![[机械毕业论文]风力发电机的增速齿轮箱的设计【专业答辩必备资料】_第1页](http://file.renrendoc.com/FileRoot1/2014-9/3/fcf28910-f05f-478f-9a67-c8ef400a1e49/fcf28910-f05f-478f-9a67-c8ef400a1e491.gif)
![[机械毕业论文]风力发电机的增速齿轮箱的设计【专业答辩必备资料】_第2页](http://file.renrendoc.com/FileRoot1/2014-9/3/fcf28910-f05f-478f-9a67-c8ef400a1e49/fcf28910-f05f-478f-9a67-c8ef400a1e492.gif)
![[机械毕业论文]风力发电机的增速齿轮箱的设计【专业答辩必备资料】_第3页](http://file.renrendoc.com/FileRoot1/2014-9/3/fcf28910-f05f-478f-9a67-c8ef400a1e49/fcf28910-f05f-478f-9a67-c8ef400a1e493.gif)
![[机械毕业论文]风力发电机的增速齿轮箱的设计【专业答辩必备资料】_第4页](http://file.renrendoc.com/FileRoot1/2014-9/3/fcf28910-f05f-478f-9a67-c8ef400a1e49/fcf28910-f05f-478f-9a67-c8ef400a1e494.gif)
![[机械毕业论文]风力发电机的增速齿轮箱的设计【专业答辩必备资料】_第5页](http://file.renrendoc.com/FileRoot1/2014-9/3/fcf28910-f05f-478f-9a67-c8ef400a1e49/fcf28910-f05f-478f-9a67-c8ef400a1e495.gif)
已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘 要 风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文设计的是兆瓦级风力发电机组的齿轮箱,通过方案的选取,齿轮参数计算等对其配套的齿轮箱进行自主设计。 首先,确定齿轮箱的机械结构。选取一级行星派生型传动方案,通过计算,确定各级传动的齿 轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 其次,基于 Pro E 参数化建模功能,运用渐开线方程及螺旋线生成理论,建立斜齿轮的三维参数化模型。 然后,对齿轮传动系统进行了齿面接触应力计算。先利用常规算法进行理论分析计算。 关键词: 风力发电,风机齿轮箱,结构设计,建模 精品毕业论文 Abstract The rapid development of wind power industry lead to the prosperity of wind power equipment manufacturing industry As the core component of wind turbine, the gearbox is received much concern from related industries and research institution both at home and abroad However, due to the domestic research of gearbox for wind turbine starts late,technology is weak, especially in the gearbox for MW wind turbine, which mainly relied on the introduction of foreign technology Therefore, it is urgent need to carry out independent development and research on MW wind power gearbox, and truly master the design and manufacturing technology in order to achieve the goal of localization This paper takes the wind power。 The independent design of the gearbox matching for the wind turbine has been carried out by selecting the transmission scheme and calculating the gear parameters。 