2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 含解析.docx_第1页
2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 含解析.docx_第2页
2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 含解析.docx_第3页
2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 含解析.docx_第4页
2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 含解析.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2019-2020学年数学高中人教A版必修3学案:3.2.1古典概型 含解析编 辑:_时 间:_3.2古典概型3.2.1古典概型学习目标1.通过模拟试验理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性;观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养用随机的观点来理性地理解世界.2.通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,注意公式P(A)=A包含的基本事件的个数基本事件的总数的使用条件,体会化归的重要思想.掌握列举法,学会运用分类讨论的思想解决概率的计算问题.合作学习一、设计问题,创设情境(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,10,从中任取一球,只有10种不同的结果,即标号为1,2,3,10.思考讨论:根据上述情况,你能发现它们有什么共同特点?二、信息交流,揭示规律1.提出问题:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?它具有什么特点?2.基本事件具有两个特点:3.在一个试验中如果;(有限性).(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.4.古典概型计算任何事件的概率计算公式为.三、运用规律,解决问题【例1】 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?【例2】 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?古典概型解题步骤:(1)(2)(3)(4)【例3】 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?【例4】 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?【例5】 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?四、变式训练,深化提高1.在40根纤维中,有12根的长度超过30 mm,从中任取1根,取到长度超过30 mm的纤维的概率是()A.34B.310C.25D.以上都不对2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取1个恰为合格铁钉的概率是()A.15B.14C.45D.1103.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是.4.抛掷2颗质地均匀的骰子,求点数和为8的概率.五、反思小结,观点提炼1.本节课你学习到了哪些知识?2.本节课渗透了哪些数学思想方法?布置作业课本P133习题3.2A组第1,2,3,4题.参考答案二、信息交流,揭示规律1.提出问题:讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为是随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是12.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是随机事件,出现的概率是相等的,都是16.(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件;它是试验的每一个可能结果.2.任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和.3.试验中所有可能出现的基本事件只有有限个每个基本事件出现的可能性相等4.P(A)=A包含的基本事件的个数基本事件的总数三、运用规律,解决问题【例1】 解:基本事件共有6个:A=a,b,B=a,c,C=a,d,D=b,c,E=b,d,F=c,d.【例2】 解:14.(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n和事件A所包含的结果数nA;(4)用公式P(A)=nAn求出概率并下结论.【例3】 解:(1)所有可能结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.(2)(1,4),(2,3),(3,2),(4,1),共有4种.(3)P=436=19.【例4】 解:见课本P128.【例5】 解:见课本P129.四、变式训练,深化提高1.B解析:在40根纤维中,有12根的长度超过30 mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为310,因此选B项.2.C解析:(方法1)从盒中任取1个铁钉包含基本事件总数为10,其中抽到合格铁钉(记为事件A)包含8个基本事件,所以,所求概率为P(A)=810=45.(方法2)本题还可以用对立事件的概率公式求解,因为从盒中任取1个铁钉,取到合格品(记为事件A)与取到不合格品(记为事件B)恰为对立事件,因此,P(A)=1-P(B)=1-210=45.3.710解析:记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白1),(红2,白2),(红2,白3),(白1,白2),(白1,白3),(白2,白3)共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为710.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率问题,常采用间接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论