鉴定意见.doc

喷涂机送料机构结构的设计【优秀】【word+18张CAD图纸】【毕设】

收藏

资源目录
跳过导航链接。
喷涂机送料机构结构的设计【优秀】【word+18张CAD图纸】【毕设】.rar
鉴定意见.doc---(点击预览)
评阅表.doc---(点击预览)
设计说明书.doc---(点击预览)
带式输送机技术的最新发展外文文献翻译.doc---(点击预览)
任务书.doc---(点击预览)
PDF打印图
Administrator_bashou_dwg1.dxf
Administrator_gundongzhou2_dwg1.dxf
Administrator_gunlunzhitiao_dwg1.dxf
Administrator_gunlun_dwg1.dxf
Administrator_huakuai_dwg1.dxf
Administrator_jiazi_dwg1.dxf
Administrator_luoganshang_dwg1.dxf
Administrator_luoganxia_dwg1.dxf
Administrator_qianhoujianjingoujian_dwg1.dxf
Administrator_qianhoujianjinzhiban_dwg1.dxf
Administrator_sahngxiayajinghuanganshang_dwg1.dxf
Administrator_shangxianjiajin_dwg1.dxf
Administrator_shangxiayajinghuaganxia_dwg1.dxf
Administrator_yuanpan_dwg1.dxf
Administrator_zhougan1_dwg1.dxf
Administrator_zhougan2_dwg1.dxf
Administrator_zongtu_dwg1.dxf
Administrator_zuoyouyajinzhuanpei_dwg2.dxf
压缩包内文档预览:
预览图 预览图
编号:315998    类型:共享资源    大小:26.46MB    格式:RAR    上传时间:2014-08-22 上传人:QQ14****9609 IP属地:陕西
45
积分
关 键 词:
喷涂机 送料 机构 结构 送料机构
资源描述:

喷涂机送料机构结构的设计【优秀】【word+18张CAD图纸】【毕业设计】

【带任务书+评阅评语表+答辩资格审查表+工作中期检查表+指导教师评阅表+外文翻译+实习报告】【30页@正文11600字】【详情如下】【需要咨询购买全套设计请加QQ1459919609】.bat

Administrator_bashou_dwg1.dxf

Administrator_gundongzhou2_dwg1.dxf

Administrator_gunlunzhitiao_dwg1.dxf

Administrator_gunlun_dwg1.dxf

Administrator_huakuai_dwg1.dxf

Administrator_jiazi_dwg1.dxf

Administrator_luoganshang_dwg1.dxf

Administrator_luoganxia_dwg1.dxf

Administrator_qianhoujianjingoujian_dwg1.dxf

Administrator_qianhoujianjinzhiban_dwg1.dxf

Administrator_sahngxiayajinghuanganshang_dwg1.dxf

Administrator_shangxianjiajin_dwg1.dxf

Administrator_shangxiayajinghuaganxia_dwg1.dxf

Administrator_yuanpan_dwg1.dxf

Administrator_zhougan1_dwg1.dxf

Administrator_zhougan2_dwg1.dxf

Administrator_zongtu_dwg1.dxf

Administrator_zuoyouyajinzhuanpei_dwg2.dxf

PDF打印图

任务书.doc

设计说明书.doc

评阅表.doc

鉴定意见.doc

任务书

论文(设计)题目:      喷涂机送料机构结构设计                                        

一、主要内容及基本要求

  1、完成喷涂机送料机构的结构设计、尺寸设计和工作台设计;                                        

  2、喷涂速度5-30m/min可调;喷涂工件为铝型材;                                              

  3、工件最大尺寸为200×200mm;送料轨道长度范围1.6—2.0m高度与喷涂室配套;                                            

  4、装配图A0#1张、零件图总量不少于A0#1张;                                

  5、编写设计计算说明书一份。                                                

  6、英文文献翻译,不少于3000Words。                                        

二、重点研究的问题


    1、上下、左右压紧机构设计;                                                          