Firstly, the mechanical structure of gearbox is determined The two-stage derivation planetary transmission scheme is selected The gear parameters of every stage transmission is calculated, and the force analysis results is obtained The static strength check of tooth surface contact is implemented according to related standard The result shows that it is accord with safety requirements Secondly, the helical gear parametric model is established based on involutes curve equation and generation theory of spiral line by using the function of parametric modeling in Pro E Then, the tooth surface contact stress of the gear transmission is calculated Key Words: the wind power , Gearbox for Wind Turbine; Structure Design; Parametric Modeling 目 录 中文摘要 . . . . . .I Abstract . . . .II 1 引言 . . . . .1 1.1 课题来源 . . . . 1 1.2 国内外发展现状与趋势 . . . .2 1.2.1 风力发电国内外发展现状 1.2.2 风电齿轮箱的发展趋势 1.3 课题意义 . . . 3 1.4 论文的主要内容 . . . .3 2 齿轮箱的设计 . . . . . .5 2.1 增 速齿轮箱方案设计 .5 2.2 齿轮参数确定 . . .7 2.2.1 行星轮系的齿轮齿 . . .7 2.2.2 圆柱级齿轮参数 2.3 受力分析与静强度校核 . .9 2.3.1 受力分析 2.3.2 低速级外啮合齿面静强度计算 2.4 本章小结 3 传动轴和箱体的设计 3.1 高速轴的设计 3.2 低速轴的设计 3.3 中间轴的设计 3.4 箱体 4 齿轮箱的密封、润滑和冷却 4.1 齿轮箱的密封 4.2 齿轮箱的润滑、冷却 5 齿轮箱的使用及其维护 5.1 安装要求 5.2 定期更换润滑油 5.3 齿轮箱常见故障 6 基于 Pro E 的斜齿轮参数化造型 6.1Pro E 参数化建模概述 6.2 齿轮参数化模型建立 6.2.1 设置参数与数学关系式 6.2.2 构造齿廓 6.2.3 生成齿轮 6.3 模型装配 6.4 总结 结论 . . . . . . .25 精品毕业论文 致谢 . . . . .26 参考文献 . . . . . .26 1 引言 1.1 课题来源 风 是一种潜力很大的 新能源 ,十八世 纪初,横扫英法两国的一次狂暴大风,吹毁了四百座 风力 磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风在数秒钟内就发出了一千万马力 (即 750 万千瓦;一马力等于 0 75 千瓦 )的 功率 !有人估计过 ,地球上可用来发电的风力资源约有 100亿千瓦,几乎是现在全世界 水力发电 量的 10 倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。 近 10 年风力发电增长迅猛, 200 年以来 ,全球每年风电装机容量增长速度为 20%30%。全球风能协会发布最新一期全球风电的增长数据显示 , 2008 年全球范围内新增风电装机容 量 2 705 万 kW,使得全球风电装机容量达到 1 . 20 亿 kW,较 2007 年增长 28 . 8%。 1998 2008 年全球风电装机容量的增长情况。如图 1 所示。 我国的风电发展主要集中在 2003 年以后 ,尤其是在风电特许权的带动下 , 2006年我国除台湾外增加风电机组 1 454 台 ,增加装机容量 133 . 7 万 kW,比过去 20 年发展累积的总量还多 ,仅次于美国、 德国、 西班牙和印度。 2008 年又新增风电装机容量630 万 kW,新增容量位列全球第 2,仅次于美国。截至 2008 年底总装机容量达到 1 215 .3 万 kW,同比增长 106% ,总装机容量超过了印度 ,位列全球第 4,同时跻身世界风电装机容量超千万千瓦的风电大国行列。图 2 反映了 2000 年以来我国风电装机容量的增长。 精品毕业论文 风力发电系统主要由风轮、齿轮箱、发电机、功率变换器、变压器等部分构成 ,其中 ,发电机承担将风能转换为电能的任务 ,是风力发电系统中的核心部件。随着风力发电整体技术的发展 ,风力发电机由早期的直流发电机、 笼型异步发电机等演变为当前的双馈异步发电机和低速直驱永磁同步发电机等。同时,风力发电机自身技 术水平的提高 ,又有力地促进了风力发电整体技术的进步。 例如 ,双馈异步发电机及其控制技术的成熟 ,使变速恒频风力发电得以实现 ,成为当前风力发电系统的主流。因此 ,风力发电机与风力发电系统互为因果 ,相互促进。近年来风力发电系统的容量不断增大 ,特别是低速直驱永磁风力发电系统的快速发展 ,有力地促进了风力发电机的设计、 制造、 控制以及运行维护水平的提高 ,各种新型风力发电机不断出现。 本课题就是建立在对引进的兆瓦级风力发电增速齿轮箱结构技术消化吸收的基础上,对增速齿轮箱进行结构设计,为研发自主知识产权的 风机增速齿轮箱打下基础。 1 2 国内外发展现状与趋势 1 2 1 风力发电国内外发展现状 风力发电的快速增长带动了风电设备制造业的发展, 2007 年度全球风电设备市场总价值达到 360 亿美元。