




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第23讲与圆有关的计算A组基础题组一、选择题1.(xx广东广州)如图,圆锥的侧面展开图是一个圆心角为120的扇形,若圆锥的底面圆半径是5,则圆锥的母线长为()A.5B.25C.35D.52.(xx浙江衢州)如图,AB是圆锥的母线,BC为底面半径,已知BC=6 cm,圆锥的侧面积为15 cm2,则sinABC的值为()A.34B.35C.45D.533.(xx临沂)如图,AB是O的直径,BT是O的切线,若ATB=45,AB=2,则阴影部分的面积是()A.2B.32-14C.1D.12+144.(xx甘肃兰州)如图,正方形ABCD内接于半径为2的O,则图中阴影部分的面积为()A.+1B.+2C.-1D.-25.(xx四川绵阳)蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25 m2,圆柱高为3 m,圆锥高为2 m的蒙古包,则需要毛毡的面积是()A.(30+529) m2B.40 m2C.(30+521) m2D.55 m26.(xx东营)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.31+B.32C.34+22D.31+27.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45,点A旋转到A的位置,则图中阴影部分的面积为()A.B.2C.3D.4二、填空题8.一块等边三角形的木板边长为1,将木板沿水平翻滚如图所示,那么B点从开始到结束所经过的路线长为.9.(xx湖南永州)如图,这是某同学用纸板做成的一个底面直径为10 cm,高为12 cm的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是cm2(结果保留).10.(xx甘肃兰州)如图,ABC的外接圆圆O的半径为3,ACB=55,则劣弧AB的长是.(结果保留)11.(xx烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CDOA交AB于点D,点F是AB上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为.三、解答题12.(xx湖南衡阳)如图,O是ABC的外接圆,AB为直径,BAC的平分线交O于点D,过点D作DEAC分别交AC、AB的延长线于点E、F.(1)求证:EF是O的切线;(2)若AC=4,CE=2,求BD的长.(结果保留)B组提升题组一、选择题1.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90B.120C.150D.1802.(xx山西)如图,正方形ABCD内接于O,O的半径为2,以点A为圆心,AC长为半径画弧交AB、AD的延长线于点E、F,则图中阴影部分的面积为()A.4-4B.4-8C.8-4D.8-8二、填空题3.(xx广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于E,连接BD,则阴影部分的面积为.(结果保留)4.(xx盘锦)如图,O的半径OA=3,OA的垂直平分线交O于B,C两点,连接OB,OC,用小扇形OBC围成一个圆锥的侧面,则这个圆锥的高为.5.(xx德州)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1 m,根据设计要求,若EOF=45,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.6.(xx江苏无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆O1和O2的同侧),则由AE,EF,FB,AB所围成图形(图中阴影部分)的面积等于.三、解答题7.已知,圆锥底面半径为10 cm,高为1015 cm.(1)求圆锥的表面积;(2)若一只蚂蚁从底面一点A出发绕圆锥一周回到SA上一点M处,且SM=3AM,求它所走的最短距离.第23讲与圆有关的计算A组基础题组一、选择题1.C圆锥的侧面展开图是扇形,且扇形的弧长等于圆锥底面圆的周长,扇形的半径长等于圆锥的母线长,即120l180=25,解得l=35.故选C.2.C设圆锥的母线长为R cm,由题意得15=3R,解得R=5.即AB=5 cm,又BO=12BC=3 cm,AO=4 cm,sinABC=AOAB=45,故选C.3.C设AT交O于D,连接BD.AB是O的直径,ADB=90,而ATB=45,BT是O的切线,ADB,BDT都是等腰直角三角形,AD=BD=TD=22AB=2,弓形AD的面积等于弓形BD的面积,阴影部分的面积=SBTD=1222=1.故选C.4.D连接AC,OD,则AC=4,正方形ABCD的边长为22,正方形ABCD的面积为8.由题意可知,O的面积为4.根据图形的对称性,知S阴影=S扇形OAD-SOAD=-2.故选D.5.A圆柱和圆锥的底面积为25 m2,圆柱和圆锥的底面半径为5 m.