    2、送料机构设计。                                                                                                                                  

三、进度安排

各阶段完成的内容起止时间

1熟悉课题与基础资料第1周

2调研、收集资料第2周

3送料机构总体方案设计与论证第3~4周

4送料机构总体布局设计第5~6周

5送料机构总装图设计第7~9周

6送料机构工程图设计第10周

7撰写设计说明书第11周

8英文文献翻译第12周

9答辩第12周

四、应收集的资料及主要参考文献

  [1] 上海市标准化协会. 机械精度设计手册[M].中国标准出版社,1992                

  [2] 徐鸿本. 机床夹具设计手册[M].辽宁科学技术出版社,2003                  

  [3] 苗磊,陶晓杰. 精密喷涂机的工作平台设计[J].电子测量与仪器学报,2009年增刊:132-135

目   录

中文题目:油漆喷涂机送料机构结构设计1

Subject:Structural design of the spray chamber of the sprayer2

第1章 概述3

1.1. 送料机构简介3

1.2. 送料机构国内基本情况4

1.3. 送料机构国外基本情况5

1.4. 设计任务和技术要求6

第2章 方案的比较和选择8

2.1. 夹紧机构方案比较8

2.2. 压紧机构方案选择10

2.3. 输送机构方案比较12

2.4. 输送机构方案选择15

第3章 减速电机和联轴器、轴承选择数据计算18

3.1. 减速电机的选择18

3.2. 减速器的选择18

3.3. 联轴器与轴承的选择19

第4章 压紧机构设计23

4.1. 上下压紧机构设计23

4.2. 左右压紧机构设计26

第5章 总结28

参考文献29

附录Ⅰ 英文文献翻译30

中文题目:油漆喷涂机送料机构结构设计

摘要

喷涂机是一种将涂料分散成雾状喷涂于被涂物表面的专用涂装设备,其工作机构主要包括有喷头的喷涂室、传送带、干燥系统、清洁机构和回收系统等。由于喷涂机具有喷涂效率高、喷涂均匀、油漆利用率高、易于操作等优点,所以被广泛应用于工业生产中。

本次毕业设计的课题是油漆喷涂机送料机构结构设计,其中设计内容主要包括:1、送料机构的整体外形和尺寸设计。2、设计夹紧机构的结构,并对比各种方案,选择最优方案。3、输送带的设计。4、夹紧机构的强度设计。5、设计送料机构的工作台。

本次毕业设计旨在设计出一个能够对工件进行自动送料的送料机构。压紧机构作为送料机构的主要部件,它不仅要能控制工件的左右位置,还要能控制工件的上下位置,因此,压紧机构的结构设计是最重要的部分。在设计过程中,要根据压紧机构的原理设计出几种压紧机构的机构简图,并对不同的方案进行对比。在本文中选出了三种不同的方案进行对比选择,最后选择出最优的方案,再对其进行尺寸设计。除了夹紧机构的设计外,工作台的设计也是其中的一个重点。由于工件的大小可能不一,所以要求夹紧机构能够上下左右移动。

本文除了设计过程的阐述外,还对喷涂机进行了简单的介绍,并且就喷涂机的国内外发展情况进行了介绍和分析。

关键词:喷涂机、压紧机构、输送带、工作台

Subject:Structural design of the spray chamber of the sprayer

Abstract

The sprayer is a paint dispersed into a mist sprayed on the surface to be painted a special painting equipment, its agencies including the nozzle of the spray booths, conveyors, drying system, clean bodies, and recycling systems, etc. Spraying machine has the advantages of high efficiency spray, spray evenly, paint utilization, ease of operation, it is widely used in industrial production.

The subject of this graduation project is a paint spraying machine feed mechanism structural design, including design and content including: 1, the feed mechanism as a whole shape and size of the design. 2, the design structure of the clamping mechanism, and compare the various options and choose the best program. 3, the design of the conveyor belt. 4, the strength design of the clamping mechanism. Design table feed mechanism.

The graduation project is to design an automatic feed of the workpiece feed mechanism. Pressed institutions as the main components of the feeding mechanism, it must not only be able to control the left and right position of the workpiece, but also be able to control the upper and lower positions of the workpiece, therefore, the structural design of the compression bodies is the most important part. According to the principle of compression bodies in the design process, design the institutions of several compression diagram, and compare the different options. Elected three different scenarios in this paper were compared to select the final choice of the optimal solution, its size design. In addition to the clamping mechanism design, bench design is a key. As the size of the workpiece may vary, so the clamping mechanism can up and down and move around.

In addition to the design process elaboration on the sprayer a brief introduction, and spraying machine at home and abroad, the development of presentations and analysis.

Key words:spraying machine, pressed institutions, conveyor belt, bench,

第1章   概述

1.1.送料机构简介

为了提高油漆喷涂的质量和其工作效率,特设计出送料机构来代替传统的人工送料。

送料机的作用就是在材料加工的过程中提供输送材料的作用,目前送料机已经遍布轻工业和重工业,是日常生产中不可或缺的机械设备。传统的送料机是通过简单的机器运动带动材料的运送,随着科技的发展,近代的送料机的形式更加丰富,结构更加复杂,开始将超声波、高压空气等先进技术使用到送料技术当中,现今自动化较高的送料设备有:激光送料机,由电脑控制的动头式送料机、高压气压和电脑送料机等。另外,国外的公司生产一种投影送料机,在这种机器上,送料机上安装有感应器和观察装置,用于对材料形状的扫描,从而对材料的引导输送。

1.1.1.喷涂机送料机构工作原理

    在送料机器中,不同类型种类的送料机是有差别的,但整体的工作原理差不多,就拿带式送料机来说,其由压紧机构、传送机构、动力系统、控制电路等四部分组成,工作时由传送带支撑带动材料,压紧机构约束材料进行输送,在压紧机构中采用滚轮接触材料方式减少摩擦,从而使输送顺畅,减少工作噪音。  