目前, 世界上先进的风电设备制造企业主要集中在少数几个国家,如丹麦、 德国、 西班牙和美国等, 著名的公司有 Ves tas(丹麦 )、 GE Wind(美国 )、 Gamesa(西班牙 )、 Enercon (德国 )、 Suzlon(印度 )等。图 3 为 2007 年世界风电机组市场份额图。 2007 年, 丹麦的 Vestas 公司占全球市场份额的 22.8%, 前 3 位公司占有了市场份额的一半多。值得一提的是, 我国的金风科技股份有限公司也占据了 2007 年世界风电市场的 4. 2%。 风电的快速增长同样刺激了我国风电设备制造业的发展,并迅速崛起了像金风科技股份有限公司、 华锐风电科技有限公司、 湖南湘电风能有限公司、 浙江运达风力发电工程有限公司等风电设备制造企业。这些企业通过对国外风电技术的吸收再创新, 形成了较大的生产规模。目前,国内从事风电设备制造的企业达 50 余家,而且配件制造企业队伍也在迅速扩大。 2007 年我 国新增装机容量中, 内资企业产品占 55. 9%, 其中金风科技的份额最大, 占新增总装机容量的 25.1%,占内资企业产品的 44. 9% ;合资企业产品占新增装机容量的 1.6%; 外资企业产品占 42. 5%, 其中西班牙 Gamesa 的份额最大,占新增装机容量的 39. 9% 。国际上,兆瓦级以上的风电机组已经成为主流机型。如美国 :主流机型 1. 5MW, 丹麦 : 主流机型 ( 2. 03. 0)MW。截至 2006 年,我国风电机组 1MW以下的机组占总装机容量的 70%, 1MW 2MW 之间的风电机型只占 26%, 2MW 以上机型占 4%。根据国家发改委规划,我国未来的风电新增装机将以 1. 5MW、 2MW 机型为主, 1MW 以下机型所占比重将逐渐降低。 风力发电发展的主要趋势: ( 1) 机组单机容量增大风电机组单机容量的增大有利于提高风能利用率,降低风场的占地面积, 降低风电场运行维护成本,从而提高风电的市场竞争力。目前, 国际上主流的风电机组已达到 ( 2 3)MW, 由德国 Repower 公司研制的最大的 5MW 风电机组已投入运行,其旋翼区直径达到 126 米。可以预见, ( 3 5)MW 的风电机组在市场中的 比例将日益提高。 2008 年 2 月在布鲁塞尔举行的风能会议和风能展上, 有与会者甚至提出了 2020 年前开发出 20MW 风电机组的概念。 ( 2) 海上风电迅速兴起海上风能资源丰富, 且受环境影响小,海上风电场将成为一个迅速发展的市场。目前丹麦、 德国、 英国、瑞典和荷兰等国家海上风电发展较快。欧洲风能协会 (EWEA)预测, 2020 年,欧洲海上风电总装机容量将达到 70 000MW。虽然海上风电前景广阔,但目前还有技术等方面的因素制约着它的发展。一方面, 海上风电机组均为陆上风电机组改造而成, 而复杂的海上 自然条件使得风电机组的故障率居高不下, 如世界最大的海上风电场丹麦 Vestas 霍恩礁风电场, 80 台海上风电机组故障率超过 70%。另一方面, 电网将难以承受大规模海上风电场所提供的巨大电能。因此, 海上风电的大发展仍需要解决机组及上网配套设施等方面的问题。 精品毕业论文 ( 3) 变速恒频技术快速推广目前市场上恒速运行的风电机组一般采用双绕组结构的异步发电机, 双速运行。在高风速段, 发电机运行在较高转速上 ;在低风速段,发电机运行在较低转速上。其优点是控制简单, 可靠性高 ;缺点是由于转速基本恒定,而风速经常变化,因此 机组经常处于风能利用系数较低的状态,风能无法得到充分利用。随着风电技术的进步,风电机组开发制造厂商开始使用变速恒频技术,并结合变桨距技术的应用开发出了变桨变速风电机组。与恒速运行的风电机组相比, 变速运行的风电机组具有发电量大、 对风速变化的适应性好、 生产成本低、 效率高等优点。因此,变速运行的风电机组也是未来发展的趋势之一。德国 Enercon 公司是目前全球生产变速风电机组最多的公司。 ( 4) 全功率变流技术兴起近年来,欧洲的 Enercon、 Winwind 等公司都开发和应用了全功率变流的并网技术, 使风轮和发电机的调速范围达到了 0 150%的额定转速, 提高了风能的利用范围,改善了风场上网电能的质量。 Enercon 公司还将原来对每个风电机组功率因数的分散控制加以集中,由并网变电站来统一调控,实现了电网的有源功率因素校正和谐波补偿。全功率变流技术将在今后大型风电场建设时得到推广应用。 ( 5) 直驱和半直驱风电机组直驱式风电机组采用多极电机与叶轮直接连接进行驱动的方式, 免去故障率较高的齿轮箱,在低风速时效率高,且具有低噪声、 高寿命、 运行维护成本低等优点。近年来直驱式风电机组的装机份额增长较 块, 但由于技术和成本等方面的原因, 在未来较长时间内带增速齿轮箱的风电机组仍将在市场中占主导地位。半直驱是介于齿轮箱驱动和直接驱动之间的一种驱动方式,它采用一级齿轮箱增速, 结构紧凑, 具有相对较高的转速和较小的转矩。与传统的齿轮箱驱动相比, 半直驱增加了系统的可靠性 ;而与大直径的直驱相比,半直驱通过更高效和紧凑的机舱排列减小了系统的体积和重量。 图 4 风机的整体结构 1 2 2 风电齿轮箱的发展趋势 风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组中最重要的部件,倍受国内外 风电相关行业和研究机构的关注。 风机增速齿轮箱是风力发电整机的配套产品,是风力发电机组中一个重要的机械传动部件,它的重要功能是将风轮在风力作用下所产生的动力传递给发电机,使其得到相应的转速进行发电,它的研究和开发是风电技术的核心,并正向高效、高可靠性及大功率方向发展。 