




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.1圆的标准方程,生活中的圆,自学探究:,问题一:什么是圆?初中时我们是怎样给圆下定义的?,平面内与定点距离等于定长的点的集合(轨迹)是圆。,问题二:平面直角坐标系中,如何确定一个圆?,圆心:确定圆的位置半径:确定圆的大小,圆心是C(a,b),半径是r的圆的方程是什么?,x,y,O,C,M(x,y),2.设M(x,y),则以上条件如何表示?,(x-a)2+(y-b)2=r2,1.设点M(x,y)为圆C上任一点,则M满足条件?,|MC|=r,3.是否在圆上的点都适合这个方程?是否适合这个方程的坐标的点都在圆上?,点M(x,y)在圆上,由前面讨论可知,点M的坐标适合方程;反之,若点M(x,y)的坐标适合方程,这就说明点M与圆心的距离是r,即点M在圆心为A(a,b),半径为r的圆上,想一想?,圆心C(a,b),半径r,特别地,若圆心为O(0,0),则圆的方程为:,标准方程,知识点一:圆的标准方程,1.说出下列圆的方程:(1)圆心在原点,半径为3.(2)圆心在点C(3,-4),半径为7.(3)经过点P(5,1),圆心在点C(8,-3).,2.说出下列方程所表示的圆的圆心坐标和半径:,(1)(x+7)2+(y4)2=36,(2)x2+y24x+10y+28=0,(3)(xa)2+y2=m2,例1写出圆心为,半径长等于5的圆的方程,并判断点,是否在这个圆上。,解:圆心是,半径长等于5的圆的标准方程是:,把的坐标代入方程左右两边相等,点的坐标适合圆的方程,所以点在这个圆上;,精讲点拨:,把点的坐标代入此方程,左右两边不相等,点的坐标不适合圆的方程,所以点不在这个圆上,知识探究二:点与圆的位置关系,探究:在平面几何中,如何确定点与圆的位置关系?,M,O,|OM|r,点在圆内,点在圆上,点在圆外,(x0-a)2+(y0-b)2r2时,点M在圆C外;,(x0-a)2+(y0-b)2=r2时,点M在圆C上;,(x0-a)2+(y0-b)2r2时,点M在圆C内.,点与圆的位置关系:,知识点二:点与圆的位置关系,待定系数法,解:设所求圆的方程为:,因为A(5,1),B(7,-3),C(2,8)都在圆上,所求圆的方程为,例2ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程。,例3己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.,圆经过A(1,1),B(2,-2),解1:设圆C的方程为,圆心在直线l:x-y+1=0上,待定系数法,解2:A(1,1),B(2,-2),例3己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.,即:x-3y-3=0,圆心C(-3,-2),练习,2.根据下列条件,求圆的方程:(1)求过两点A(0,4)和B(4,6),且圆心在直线x-y+1=0上的圆的标准方程。(2)圆心在直线5x-3y=8上,又与两坐标轴相切,求圆的方程。(3)求以C(1,3)为圆心,且和直线3x-4y-7=0相切的直线的方程。,1.点(2a,1a)在圆x2+y2=4的内部,求实数a的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建设工程进度监理服务协议
- 2025公务员审计面试题及答案
- 公共行政中的包容性治理模式-洞察及研究
- 疾控专业考试题及答案
- 2025至2030中国消费后纺织品行业项目调研及市场前景预测评估报告
- 2025至2030中国缓激肽B1受体行业项目调研及市场前景预测评估报告
- 2025至2030中国宣传册行业项目调研及市场前景预测评估报告
- 有关心肺复苏教学课件
- 智能监控中心建设及维保服务合同范本
- 双方协议离婚房产分割及子女抚养协议书
- 竹简与毛笔背景的国学主题PPT
- 透明土实验技术的研究进展
- 《欧姆定律》 单元作业设计
- 新高考人教版高中化学必修一全套课件
- 室外消防钢丝网骨架塑料复合PE管施工及方案
- 带秋字的古诗飞花令
- 体育原理完整版
- 超声引导下坐骨神经阻滞
- 医院医院质量与安全管理委员会章程
- 小学二年级上册语文全册课件
- 隧道施工安全教育培训
评论
0/150
提交评论