1.1.2.送料机种类

a.埋刮板送料机   埋刮板送料机由封闭的壳体、刮板链条、驱动装置及张紧装置等部件组成。埋刮板送料机工作时,物料经进料口进入机壳承载段,受到刮板的推力,与刮板链条形成整体一同向前运动,达料槽的卸料口自行排出,刮板链条沿机壳的空载段返回。因其在工作时刮板链条被埋没在物料中与物料一起向前移动,故称为“埋刮板送料机”。

b.带式送料机   带式送料机的一般结构主要由输送带、滚筒、支承装置、驱动装置、张紧装置、卸料装置、清扫装置和机架等部件组成。带式送料机是一种连续送料机械,用一根环绕于前、后两个滚筒上的输送带作为牵引及承载构件,驱动滚筒依靠摩擦力驱动输送带运动,并带动物料一起运行,从而实现输送物料的目的。

c.斗式送料机   斗式送料机主要由牵引构件(橡胶带或链条)承载构件(料斗)头轮和底轮、驱动装置、张紧装置、机壳等组成。闭合的牵引构件环绕于头轮和底轮上,并被张紧装置张紧。牵引构件的全长上,每个一定距离装置一个料斗。为防止物料的抛撒和灰尘飞扬,这些运动的部件用机壳封闭。工作时,外部的驱动装置通过头轮带动牵引构件和料斗运行。物料从机座的进料口进入机座底部,被运动着的料斗挖起并向上提升。达机头后,物料再重力和离心力的作用下脱离料斗,从卸料口排出。

d.振动送料机   振动送料机主要由输送槽、激振器、主振弹簧、导向杆、隔振弹簧、平衡底架、进料装置和卸料装置组成。振动送料机是利用某一形式的激振器使槽体沿某一倾斜方向产生振动,从而将物料由某一位置运送至另外一个位置。

e.螺旋送料机   螺旋送料机主要由料槽、螺旋叶片和转动轴组成的螺旋体、两端轴承、中间悬挂轴承及驱动装置所组成。当螺旋体转动时,进入机槽的物料受到旋转叶片的法向推力,该推力的径向分量和叶片对物料的摩擦力将使物料绕轴转动;而物料的重力和机槽对物料的摩擦力又阻止物料绕轴转动。当螺旋叶片对物料法向推力的轴向分量克服了机槽对物料的摩擦力及法向推力的径向分量,物料和睦螺旋一起旋转,只沿料槽向前远移。

1.2.送料机构国内基本情况

我国送料机工业历史较短,技术水平和生产能力低,但近年来随着我国工业的发展,在巨大的市场需求下,并随着国外先进技术的引进,发展速度很快,在技术上有明显提高,该工业逐渐成为国民经济中非常重要新兴行业。与国外送料机厂家相比,国内送料机生产起步要晚很多,虽然后期发展迅速,但很多技术和经验相比有很大差距,使得目前国内整体送料机行业处在多而不精,大而不强的一个状态,一方面是国外送料机品牌向国内迈进,国内企业为抢占市场打起价格战,为缩小成本,没能在科研和新品开发方面取得突破,另一方面,制造行业不景气,是市场需求有很大的下降,导致国内很多企业属于停滞状态,产品档次低,技术,质量,效率,安全等方面都不够高。所以还需进一步提高各方面水平。

1.2.1.新型夹式送料机特性

a.适用于要求高速加工、且需要高精度送料的冲制品。(每分钟送料最高可达1200次)

b.机械运转时,安静无声,不造成工作场所的噪音。

c.材料表面不会留下任何压痕,可使冲制电镀材料合金、不锈钢、铜或二次工程厂商、得到最完美的冲制成品。

d.所有调整均采用刻书式,操作简单,稳定性佳。任何人员均可操作它本体为一体成型,可避免冲压时所产生的共振,而影响送料精度。

参考文献

1、上海市标准化协会. 机械精度设计手册.中国标准出版社,1992                

2、徐鸿本. 机床夹具设计手册.辽宁科学技术出版社,2003                  

3、苗磊,陶晓杰. 精密喷涂机的工作平台设计.电子测量与仪器学报,2009年增刊:132-135  

4、成大先,机械设计手册.北京:化学工业出版社,2004;

5、机械设计手册编委会,机械设计手册(第四卷).机械工业出版社,2005;

6、上海市标准化协会,机械精度设计手册.中国标准出版社,1992;

7、徐鸿本,机床夹具设计手册.辽宁科学技术出版社,2003;

8、王少怀,机械设计师手册(上册).电子工业出版社,2006;

9、机械设计手册(第四版)第2卷;成大先编;北京;化学工业出版社,2002;

10、机床设计手册编写组,机床设计手册.北京:机械工业出版社,1986;

11、王启平,机床夹具设计.哈尔滨工业大学出版社,2005;

12、詹启贤,自动机械设计.北京:中国轻工业出版社,1994;

13、吕仲文,机械创新设计.北京:机械工业出版社,2004;

14、孟宪源,现代机构手册.北京:机械工业出版社,1994;