风力发电机组通常安装在高山、荒野、海滩、海岛等野外风口处,经常承受无规律的变相变负荷的风力作用以及强阵风的冲击,并且常年经受酷暑严寒和极端温差的作用,故对其可靠性和使用寿命都提出了比一般机械产品高得多的要求。 风电行业中发展最快,最有影响的国 家主要有美国、德国等欧美发达国家,在风电行业中处于统治地位。欧美发达国家早已开发出单机容量达兆瓦级的风力发电机,并且技术相对成熟,具有比较完善的设计理论和丰富的设计经验,而且商业化程度比较高,因此在国际风力发电领域中处于明显的优势和主导地位。 国外兆瓦级风电齿轮箱是随 jxL 电机组的开发而发展起来的, Renk、 Flender 等风电齿轮箱制造公司在产品开发过程中采用三维造型设计、有限元分析、动态设计等先进技术,并通过模拟和试验测试对设计方案进行验证。此外,国外通过理论分析及试验测试对风电齿轮箱的运行性能进行了系 统的研究,为风电齿轮箱的设计提供了可靠的依据。 尽管国际上齿轮箱设计技术已经比较成熟,但统计数据表明,齿轮箱出现故障仍然是故障的最主要原因,约占风机故障总数的 20左右,由于我国商业化大型风力发电产业起步较晚,技术上较欧美等风能技术发达国家存在报大差距。我国在九五期间开始走引进生产技术的路子,通过引进和吸收国外成熟的技术,成功研发出了兆瓦级以下风力发电机。 1.3 课题意义 风力发电是清洁可再生能源,蕴存量巨大,具有实际开发利用价值。中国水电资源 370 GW,风能资源有 250 GW。广东省水电资源 6.6 GW,沿海风能可开发量 (H=40 m)8.41 GW。也就是说,风能与水能总量旗鼓相当。大量风能开发不可能靠某个部门或行业的财政补贴就能解决,商业化不仅是市场的要求,也是风力发电发展的自身需要。所以,风力发电商业化是必由之路,可行之路。 风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮 箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。齿轮箱作为传递动力的部件,在运行期间同 时承受动、静载荷。其动载荷部分取决于风轮、发电机的特性和传动轴、联轴器的质量、刚度、阻尼值以及发电机的外部工作条件。 开发新能源是国家能源建设实施可持续发展战略的需要,是促进能源结构调整、减少精品毕业论文 环境污染、推进技术进步的重要手段。风力发电是新能源技术中最成熟、最具规模开发条件和商业化发展前景的发电方式之一。 (1)由于我国风电产业起步较晚,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说主要以引进国外先进技术为主。目前国内引进的技术,有的是国外淘汰的技术,有的图纸虽然先进,但受限于国内 配套厂家的技术、工艺、材料等原因,导致国产化的零部件质量、性能仍有一定差距。所以,在引进国外风机技术的同时,开发自主知识产权的兆瓦级增速齿轮箱,是加速我国风电产业的一项重要任务。 (2)增速齿轮的设计和制造技术是整个风力发电机组的关键技术,关系到整个风力发电机组的命运。因此,要加强齿轮的研究,对齿轮进行结构设计,提高齿轮的啮合质量,降低噪声,保证齿轮机械效率,提高齿轮的运行可靠性。 (3)增速齿轮箱以渐开线齿轮为主,人们对标准的渐开线齿轮有了一套比较成熟的设计、强度计算和加工方法。兆瓦级增速齿轮对渐开线齿轮 传动提出了新的要求,在尺寸、重量最小的情况下,可靠地传递高速、重载的运动,这就对齿轮分析的计算精度提出了很高要求,高精度齿轮分析是轮齿承载能力、振动、噪声及修形等研究的基础。因此,建立准确的分析模型,准确求解受载轮齿的载荷分布对修形规律的研究具有重要意义。 1 4 论文的主要内容 论文的主要内容包括是介绍了风力发电的现状发展趋势,及现在各个国家对风力发电的重视程度。我国现在风力发电的总体情况。齿轮箱作为风机上的零件的重要作用,齿轮箱的发展。还有就是整篇论文关于齿轮箱的设计过程,及校核等等。还有 CAD 二维的 装配图及零件图和基于 PRO/E 的齿轮箱的三维图的绘制,并截取了一些图片附于论文上。 设计此次的行星轮系的齿轮箱,我们拟部分采用减速器的设计方法,再结合书籍资料完成风力发电齿轮箱的设计,校核,及优化的一系列工作。 关于行星轮系的传动比,及齿轮的计算,会参照机械原理等一些书籍的部分内容进行,还有关于轴的校核,键等等,和齿轮箱的使用和维和等等。 主要的参数如下: 表 1 输入功率 1660KW 发电机额定功率 1500KW 输入转速 18r/min 传动形式 一级行星两级定轴 总传动比 99.5 重量 17t 主轴承 自调心滚子轴承 并明确规定依据 IS06336 进行齿轮计算,按 3 倍额定功率计算静强度 1.0。 .外齿轮制造精度不低于 6 级,齿面硬度 HRC58-62,外齿轮采用 20CrNi2MoA。 2齿轮箱的设计 2 1 增速齿轮箱方案设计 对于兆瓦级风电齿轮箱,传动比多在 100 左右,一般有两种传动形式:一级行星 +两级平行轴圆柱齿轮传动,两级行星 +一级平行轴圆柱齿轮传动。相对于平行轴圆柱齿轮传动,行星传动的以下优点:传动效率高,体积小,重量轻,结构简单,制造方便,传递功率范围大,使功率分流;合理使 用了内啮合;共轴线式的传动装置,使轴向尺寸大大缩小而;运动平稳、抗冲击和振动能力较强。在具有上述特点和优越性的同时,行星齿轮传动也存在一些缺点:结构形式比定轴齿轮传动复杂;对制造质量要求高:由于体积小、散热面积小导致油温升高,故要求严格的润滑与冷却装置。