28【分析】先解方程求出O1、O2的半径,再分两圆外切和两圆内切两种情况讨论求解【解答】解:O1、O2的半径分别是方程x28x+15=0的两根,解得O1、O2的半径分别是3和5当两圆外切时,圆心距O1O2=3+5=8;当两圆内切时,圆心距O1O2=52=2故选C【点评】考查解一元二次方程因式分解法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论