15、周明衡,联轴器选用手册.北京:化学工业出版社工业装备与信息工程出版中心,2001


内容简介:
湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目: 喷涂机送料机构结构设计 学 号: 2010962939 学生姓名: 曾文科 专业: 机械设计制造及其自动化 指导教师: 聂松辉 系主任: 一、主要内容及基本要求 1、完成喷涂机送料机构的结构设计、尺寸设计和工作台设计; 2、喷涂速度5-30m/min可调;喷涂工件为铝型材; 3、工件最大尺寸为200200mm;送料轨道长度范围1.62.0m高度与喷涂室配套; 4、装配图A0#1张、零件图总量不少于A0#1张; 5、编写设计计算说明书一份。 6、英文文献翻译,不少于3000Words。 二、 重点研究的问题 1、上下、左右压紧机构设计; 2、送料机构设计。 三、 进度安排各阶段完成的内容起止时间1熟悉课题与基础资料第1周2调研、收集资料第2周3送料机构总体方案设计与论证第34周4送料机构总体布局设计第56周5送料机构总装图设计第79周6送料机构工程图设计第10周7撰写设计说明书第11周8英文文献翻译第12周9答辩第12周四、 应收集的资料及主要参考文献 1 上海市标准化协会. 机械精度设计手册M.中国标准出版社,1992 2 徐鸿本. 机床夹具设计手册M.辽宁科学技术出版社,2003 3 苗磊,陶晓杰. 精密喷涂机的工作平台设计J.电子测量与仪器学报,2009年增刊:132-135 附录 英文文献翻译附录A带式输送机技术的最新发展M. A. AlspaughOverland Conveyor Co., Inc.MINExpo 2004拉斯维加斯, 内华达州,美国 ,2004.9.27摘要粒状材料运输要求带式输送机具有更远的输送距离、更复杂的输送路线和更大的输送量。为了适应社会的发展,输送机需要在系统设计、系统分析、数值仿真领域向更高层次发展。传统水平曲线和现代中间驱动的应用改变和扩大了带式输送机发展的可能性。本文回顾了为保证输送机的可靠性和可用性而运用数字工具的一些复杂带式输送机。前言虽然这篇文章的标题表明在皮带输送机技术中将提出“新”发展,但是提到的大多思想和方法都已存在很长时间了。 我们不怀疑被提出一些部件或想法将是“新”的对你们大部分人来说。所谓的“新”就是利用成熟的技术和部件组成特别的、复杂的系统; “新”就是利用系统设计工具和方法,汇集一些部件组成独特的输送机系统,并解决大量粒状原料的装卸问题;“新”就是在第一次系统试验(委任)之前利用日益成熟的计算机技术进行准确节能计算机模拟。同样,本文的重点是特定复杂系统设计及满足长距离输送的要求。这四个具体课题将覆盖: 1、 托辊阻力2、 节能3、 动力分散4、 分析与仿真节能减小设备整体电力消费是所有项目的一个重要方面,皮带输送机是也不例外。 虽然与其他运输方法比较皮带输送机总是运输大吨位高效率的手段,但是减少带式输送机的功率消耗的方法还是很多的。 皮带输送机的主要阻力组成部分有:a. 托辊阻力b. 托辊与皮带的摩擦力c. 材料或输送带弯曲下垂引起的阻力这些阻力加上一些混杂阻力组成输送材料所需的力。1 在一台输送长度400米的典型短距离输送机中,力可以分为如图1所示的几个部分,图中可以看出提升力所占比例最大,而阻力还是占绝大部分。 图1在高倾斜输送带中如矿用露天倾斜输送带,所受力可分解为图2所示的几个部分,其中提升力仍占巨大比例。由于重力是无法避免的,因此没有好的方法减少倾斜式输送机所受力。 图 2但是在长距离陆上输送机中,所受力更趋向图3所示的几个部分,不难看出摩擦力几乎是所受力的全部。这种情况下考虑主要受力才是最重要的。 图 3力量演算具体是超出本文的范围之外,但是值得一提的是,在过去几年对所有四个区域橡胶凹进、对准线和材料或者传送带弯曲等方面的重要研究都在进行。 并且,虽然在处理每特定区域时大家有不同意见,通常对整体项目经济是必要和重要的是被大家被接受的。在2004个SME年会上,MAN Takraf的Walter Kung介绍了题为“Henderson粗糙矿石输送系统回顾组装、起动和操作”2。 这个项目在1999年12月被实施并且包括一个24公里(3飞行)陆上转达的系统替换地下矿碾碎路轨货车使用系统。 图4 PC2到PC3调动站最长的传动机在这个系统(PC2)是16.28公里长与475m升距。最重要的系统事实是提供的功率(4000千瓦在1783 mtph 和4.6 m/s)的50% 被要求用来转动一条空载的带子,因此输送系统的效率是很重要的。需密切注意托辊、传送带盖子橡胶和对准线。用文件说明有关的效率的差别是的一种方法, 使用相等的摩擦系数f的22101标准定义作为比较主要抵抗的总数的另一种方法。过去,象这样典型输送装置的综合设计噪音系数大约是0.016f。MAN Takraf正估计他们对力的敏感达到到0.011的f,超过30%的削减。这在减少设备建造成本上做出了重大贡献。通过六次的实际动态测量显示价值是0.0075,甚至比期望值低30%。 Kung先生强调这将在仅仅用电费用一项上每年减少费用10万美元。 线路优化图5 中国天津水平适应性当然最高效率的材料运输方式是从一点到下一点的直线输送。 但是,由于自然和认为障碍的存在,我们在长距离输送过程中直接直线输送的可能性越来越小。第一台水平弯曲输送机已在很多年前安装使用,但它今天似乎关于安装的每台陆上传动机在方向至少有一个水平变化。并且今天的技术允许设计师相对地容易地调整这些曲线。 图5和图6显示的是把煤从蕴藏地运输到中国天津港口管理处的陆上输送装置。这套运输机由E.J. ODonovan & Associates设计,由 Continental Conveyor Ltd of Australia 公司承建,长达9千米的输送距离4台1500千万电机驱动运输能力达6000 mtph 。 图6 天津输送线平面图Wyodak矿位于美国怀俄明州粉河流域,是记录中最古老的连续经营的煤矿,自1923年运营至今。它一般运用坡面(图7)从新的矿坑到装置756m (2,482 ft)与700m (2,300 ft)水平的半径。 这表明由于水平轮的应用输送机不需要设计太长3。 图7 煤矿隧道式如通过没有水平曲线线路,另一项产业,隧道挖掘,就不能使用带式输送机了。 隧道就想象废水和运输那样的基础设施在全世界有。 移动隧道粪肥的最有效率的方法通过把推进的输送装置和隧道机器的后部连结起来。但是这些隧道极少是直的。 这里有一个例子,西班牙10.9m直径隧道的在巴塞罗那之下作为地铁(火车)引伸项目一部分。大陆输送机机有限公司安装了前4.7km传动机如图8和9所显示和最近接受合同安装第二台8.39公里输送机。 图 8- 巴塞罗那隧道平面图图 9- 隧道内部另一个例子, 肯珀建设边境时,建设一个直径3.6米长6.18公里的隧道作为大都市圣路易斯的下水道区。鲍姆加特纳隧道(图10)将装有600毫米宽的用4个中间运动用带子系住的6.1 公里输送装置。图10- 鲍姆加特纳隧道平面图管状输送装置如果常规输送机不能满足必须的输送要求,带式输送机的一种管状输送机会是不错的选择。 图 11- 管状输送装置它最简单的描述,管状输送机就是由管状橡胶管和空转辊组成。这种设计具有其他传送方式的优点,更有自己的特点。托辊可以在各个方向传力允许更复杂的曲线输送。这些曲线可以是水平或垂直或混合形式。这样的输送机输送带与托辊之间的重力和摩擦力保证原料在输送管道内。 图 -12管状输送机的另一个好处可以输送粉状原料并且可以减少溢出浪费,因为材料是在管道内部。一个典型的例子是环境效益和适应性特好的美国犹他州地平线矿(图12)。这个长3.38公里的管状输送机由ThyssenKrupp Robins 安装通过一个国家森林并且横断了22个水平段和45个垂直段。Metso 绳索输送机另一种由常规衍变来的是Mesto 绳索输送机(MRC),通常以缆绳传送带著名。这个产品以长途输送著名,在距澳大利亚30.4公里的沃斯利铝土矿上应用的输送带是最长的单个飞行输送机。在钢绳输送机上,驱动装置和运载媒介是分离的。 图13 - MRC-平直的部分这种驱动与输送装置的分离允许输送有小半径的水平弯曲,这种设计优于根距张紧力和地势的传统设计。图 14MRC与常规输送机水平曲线的不同图 15- 位于加拿大 Line Creek的MRC图15显示的是位于加拿大Line Creek河畔的一条长10.4公里水平半径430米的缆绳输送带立式输送装置有时材料需要被提升或下降而常规输送机被限制在1618度附近的倾斜角度内。但是带式输送机的非传统衍变不管是在增加角度还是平直方面都是相当成功的。 大角度输送机 第一台大角度输送机由Continental Conveyor & Equipment Co.公司生产,非常利用常规输送机零部件(图16)构成。当原料在两条带子之间输送时,被称为三明治输送装置。 图-16Continental 公司的第100套大倾角输送装置采用独特的可平移式设计,作为Mexican de Canenea的堆过滤垫(图17)。 图 -17垂直式输送装置第二种立式输送装置展现的是一种非常规的带式装置,它可以实现垂直输送(图18)。 这种Mesto 垂直输送机,2001年由Frontier Kemper 安装在白县煤矿Pattiki 2矿(图19),将煤由273米深的矿井输出并达到1,818 mtph的输送能力。 图-18图-19 矿动力分散 在最近过去的一段时间里,一种最有趣的发展是电力沿输送道路的分配。看到输送机驱动装置安装在收尾末端,让尾端驱动完成输送带的拉紧输送工作。但是现在的发展观念是把驱动安装在任何需要的位置。 在带式输送机上多个位置安装动力源的想法已经存在很长一段时间了。第一次应用是1974年安装在美国Kaiser煤矿。