这两种行星传动与平行轴传动相混合的传动形式,综合了两者的优点。 依据提供的技术数据,经过方案比较,总传动比 i=98 74,采用一级行星派生型传动,即一级行星传动 +两级高速轴定轴传动。为补偿不可避免的制造误差,行星传动一般采用均载机构,均衡各行星轮传递的载荷, 提高齿轮的承载能力、啮合平稳性和可靠性,同时可降低对齿轮的精度要求,从而降低制造成本。 对于具有三个行星轮的传动,常用的均载机构为基本构件浮动。由于太阳轮重量轻,惯性小,作为均载浮动件时浮动灵敏,结构简单,被广泛应用于中低速工况下的浮动均载,尤其是具有三个行星轮时,效果最为显著。设计齿轮箱的转动比为 1: 98.74,由于减速比较大,按照此转动比,齿轮箱的结构形式可设计为:一级行星传动 +两级平行轴定轴传动。 图 5采用的结构 行星齿轮传动由于有多对齿轮同时参与啮合承受载荷,要实现这一目标行星轮系各齿精品毕业论文 轮齿数必须 要满足一定的几何条件。 (1)保证两太阳轮和系杆转轴的轴线重合,即满足同心条件321 2 ZZZ 。 (2)保证 3个均布的行星轮相互间不发生干涉,即满足邻接条件。221 218 0s in)( ahZKZZ (3)设计行星轮时,为使各基本构件所受径向力平衡,各行星轮在圆周上应均匀分布或对称分布。为使相邻两个行星轮不相互碰撞,必须保证它们齿顶之间在连接线上有一定问隙。 保证在采用多个行星轮时,各行星轮能够均匀地分布在两太阳轮之间,即满足安装条件 cKZZ /)(31 c 为整数,装配行星轮时,为使各基本构件所受径向力平衡,各行星轮在圆周上应均匀分布或对称分布。 (4)保证轮系能够实现给定的传动比 Hi1 ,即满足传动比条件。当内齿圈不动时有1/ 113 HiZZ 以上各式中 : 1Z 中心太阳轮齿数; 2Z 行星轮齿数; 3Z 内齿圈齿数; K 行星轮个数; ha* 齿顶高系数。 2 2齿轮参数确定 2.2.1行星轮系的齿轮参数 根据行星轮系的传动所需要满足的条件。 两级定轴的传动比 2.16i 定,则一级行星传动 2.6i1 ,角标 1表示低速级输入端, 2.1/ 21 bb ddB ,每个行星轮的传递的功率 P=1660.33KW,工作寿命为 20年。 参数计算 : 1.选定齿轮类型,精度等级,材料及齿数: 1)选择直齿圆柱齿轮。 2)齿轮精度等级为 5级精度。 3)材料选择为 20CrMnMo,热处理应为淬火。 4)初选小齿轮齿数为12= 2 2 = 3 6ZZ, 所 以.67,取 37。 2/2 did , 9.1/ 2 2112 122 nHvnHv ZKKZKK A=1wn di 2cK 1vK 2HK 21nZ w12Z /2wn 2d 1cK 2vK 1HK 22nZ 22Zw=3.8 E = A 2B =5.472 查得 1i =5.5 2.按齿面接触强度设计 2131t2 1.t h ed a Hk T z zd 1)确定公式内各计算数值 精品毕业论文 2)计算 圆周速度 V=2.037m/s 计算齿宽 b及模数 m。 b=394.12. m=22.39. h=50.376 计算载荷系数A V H Hk k k k k=11.38537 据实际的载荷系数,分度圆的直径得: d1=264.75mm 2.根据经验选取螺旋角 7.5 压力角 5.22n 675.22t (1)配齿计算 取 3wn 1i aZ /1wn= C , 适当调整 1i =5.08696 5.08696 aZ / 3 = 39, aZ =23 , bZ= cwn- aZ =94 CZ=0.5 (bZ- aZ )=35.5 采用不等角变位,取CZ=35, 则 j=Ca ZZ Cb Z- Z=1.01724 查图可得适用的预计啮合角 23 tac 26 20 tcb 24 预选 tac=24 5 (2)按接触强度初算 a-c传动的中心距与模数 cw KniT 11a /T = MN 597061398.008696.5/23.1811759549 太阳轮和行星轮材料选用r020C 6iNM渗碳淬火,齿面硬度 HRC58-62,选取aH MP1550lim 齿宽系数 85.0aba, 齿 数比 522.1aczzu 08.405)1(476 3 2limHaauKTua 模数ca zza cos2mn =13.82, 取 nm =14 未变位时 c o s/)(21 can zzma =409.5 按预取啮合角 tac=24.5 可得 a c传动中心距变动系数 co s/)1co sco s()(21 ta ctcan aazzy =0.40952 则中心距 a=a+ny nm =415.23 a取 a=416 计算 a-c传动的实际中心距变动系数 Y和啮合角 t 4643.0y nm aa 90 828.0c o sc o s a t taaa tac =24.73 (3)计算 a c传动的变位系数 (4)计算 a C传动的变位系数 nttba ainv ainv azz ta n2)( =0.4712 3v cosz z =59.52 查图校核, 在5p与6p线之间,为综合性能较好区,可用。 