圆锥的高为2 m,圆锥的母线长为29 m,毛毡的面积=圆柱的侧面积+圆锥的侧面积=253+529=30+529=(30+529)(m2),故选A.6.C圆柱的侧面展开图如下,由题意可知AB=3,BB=3,AC=AB2+BC2=32+322=9+924=34+22.故选C.7.B根据题意可得出阴影部分的面积等于扇形ABA的面积加上半圆面积再减去半圆面积,即S阴影=S扇形ABA+S半圆-S半圆=S扇形ABA=4542360=2.故选B.二、填空题8.答案43解析ABC是等边三角形,ACB=BAC=60,两次旋转的角度都是180-60=120,B点从开始到结束所经过的路线长=21201180=43.9.答案65解析PB=1022+122=13(cm).做这个玩具所需纸板的面积等于展开后扇形的面积,S=121013=65.10.答案116解析根据圆周角定理可得AOB=2ACB,ACB=55,AOB=110,所以劣弧AB的长为1103180=116.11.答案36-108解析如图,CDOA,DCO=AOB=90,OA=OD=OB=6,OC=12OA=12OD,ODC=BOD=30.作DEOB于点E,则DE=12OD=3,S弓形BD=S扇形BOD-SBOD=3062360-1263=3-9,则剪下的纸片面积之和为43(3-9)=36-108.三、解答题12.解析(1)证明:如图,连接OD,交BC于点P,OA=OD,OAD=ODA,AD平分EAF,DAE=OAD,DAE=ODA,ODAE,AEEF,易知OD为O的半径,ODEF,易知OD为O的半径,EF是O的切线.(2)AB是O的直径,ACB=90,又E=PDE=90,四边形CEDP是矩形,PD=CE=2.又ODAE,点O是AB的中点,OP是ACB的中位线,OP=12AC=124=2,OD=OB=2+2=4.在RtOPB中,OP=2,OB=4,POB=60,BD的长=604180=43.B组提升题组一、选择题1.D设正圆锥的底面半径是r,则母线长是2r,底面周长是2r.设正圆锥的侧面展开图的圆心角是n,则n2r180=2r,解得n=180.故选D.2.A四边形ABCD为正方形,BAD=90,因为圆和正方形是中心对称图形,S阴影=S扇形AEF-SABD=9042360-AOBD2=9042360-242=4-4,故选A.二、填空题3.答案解析连接OE.阴影部分的面积=SBCD-(S正方形OECD-S扇形OED)=1224-22-1422=.4.答案22解析连接AB,AC.BC为OA的垂直平分线,OB=AB,OC=AC,OB=AB=OA,OC=OA=AC,OAB和AOC都是等边三角形,BOA=AOC=60,BOC=120,设圆锥的底面半径为r,则2r=1203180,解得r=1,这个圆锥的高为32-12=22.5.答案2(+2)8解析设O与矩形ABCD的另一个切点为M,连接OM,OG,则M,O,E共线.由题意得MOG=EOF=45,FOG=90,且OF=OG=1 m,S透明区域=18012360+21211=2+1(m2).过O作ONAD于N,ON=12FG=22,AB=2ON=222=2,S矩形=22=22,S透光区域S矩形=2+122=2(+2)8.6.答案3-534-6解析如图,连接AE,BF,延长FE交AD于G,则EGAD.AB=3,EF=2,EG=12.AD=2,O1A=O1E=1.AO1E=30.O1G=32.AG=1-32=2-32.弓形AE的面积=扇形AO1E的面积-O1AE的面积=3012360-12O1AEG=12-12112=12-14,图中阴影部分的面积=梯形AEFB的面积-2弓形AE的面积=12(EF+AB)AG-212-14=12(2+3)2-32-6+12=522-32-6+12=10-534+24-6=3-534-6.三、解答题7.解析(1)圆锥的母线长SA=OA2+OS2=102+(1015)2=40(cm),圆锥侧面展开图扇形的弧长l=2OA=210=20(cm),S侧=12lSA=122040=400(cm2),又S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风电叶片水性涂料项目可行性研究报告
- 防汛抢险知识培训资料课件
- 旅游业项目计划报告
- 酒店客房服务方案指南
- GeneralAgencyAgreement总代理协议3篇
- 节点重要性评估-洞察及研究
- 藤材资源优化-洞察及研究
- 安徽省黄山市2024-2025学年高二上学期期末质量检测化学试卷 (含答案)
- 气压纳米材料改性-洞察及研究
- 2025年广东省广州市中考物理三轮冲刺《声现象》
- 建筑艺术赏析(职业通用)全套教学课件
- 无人机理论知识无人机理论基础
- 医院检验科质量手册
- 农业科技在2024年的发展与前景展望
- 护理不良事件警示教育(新)
- 人生规划和人生定位课件
- 陕09J01 建筑用料及做法图集
- 教育行政学课件
- 30题工程造价岗位常见面试问题含HR问题考察点及参考回答
- 【维生素C】大剂量协助你改善各种疾病-钱学森保健、贾平凹乙肝
- 产品研发管理手册:免修版模板范本
评论
0/150
提交评论