紧接着是在地下煤矿中得到应用,而且长臂开采法也越来越体现它的优越性。采矿设备的效率和能力也得到巨大改善。矿工们也开始寻找大的矿区从而减少移动大型采矿设备的次数及时间。矿井宽度和矿井分格长度都得到增加。 当矿井分格长度增加后,输送问题开始出现。接近4-5千米的输送长度所需要的电力和输送带的强度比以前地下煤矿需要的大很多。问题是大号的高电力驱动装置安装及移动困难。虽然胶带技术能够满足胶带所需强度要求,它意味着需要比钢铁更重要的强度及加硫处理。由于长臂开采法的盘区传动机经常推进和后退,矿工需要经常增加或取消滚筒的正传与逆转。而且硫化结合需要长期维护以保证强度,因而失去的产品生产时间在一个完全盘区中是很严重的。现在需要超过风险,并且中间驱动的应用限制了输送带的伸长及张紧这样就允许纤维胶带在长距离输送机中应用。 现今,中间驱动技术被很好的接受并越来越广泛的应用于地下煤矿中。世界范围内的许多矿把这项技术整合到现在和未来矿业计划当中来增加他们的整体采矿效率和效益6。表20所示的张紧图显示了中间驱动的重大好处。这种平面前驱的输送机有简单的皮带张力分布如黑色线条所示。虽然平均皮带张力在每个周期期间只约为最大值的40%,但必须围绕最大估量值附近。黑色线条的急剧回落表示顶头滑轮要求的总扭矩和力量来启动输送机。 将受力分解到两个地点(红线),当总功率基本相同的情况下,皮带张力差不多减少40%。因此更小的输送带和更小的电源组可以得到运用。为了进一步扩展这种方式,增加第二中间驱动(绿线),皮带峰顶张力进一步下降。 隧道产业也迅速采用这种技术并且把这项技术提高到更好的水平,更复杂更先进。但挖隧道最需要的是水平曲线的进步。 通过中间驱动(图21)的一种应用例如Baumgartner 隧道如前图10所描述,皮带张紧力可以通过在重要的地点安装战略驱动来控制,从而实现输送带的小曲线换向。 图20图-21在图22中,绿色投影区域代表弯曲结构的地点。蓝色线条代表输送带运载面,粉红色线条代表输送带返回面。可以发现在弯曲半径最小750米时输送带运载面和返回面所受张紧力均达到最小。 图-22尽管到目前为止,这项技术陆上输送机中没有广泛的应用,一些倾向于水平曲线的技术却得到发展。图23显示了南美洲的一条长8.5千米硬岩层输送带,它需要4个中间驱动来实现4段2000米半径的曲线转向。 图-23平面图图24显示在弯曲段有与没有驱动时输送带的张紧力比较。分散驱动的优点在MRC缆绳输送带中也得到应用。然而张紧运载的绳索有别于负载传送带,安装中间驱动更加容易,输送的原料不用离开运载输送带的表面。张紧运载的绳索与输送带分开足够的距离,便利在安装中间驱动后继续工作。(图25). 图-24张紧曲线图-25 引用1散装材料的带式输送机,输送设备制造商协会,第五版,1997年版2宫,沃尔特,”亨德森粗矿石输送系统的调试,启动,和操作”,由带式输送机5散装材料处理,学会采矿、冶金和探索,Inc .,2004年3Goodnough Ryne”,在Wyodak矿的矿井内输送-吉列,怀俄明”,由带式输送机5散装材料处理,学会采矿、冶金和探索,Inc .,2004年4Neubecker,我。”,一个陆上管道输送机22水平和45垂直曲线连接煤矿铁路负荷”,散装固体处理,17卷(1997年),4号5Crewdson,史蒂夫,“垂直皮带系统Pattiki 2矿”,由带式输送机5散装材料处理,学会采矿、冶金和探索,Inc .,2004年。6Alspaugh,马克,“中间驱动带式输送机技术的发展”,散装固体处理”,23卷(2003)3号7奥多,E.J.,“所有输送机动态分析-效益”,传送带工程煤炭和矿产开采行业,学会采矿、冶金和探索,Inc .,1993年。8Dewicki Grzegorz”,散装材料处理和处理,数值模拟技术和颗粒材料”,散装固体处理”,23卷(2003)2号 33附录BLatest Developments in Belt Conveyor Technology M. A. AlspaughOverland Conveyor Co., Inc.Presented at MINExpo 2004Las Vegas, NV, USA September 27, 2004Abstract Bulk material transportation requirements have continued to press the belt conveyor industry to carry higher tonnages over longer distances and more diverse routes. In order keep up, significant technology advances have been required in the field of system design, analysis and numerical simulation. The application of traditional components in non-traditional applications requiring horizontal curves and intermediate drives have changed and expanded belt conveyor possibilities. Examples of complex conveying applications along with the numerical tools required to insure reliability and availability will be reviewed. Introduction Although the title of this presentation indicates “new” developments in belt conveyor technology will be presented, most of the ideas and methods offered here have been around for some time. We doubt any single piece of equipment or idea presented will be “new” to many of you. What is “new” are the significant and complex systems being built with mostly mature components. What is also “new” are the system design tools and methods used to put these components together into unique conveyance systems designed to solve ever expanding bulk material handling needs. And what is also “new” is the increasing ability to produce accurate Energy Efficiency computer simulations of system performance prior to the first system test (commissioning). As such, the main focus of this presentation will be the latest developments in complex system design essential to properly engineer and optimize todays long distance conveyance requirements.The four specific topics covered will be: 5、 Idler Resistance 6、 Energy Efficiency 7、 Distributed Power 8、 Analysis and Simulation Energy EfficiencyMinimizing overall power consumption is a critical aspect of any project and belt conveyors are no different. Although belt conveyors have always been an efficient means of transporting large tonnages as compared to other transport methods, there are still various methods to reduce power requirements on overland conveyors. The main resistances of a belt conveyor are made up of:d. Idler Resistancee. Rubber indentation due to idler supportf. Material/Belt flexure due to sag being idlersg. AlignmentThese resistances plus miscellaneous secondary resistances and forces to over come gravity (lift) make up the required power to move the material.1 In a typical in-plant