查图分配变位系数艺a=0 22,c=O 2512 (4)计算 c-b传动的中心距变动系数及啮合角 tac c-b传动未变位时的中心距 c o s/)(21 cbncb zzma =416.5658 0404.0 nmaay 9 23 9 55.0c osc os tt c b aa ta =22.49 (5)计算 c-b传动的变位系数 nttc bcb ainv ainv azz ta n2)( =-0.04558 2 0 5 6.0 cb (6)重合度计算 )t a n( t a n)t a n( t a n(2 1 21 tattataa z =1.4336 nmb sin =1.0506 其中 528.0a r c c os1 aaabat dd 5317.0a r c c os2 cacbat dd 4842.2 a 行星轮系的参数为 s p rm = = 2 7 = 4 5 = 1 1 7ZZ模 数 20 , 齿 数 Z , , 分度圆直径s p rd = 5 4 0 m m d = 9 0 0 m m d = 2 3 4 0 m m, , , 齿宽12= 4 4 5 m m = 4 3 5 m mBB, 内齿轮 R精度等级为 6级。 2.2.2圆柱级齿轮参数 1.高速轴上的齿轮的设计 输入功率3 = 1 5 6 2 .8 5 7P K W,小齿轮转速为 1399.013r/min,传动比 i=3.9183,工作寿命 20年。 ( 1)选定齿轮类型,精度等级,材料及齿数: 1)选择斜齿圆柱齿轮。 2)齿轮精度等级为 5级精度。 精品毕业论文 3)材料选择为 20CrMnMo,热处理应为淬火。 4)初选小齿轮齿数为76= 2 5 = 9 8ZZ, 大 齿 轮。 5)初选螺旋角 =14 。 ( 2)按齿面接触强度设计 2131t2 1.t h ed a Hk T z zd 1)确定公式内各计算数值 2)计算 圆周速度 V=16.47m/s 计算齿宽 b及模数 m。 b=179.872. m=8.73. h=19.64 计算纵向重合度B=1.586 计算载荷系数A V H Hk k k k k=1.433 据实际的载荷系数,分度圆的直径得: d1=264.75mm 2.中间轴上的齿轮设计 输入功率2p=1594.589KW,小齿轮的转速为 357.046r/min。传动比 i=4.5224,传递的转矩1T= 74.265 10 N.mm,使用寿命为 20年。 ( 1)选定齿轮类型,精度等级,材料及齿轮 1)选择斜齿圆柱齿轮。 2)齿轮精度等级为 5级精度。 3)材料选择为 20CrMnMo,热处理应为淬火。 4)初选小齿轮齿数为54= 2 3 = 1 0 4ZZ, 大 齿 轮。 5)初选螺旋角 =10 ( 2)按齿面接触强度设计 2131t2 1.t h ed a Hk T z zd 1)确定公式内各计算数值 2)计算 圆周速度 V=6.432m/s 计算齿宽 b及模数 m。 b=275.22. m=14.73. h=33.145 计算纵向重合度B=1.0317 计算载荷系数A V H Hk k k k k=1.4121 据实际的载荷系数,分度圆的直径得: d1=407.628mm 高速轴上的一对齿轮系参数为: 7 6 7 6 1 21 0 , 1 4 , 2 6 , 1 0 2 , d 2 6 8 . 1 2 , 1 0 5 1 . 8 8 , a 6 6 0 , 2 2 5 , 2 1 5nm Z Z d B B 中 心 距 中间轴上的一对齿轮的参数为: 5 4 5 4 1 21 6 , 1 0 , 2 5 , 1 1 3 , d 4 0 6 . 1 6 , 1 8 3 5 . 8 4 , a 1 1 2 1 , 3 3 5 , 3 25nm Z Z d B B 中 心 距 2 3受力分析与静强度校核 2 3 1受力分析 行星齿轮传动的主要受力构件有中心轮、行星轮、行星架、轴及轴承等。为进行齿轮的强度计算,需要对行星轮以及太阳轮进行受力分析。当行星轮数目为 3。假定各套行星轮载荷均匀,只需分析其中任一套行星轮与中心轮的组合即可。通常略去摩擦力和重力的影响,各构件在输入转矩的作用下平衡,构件间的作用力等于反作用力。 图 6行星齿轮受力分析 行星架输入功率为 1T ,太阳轮输出功率为 aT ,增速传动比为 i,太阳轮节圆直径为 dl,根据斜齿圆柱齿轮传动受力分析公式,齿轮所受切向力、径向力、轴向力分别为: 2211 /2 0 0 0/2 0 0 0 dTdTF t c o s/ta n ntr FF tan ta FF 式中:n 法面压力角; 分度圆螺旋角。 得到各个齿轮的受力结果如表 2所示。 精品毕业论文 表 2 2 3 2低速级外啮合齿面静强度计算 依据要求 ,按 3倍额定功率计算静强度。 (因其余啮合齿轮副的计算步骤、结论与此相似,在此,仅以低速级外啮合为例。 ) 载荷 :dTFcal max2000 式中:calF 计算切向载荷, N; d 轮齿分度圆直径, mm; maxT 最大转矩, N m 修正载荷系数 因已按最大载荷计算,取使用系数 AK =l。 计算安全系数:HstWNTHH ZZS lim 式中:Hst 静强度最大齿面应力, 2/mmN KKKuudFZZZZHVbc a lEHH st11 1041.1 HS ,符合要求。 2 4本章小结 依据技术指标,综合行星传动与平行轴传动的有点,选取两级行星派生型传动,采用太阳轮浮动的均载机构,计算确定了齿轮箱各级传动的参数。对行星传动进行受力分析,得出各级传动齿轮的受力结果。依据标准,进行静强度校核,结果符合安全要求。 3 传动轴和箱体的设计 3.1 高速轴的设计 (1)最小轴直径的设计3 PdAn( A=105115) 功率 P=1562.857KW,转速 n=1399.013r/m, A 取 110。 所以 d=114.12mm。