中考数学一轮复习 第12课时 二次函数教学案1(无答案).doc_第1页
中考数学一轮复习 第12课时 二次函数教学案1(无答案).doc_第2页
中考数学一轮复习 第12课时 二次函数教学案1(无答案).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料参考范本中考数学一轮复习 第12课时 二次函数教学案1(无答案)撰写人:_时 间:_课题:第12课时 二次函数(1) 教学时间:教学目标:1.了解二次函数的解析式及其基本性质;2.会用待定系数法求二次函数的解析式;3.能从某些实际问题中抽象出二次函数的解析式。教学重难点:从实际问题中抽象出二次函数的解析式,及会求二次函数的解析式。教学方法:教学过程:【复习指导】1.二次函数的图象:在画二次函数y=ax2+bx+c(a0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质:抛物线的开口方向由a的符号来确定,当a0时,在对称轴左侧y随x的增大而 ;在对称轴的右侧,y随x的增大而 ;简记左减右增,这时当x= 时,y最小值= ;反之当a0时,简记左增右减,当x= 时y最大值= .3.待定系数法是确定二次函数解析式的常用方法(1)一般地,在所给的三个条件是任意三点(或任意三对x,y的值)可设解析式为y=ax2+bx+c,然后组成三元一次方程组来求解;(2)在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k,顶点是(h,k);(3)在所给条件中已知抛物线与x轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴,则可设解析式为y=a(x-x1)(x-x2)来求解.4二次函数的平移问题平移的口诀:左“+”右“”;上“+”下“”。【预习练习】中考指要的基础演练。预习检查中对错的较多的问题进行讲解【新知探究】例1:例2:例3:【变式拓展】见中考指要例4【总结提升】(1)二次函数的图象是抛物线,是轴对称图形,充分利用抛物线的轴对称性,是研究利用二次函数的性质解决问题的关键 (2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求二次函数的解析式 (3)已知二次函数图象上的点(除顶点外)和对称轴,便能确定与此点关于对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论