conveyor of 400m length, power might be broken into its components as per Figure 1 with lift making up the largest single component but all friction forces making up the majority.Figure 1In a high incline conveyor such as an underground mine slope belt, power might be broken down as per Figure 2, with lift contributing a huge majority. Since there is no way to reduce gravity forces, there are no means to significantly reduce power on high incline belts. Figure 2But in a long overland conveyor, power components will look much more like Figure 3, with frictional components making up almost all the power. In this case, attention to the main resistances is essential. Figure 3The specifics of power calculation is beyond the scope of this paper but it is important to note that significant research has been done on all four areas of idlers, rubber indentation, alignment and material/belt flexure over the last few years. And although not everyone is in agreement as to how to handle each specific area, it is generally well accepted that attention to these main resistances is necessary and important to overall project economics.At the 2004 SME annual meeting, Walter Kung of MAN Takraf presented a paper titled “The Henderson Coarse Ore Conveying System- A Review of Commissioning, Start-up and Operation”2. This project was commissioned in December 1999 and consisted of a 24 km (3 flight) overland conveying system to replace the underground mine to mill rail haulage system. Figure 4- Henderson PC2 to PC3 Transfer House The longest conveyor in this system (PC2) was 16.28 km in length with 475m of lift. The most important system fact was that 50% of the operating power (4000 kW at 1783 mtph and 4.6 m/s) was required to turn an empty belt therefore power efficiency was critical. Very close attention was focused on the idlers, belt cover rubber and alignment. One way to document relative differences in efficiency is to use the DIN 22101 standard definition of “equivalent friction factor- f” as a way to compare the total of the main resistances. In the past, a typical DIN fused for design of a conveyor like this might be around 0.016. MAN Takraf was estimating their attention to power would allow them to realize an f of 0.011, a reduction of over 30%. This reduction contributed a significant saving in capital cost of the equipment. The actual measured results over 6 operating shifts after commissioning showed the value to be 0.0075, or even 30% lower than expected. Mr. Kung stated this reduction from expected to result in an additional US$100, 000 savings per year in electricity costs alone. Route Optimization Figure 5- Tiangin ChinaHorizontal Adaptability Of course the most efficient way to transport material from one point to the next is as directly as possible. But as we continue to transport longer distances by conveyor, the possibility of conveying in a straight line is less and less likely as many natural and man-made obstacles exist. The first horizontally curved conveyors were installed many years ago, but today it seems just about every overland conveyor being installed has at least one horizontal change in direction. And todays technology allows designers to accommodate these curves relatively easily. Figures 5 and 6 shows an overland conveyor transporting coal from the stockpile to the shiploader at the Tianjin China Port Authority installed this year. Designed by E.J. ODonovan & Associates and built by Continental Conveyor Ltd of Australia, this 9 km overland carries 6000 mtph with 4x1500 kW drives installed. Figure 6- Tiangin China Plan ViewThe Wyodak Mine, located in the Powder River Basin of Wyoming, USA, is the oldest continuously operating coal mine in the US having recorded annual production since 1923. It currently utilizes an overland (Figure 7) from the new pit to the plant 756m long (2,482 ft) with a 700m (2,300 ft) horizontal radius. This proves a conveyor does not need to be extremely long to benefit from a horizontal turn. 3 Figure 7- Wyodak CoalTunneling Another industry that would not be able to use belt conveyors without the ability to negotiate horizontal curves is construction