又根据发电机的功率选择, 所以 d=120mm ( 2)结构设如下 3.2 低速轴的设计 最小轴直径的设计 30 41 PdA n 0.5取 所以 d=308.14mm。根据轴承精度选择, 所以外径 d=320mm,内径 d1=160mm。 3.3 中间轴的设计 ( 1)最小轴直径的设计3 PdAn 功率 P=1594.589KW,转速 n=357.046r/m。 所以 d=181.15mm。又根据调心滚子轴承选择, 所以 d=200mm ( 2)结构设如下: 精品毕业论文 3.4 箱体 箱体是齿轮箱 的重要零件,它承受来自风轮的作用力和齿轮传动时产生的反力。箱体必须有足够的刚性去承受力和力矩的作用,防止变形,保证传动质量。箱体的设计应按照风力发电机组动力传动的布局、加工和装配、检查以及维护等要求来进行。应注意轴承支撑和机座支撑的不同方向的反力及其相对值,选取合适的支撑结构和壁厚,增设必要的加强筋。筋的位置须与引起箱体变形的作用力的方向相一致。箱体的应力情况十分复杂且分布不均,只有采用现代计算方法,如有限元、断裂力学等辅以模拟实际工况的光弹实验,才能较为准确的计算出应力分布情况。利用计算机辅助设计,可以获 得与实际应力十分接近的结果。采用铸铁箱体可发挥其减震性,易于切削加工等特点,适于批量生产。常用的材料有球墨铸铁和其他高强度铸铁。设计铸造箱体时应避免壁厚突变,减小壁厚差,以免产生缩孔和疏松等缺陷,用铝合金或其他轻合金制造的箱体,可使其重量较铸铁轻20%-30%,但从另一个角度考虑,轻合金铸造箱体,降低重量的效果并不显著。这是因为轻合金铸件的弹性模量较小,为了提高刚性,设计时常需加大箱体的受力部分的横截面积,在轴承座处加装钢制轴承套,相应部分的尺寸和重量都要加大。目前除了较小的风力发电机尚用铝合金箱体外,大型 风力发电机应用轻铝合金铸件箱体已不多见。单件小批量生产时,常采用焊接或焊接与铸造相结合的箱体。为减少机械加工过程中和使用中的变形,防止出现裂纹,无论是铸造或是焊接箱体均应进行退火,时效处理,以消除内应力。为了便于装配和定期检查齿轮的啮合情况,在箱体上应设有观察窗。机座旁一般设有连体吊钩,供起吊整台齿轮箱用。 4 齿轮箱的密封、润滑和冷却 4.1 齿轮箱的密封 齿轮箱轴伸部位的密封一方面应能防止润滑油外泄,同时也能防止杂质进入箱体内。常用的密封分为非接触式密封和接触式密封两种。 1.非接触式 密封。所有的非接触式密封不会产生磨损,使用时间长。 轴与端盖孔间的间隙行程的密封,是一种简单的密封。间隙大小取决于轴的径向跳动大小和端盖孔相对于轴承孔的不同轴度。在端盖孔或轴颈上加工出一些沟槽,一般 24个,形成所谓的迷宫,沟槽底部开有回油槽,使外泄的油液遇到沟槽改变方向输回箱体中。也可以在密封的内侧设置甩油盘,阻挡飞溅的油液,增强密封效果。 2.接触式密封。接触式密封使用的密封件应密封可靠、耐久、摩擦阻力小。容易制造和装拆,应能随压力的升高而提高密封能力和有利于自动补偿磨损。常用的旋转轴用唇形密封有多种方 式,可按标准选取。密封部位轴的表面粗糙度 R=0.2-0.63.与密封圈接触的轴表面不允许有螺旋形机加工痕迹。轴端应有小于 30的导入角,倒角上不应有锐边、毛刺和粗糙的机加工残留物。 本次设计采用了以上的第二种密封方式。 4.2 齿轮箱的润滑、冷却 齿轮箱的润滑十分重要,良好的润滑能够对齿轮和轴承祈祷足够的保护作用。为此,必须高度重视齿轮箱的润滑问题,严格按照规范保持润滑系统长期处于最佳状态。齿轮箱常采用飞溅润滑或强制润滑,一般以强制润滑为多见。因此,配备可靠的润滑系统尤为重要。在机组润滑系统中,齿轮泵从油 箱将油液经过滤油器输送到齿轮箱的润滑系统,对齿轮箱的齿轮和传动件进行润滑,管路上装有各种监控装置,确保齿轮箱在运转过程中不会出现漏油。保持油液的清洁十分重要,即使是第一次使用新油,也要经过过滤,系统中除了主滤油器之外,最好加装旁路滤油器辅助滤油器,以确保油液的洁净。对润滑油的要求应考虑能够起齿轮和轴承的保护作用。此外还应具备以下性能: 1.减少摩擦和磨损,具有高强的承载能力,防止胶合; 2.吸收冲击和振动; 3.防止疲劳点蚀; 4.冷却,防锈,抗腐性。风力发电齿轮箱属于闭式齿轮传动类型,其主要的失效形式是胶合与点蚀 ,故在选择润滑油时,重点是保证有足够的油膜厚度和边界膜强度。 润滑油系统中的散热器常用风冷式的,由系统中的温度传感器控制,在必要时通过电控旁路阀自动打开冷却回路,使油液先流经散热器散热,再进入齿轮箱。 精品毕业论文 5 齿轮箱的使用及其维护 5.1 安装要求 齿轮箱的主动轴与叶片轮毂的联接必须可靠紧固。输出轴若直接与电机联接时,应采用合适的联轴器,最好的弹性联轴器,并串接起来保护作用的安全装置。齿轮箱轴线上和与之相连接的部件的轴线应保证同心,其误差不得大于所选用联轴器的齿轮箱的允许值,齿轮箱体上也不允许承受附加的扭转 力。齿轮箱安装后用人工搬动应灵活,无卡滞现象。打开观察窗盖检查箱体内部机件应无锈蚀现象。用涂色法检验,齿面接触斑点应达到技术条件的要求 。 5.2 定期更换润滑油 第一次换油应在首次投入运行 500h后进行,以后的换油周期为每运行 5000-10000h。在运行过程中也要注意箱体内油质的变化情况,定期取样化验,若油质发生变化,氧化生成物过多并超过一定比例时,就应及时更换。齿轮箱应每半年检修一次,备件应按照正规图纸制造,更换新备件后的齿轮箱,其齿轮啮合情况符合技术条件的规定,并经过试运转与载荷试验后再正式使用。 5.3 齿轮箱常见故障 齿轮箱的常见故障有齿轮损伤、轴承损坏、断轴和渗透油、油温高等。 6 基于 Pro E 的斜齿轮参数化造型 6.1Pro E 参数化建模概述 实践中存在着大量复杂却用途广泛的零件。