tunneling. Tunnels are being bore around the world for infrastructure such as waste water and transportation. The most efficient method of removing tunnel muck is by connecting an advancing conveyor to the tail of the tunnel boring machine. But these tunnels are seldom if ever straight. One example in Spain is the development of a 10.9m diameter tunnel under Barcelona as part of the Metro (Train) Extension Project. Continental Conveyor Ltd. installed the first 4.7km conveyor as shown in Figures 8 and 9 and has recently received the contract to install the second 8.39 km conveyor. Figure 8- Barcelona Tunnel Plan ViewFigure 9- Inside TunnelIn another example, Frontier Kemper Construction is currently starting to bore 6.18 km (20,275 ft) of 3.6m (12 foot) diameter tunnel for the Metropolitan St. Louis (Missouri) Sewer District. The Baumgartner tunnel (Figure 10) will be equipped with a 6.1 km conveyor of 600mm wide belting with 4 intermediate drives. Figure 10- Baumgartner Tunnel Plan ViewPipe Conveyors And if conventional conveyors cannot negotiate the required radii, other variations of belt conveyor such as the Pipe Conveyor might be used. Figure 11- Pipe ConveyorIn its simplest description, a pipe conveyor consists of a rubber conveyor belt rolled into a pipe shape with idler rolls. This fundamental design causes the transported material to be totaled enclosed by the belt which directly creates all the advantages. The idlers constrain the belt on all sides allowing much tighter curves to be negotiated in any direction. The curves can be horizontal, vertical or combinations of both. A conventional conveyor has only gravity and friction between the belt and idlers to keep it within the conveyance path. Figure 12Another benefit of pipe conveyor is dust and/or spillage can be reduced because the material is completely enclosed. A classic example where both environment and adaptability to path were particularly applicable was at the Skyline Mine in UT, USA (Figure 12). This 3.38 km (11,088 ft) Pipe Conveyor was installed by ThyssenKrupp Robins through a national forest and traversed 22 horizontal and 45 vertical curves.4Metso Rope Conveyor Another variation from conventional is the Metso Rope Conveyor (MRC) more commonly known as Cable Belt. This product is known for long distance conveying and it claims the longest single flight conveyor in the world at Worsley Alumina in Australia at 30.4 km. With Cable Belt, the driving tensions (ropes) and the carrying medium (belt) are separated (Figure 13). Figure 13- MRC- Straight SectionThis separation of the tension carrying member allows positive tracking of the ropes (Figure 14) which allow very small radius horizontal curves to be adopted that defeat the traditional design parameters based on tension and topography. Figure 14MRC vs. Conventional Conveyor in Horizontal CurveFigure 15- MRC at Line Creek, CanadaFigure 15 shows a 10.4 km Cable Belt with a 430m horizontal radius at Line Creek in Canada. Vertical Adaptability Sometimes material needs to be raised or lowered and the conventional conveyor is limited to incline angles around 16-18 degrees. But again non-traditional variations of belt conveyors have been quite successful at increased angles as well as straight up. High Angle Conveyor (HAC.) The first example manufactured by Continental Conveyor & Equipment Co. uses conventional conveyor components in a non-conventional way (Figure 16). The concept is known as a sandwich conveyor as the material is carried between two belts. Figure 16Continentals 100th installation of the HAC was a unique shiftable installation at Mexican de Caneneas heap leach pad (Figure 17). Figure 17Pocketlift. The second example shows a non-traditional belt construction which can be used to convey vertically (Figure 18). This Metso Pocketlift. belt was installed by Frontier Kemper Constructors at the Pattiki 2 Mine of White County Coal in 2001 (Figure 19). It currently lifts 1,818 mtph of run-of-mine coal up 273 m (895 ft). 