比如:斜齿轮,其齿廓部分是渐开线螺旋面,齿根过度曲线部分由于加工方法的不同形状有异。为满足有限元分析、机构运动分析、动力学分析等的需要,有时要求精确绘制出渐开线斜齿轮的三维实体模型。齿轮造型精确度将直接影响有限元分析结果的准确性。传统的齿轮传动设计方法,设计过程重复,设计周期 长、工作效率低。当齿轮的某一参数改变时,需要对齿轮组重新建模与装配,因此设计智能化程度低。 参数化设计是指在设计中,通过修改尺寸来实现对模型修改的设计方法。设计人员除输入必要的设计参数外,对设计过程不需要任何干涉,系统自动对设计的参数的约束条件进行分解和计算并完成设计过程。 Pro E 是美国 PTC 公司的标志性软件,问世于 1988 年。现已称为全世界最为普遍的3D CAD CAM软件,其功能强大,模块众多,包括实体设计、零件装配、功能仿真等。 Pro E 软件的长处及独特的地方表现在两个方面:一是它的参数化特征化定 义实体造型的功能,从而给工程师们提供设计上的简便和灵活性: 另一方面是其独特的数据结构提供在工程上的完全相关性,即在产品开发过程中任何一个地方的更改都会得到其它相关地方的自动修改用 Pro E 进行参数化设计,主要是用到 Pro E中的程序 (Program),这是一种相对非常简单的程序,它只是用一些简单的 input、if-else 等少数语句,对零件或组件设计过程中系统自动产生的信息进行编辑。使用者可以通过非常简单的程序语言来控制特征以及尺寸大小,以完成产品设计要求国内外许多学者对渐开线直齿轮的参数化建模和装配做了 很多深入的研究,但是对于渐开线变位斜齿轮的参数化建模研究不多。本章依据渐开线参数方程以及螺旋线生成原理,在 Pro E 中实现了斜齿轮的参数化建模,得到精确的三维模型。 6.2 齿轮参数化模型建立 齿轮的参数化模型就是只需输入斜齿轮的关键参数就可以生成齿轮的三维实体模型。因此,在构造齿轮造型前,需要确定哪些是关键的参数,以及齿轮模型各部分轮廓尺寸与这些参数的关系与方程。 精品毕业论文 6.2.1 设置参数与数学关系式 齿轮轮齿部分是齿轮类零件结构复杂的部分,也是齿轮类零件中关键的部分。渐开线变位齿轮的几何尺寸主要取决 于以下几个参数:齿数、模数、分度圆压力角、齿顶高系数、顶隙系数、螺旋角、齿宽、变位系数。选择菜单栏中工具 程序,弹出菜单,选择编辑设计,这时会弹出记事本文件,对记事本文件中的“ INPUT”到“ ENDINPUT”进行编辑。记事中的 MN表示定义的模数参数名, NUMBER表示参数值的类型。“请输入齿轮的法向模数”是提示栏。在定义完这些参数后需要给各个参数输入一个初始值。 定义完参数后,还需要通过这些参数来定义其它相关尺寸。同样事本中,在“ RELATIONS”“ ENDRELATIONS”设置基圆直径、节圆直径等的表 达关系式。 6.2.2 构造齿廓 直线上一点 K的轨迹称为该圆的渐开线,该圆称为渐开线的基圆。直线称为渐开线的发生线,渐开线的生成原理如图所示。以基圆圆心为原点,渐开线的起始点 A与圆心的连线为 x轴,与其垂直的方向为 Y轴建立直角坐标系,根据渐开线形成原理推导出渐开线方程。 图 7 图 8直齿齿轮 生成渐开线以后,创建基准平面,该基准平面过分度圆上一点以及齿轮中心轴,再将其绕轴线旋转一定角度,以该平面为对称面,对渐开线进行镜像即得齿廓另一侧的曲线,截 取齿顶圆以内的部分即可获得完整齿廓。 6.2.3 生成齿轮 对于斜齿轮的精确建模,除了要生成渐开线,还必须生成螺旋线。依掘螺旋线的生成原理,将斜齿轮基圆柱面展开,螺旋线展开成一条直线,斜直线与轴线的夹角就是基圆柱面上的螺旋角,如图所示。据此得出螺旋线的参数方程。另外,在 Pro/E 环境 F可以通过轴线的水平面上先绘制一斜直线,与轴线成夹角,然后将其投影到基圆柱面上也可作成螺旋线。 图 8齿轮轴 图 9太阳轮 图 10内齿轮 精品毕业论文 图 11行星架 6.3 模型装配 依据相似原理,设计出外齿圈如图所示。在完成如图的行星架的设计后,可以在 Pro E 的装配界面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传统工业制造行业智能制造与工业自动化融合创新报告
- 2024关于大学生心理健康日的心得总结
- 药品原辅料供应链2025年供应链金融风险控制与优化策略报告
- 2025年电商行业政策法规解读报告:合规经营与创新发展
- 2023年知识点点的坐标简单坐标问题填空
- 2023年版高中化学选修知识点总结
- 2023年造价员基础知识
- Unit+2+The+universal+language+Reading高中英语译林版选择性必修第一册
- 2024-2025学年宁夏银川市景博中学高一(下)期末数学试卷(含答案)
- 二零二五年度第七章机电安装工程施工合同管理与服务规范
- 2025年7月27日宁波市直遴选笔试真题及答案解析
- 2025工商银行房贷借款合同
- 高校辅导员考试基础知识试题题库238题(附答案)
- 小学五年级数学奥数数的整除(附练习及详解)
- 2025-2030中国无人零售行业市场发展现状及竞争格局与投资前景研究报告
- 房地产销售公司销售技巧培训制度
- 年产2000吨电子级超高纯石英晶体材料制造项目报告表
- 2025年中小学暑假安全教育主题家长会 课件
- 2025年乡村文化旅游与乡村旅游融合的市场需求分析报告
- 医院检验科实验室生物安全管理手册
- 特变电工哲学手册课件
评论
0/150
提交评论