5 Figure 18Figure 19- Pattiki 2 MineDistributed Power One of the most interesting developments in technology in the recent past has been the distribution of power along the conveyor path. Is has not been uncommon to see drives positioned at the head and tail ends of long conveyors and let the tail drive do the work of pulling the belt back along the return run of the conveyor. But now that idea has expanded to allow designers to position drive power wherever it is most needed. The idea of distributing power in multiple locations on a belt conveyor has been around for a long time. The first application in the USA was installed at Kaiser Coal in 1974. It was shortly thereafter that underground coal mining began consolidating and longwall mines began to realize tremendous growth in output. Mining equipment efficiencies and capabilities were improving dramatically. Miners were looking for ways to increase the size of mining blocks in order to decrease the percentage of idle time needed to move the large mining equipment from block to block. Face widths and panel lengths were increasing. When panel lengths were increased, conveyance concerns began to appear. The power and belt strengths needed for these lengths approaching 4 -5 km were much larger than had ever been used underground before. Problems included the large size of high power drives not to mention being able to handle and move them around. And, although belting technology could handle the increased strength requirements, it meant moving to steel reinforced belting that was much heavier and harder to handle and more importantly, required vulcanized splicing. Since longwall panel conveyors are constantly advancing and retreating (getting longer and shorter), miners are always adding or removing rolls of belting from the system. Moreover, since vulcanized splicing takes several times longer to facilitate, lost production time due to belt moves over the course of a complete panel during development and mining would be extreme. Now the need surpassed the risk and the application of intermediate drives to limit belt tensions and allow the use of fabric belting on long center applications was actively pursued. Today, intermediate drive technology is very well accepted and widely used in underground coal mining. Many mines around the world have incorporated it into their current and future mine plans to increase the efficiency of their overall mining operations. 6 The tension diagram in Figure 20 shows the simple principal and most significant benefit of intermediate belt conveyor drives. This flat, head driven conveyor has a simple belt tension distribution as shown in black. Although the average belt tension during each cycle is only about 40% of the peak value, all the belting must be sized for the maximum. The large drop in the black line at the head pulley represents the total torque or power required to run the conveyor. By splitting the power into two locations (red line), the maximum belt tension is reduced by almost 40% while the total power requirement remains virtually the same. A much smaller belt can be used and smaller individual power units can be used. To extend the example further, a second intermediate drive is added (green line) and the peak belt tension drops further. The tunneling industry was also quick to adopt this technology and even take it to higher levels of complexity and sophistication. But the main need in tunneling was the necessity of using very tight horizontal curves. By applying intermediate drives (Figure 21) to an application such as the Baumgartner Tunnel as described in Figure 10 above, belt tensions can be controlled in the horizontal curves by strategically placing drives in critical locations thereby allowing the belt to turn small curves. Figure 20Figure 21In Figure 22, the hatched areas in green represent the location of curved structure. The blue line represents carry side belt tensions and the pink line represents return side belt tensions. Notice belt tensions in both the carry and return sides are minimized in the curves, particularly the tightest 750m r
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:喷涂机送料机构结构的设计【优秀】【word+18张CAD图纸】【毕设】
链接地址:https://www.renrendoc.com/p-315998.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!