轴承检测装置的外观设计[三维UG]【含CAD高清图纸和文档资料】
收藏
资源目录
压缩包内文档预览:
编号:32215389
类型:共享资源
大小:44.69MB
格式:ZIP
上传时间:2019-12-18
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
三维UG
含CAD高清图纸和文档资料
轴承
检测
装置
外观设计
三维
UG
CAD
图纸
文档
资料
- 资源描述:
-
【温馨提示】====【1】设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======【2】若题目上备注三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======【3】特价促销,,拼团购买,,均有不同程度的打折优惠,,详情可咨询QQ:1304139763 或者 414951605======
- 内容简介:
-
Screw Compressors Mathematical 2.4 Review of Most Popular Rotor Profiles 37Fig. 2.21. “N” Rotors in 5-6 configurationFig. 2.22. “N” Rotors in 5-7 configuration38 2 Screw Compressor GeometryFig. 2.23. “N” rotors in 6/7 configurationsealing lines, small confined volumes, involute rotor contact and proper gate rotor torque distribution together with high rotor mechanical rigidity.The number of lobes required varies according to the designated compressor duty. The 3/5 arrangement is most suited for dry air compression, the4/5 and 5/6 for oil flooded compressors with a moderate pressure difference and the 6/7 for high pressure and large built-in volume ratio refrigeration applications.Although the full evaluation of a rotor profile requires more than just a geometric assessment, some of the key features of the “N” profile may be readily appreciated by comparing it with three of the most popular screw rotor profiles already described here, (a) The “Sigma” profile by Hammertoe,1979, (b) the SRM “D” profile by Absterge 1982, and (c) the “Cyclin” profile by Hough and Morris, 1984. All these rotors are shown in Fig. 2.20 where it can be seen that the “N” profiles have a greater throughput and a stiffer gate rotor for all cases when other characteristics such as the blow-hole area,confined volume and high pressure sealing line lengths are identical.Also, the low pressure sealing lines are shorter, but this is less important because the corresponding clearance can be kept small.The blow-hole area may be controlled by adjustment of the tip radii on both the main and gate rotors and also by making the gate outer diameter equal to or less than the pitch diameter. Also the sealing lines can be kept very short by constructing most of the rotor profile from circles whose cen tres are close to the pitch circle. But, any decrease in the blow-hole area will increasethe length of the sealing line on the flat rotor side. A compromise between these trends is therefore required to obtain the best result.2.4 Review of Most Popular Rotor Profiles 39Rotor instability is often caused by the torque distribution in the gate rotor changing direction during a complete cycle. The profile generation procedure described in this paper makes it possible to control the torque on the gate rotor and thus avoid such effects. Furthermore, full involute contact between the “N” rotors enables any additional contact load to be absorbed more easily than with any other type of rotor. Two rotor pairs are shown in Fig. 2.24 the first exhibits what is described as “negative” gate rotor torque while the second shows the more usual “positive” torque.Fig. 2.24. “N” with negative torque, left and positive torque, right2.4.13 Blower Rotor ProfileThe blower profile, shown in Fig. 2.25 is symmetrical. Therefore only one quarter of it needs to be specified in order to define the whole rotor. It consists of two segments, a very small circle on the rotor lobe tip and a straight line. The circle slides and generates cycloids, while the straight line generates involutes.40 2 Screw Compressor GeometryFig. 2.25. Blower profile2.5 Identification of Rotor Position in Compressor BearingsThe rotor axial and radial forces are transferred to the housing by the bearings. Rolling element bearings are normally chosen for small and medium screw compressors and these must be carefully selected to obtain a satisfactory design. Usually, two bearings are employed on the discharge end of each of the rotor shafts in order to absorb the radial and axial loads separately.Also, the distance between the rotor center lines is in part determined by the bearing size and internal clearance. Any manufacturing imperfection in the bearing housing, like displacement or eccentricity, will change the rotor position and thereby influence the compressor behaviour. The system of rotors in screw compressor bearings is presented in Fig. 2.26.The rotor shafts are parallel and their positions are defined by axes and . The bearings are labeled 1 to 4, and their clearances, as well as the manufacturing tolerances of the bearing bores, and in the x and y directions respectively, are presented in the same figure. The rotor center distance is and the axial span between the bearings is a.All imperfections in the manufacture of screw compressor rotors should fall within and be accounted for by production tolerances. These are the wrong position of the bearing bores, eccentricity of the rotor shafts, bearing clearances and imperfections and rotor misalignment. Together, they account for the rotor shafts not being parallel. Let rotor movement in the y direction contain all displacements, which are presented in Fig. 2.27, and cause virtual rotation of the rotors around the , and axes, as shown in Fig. 2.27. Let2.5 Identification of Rotor Position in Compressor Bearings 41Fig. 2.26. Rotor shafts in the compressor housing and displacement in bearingsFig. 2.27. Rotors with intersecting shafts and their coordinate systemsrotor movement in the x direction cause rotation around the , and axes, as shown in Fig. 2.28. The movement can cause the rotor shafts to intersect. However, the movement causes the shafts to become non-parallel and non-intersecting. These both change the nature of the rotor position so that the shafts can no longer be regarded as parallel. The following analytic-alapproach enables the rotor movement to be calculated and accounts for these changes.Vectors and ,now represent the helicoid surfaces of the main and gate rotors on intersecting shafts. The shaft angle is the rotation about.42 2 Screw Compressor GeometryFig. 2.28. Rotors with non-parallel and non-intersecting shafts and their coordinate systems (2.15) (2.16)Since this rotation angle is usually very small, the relationship (2.16) can be assumed. Equation (2.15) can then be simplified for further analysis.The rotationwill result in a displacement in the x direction and a displacement in the z direction, while there is no displacement in the y direction. The displacement vector becomes:In the majority of practical cases, is small compared with and only displacement in the x direction need be considered. This means that rotation around the Y axis will, effectively, only change the rotor center distance. Displacement in the z direction may be significant for the dynamic behaviour of the rotors. Displacement in the z direction will be adjusted by the rotor relative rotation around the Z axis, which can be accompanied by significant angular acceleration. This may cause the rotors to lose contact at certain stages of the compressor cycle and thus create rattling, which may increase the compressor noise. Since the rotation angle , caused by displacement within the tolerance limits, is very small, a two-dimensional analysis in the rotor end plane can be applied, as is done in the next section.2.5 Identification of Rotor Position in Compressor Bearings 43As shown in Fig. 2.28, where the rotors on the nonparallel and nonintersecting axes are presented, vectors r1= x1,y1,z1 and r2, given by (2.10) now represent the helicoid surfaces of the main and gate rotors on the intersecting shafts. is the rotation angle around the X axes given by (2.11). (2.17) (2.18)Since angle is very small, it can be expressed in simplified form as in (2.18).Further analysis is then facilitated by writing (2.17) as: The rotation will result in displacement in the y direction and dis-placement in the z direction, while there is no displacement in the x direction. The displacement vector can be written as:Although, in the majority of practical cases, displacement in the z direction is very small and therefore unimportant for consideration of rotor interference,it may play a role in the dynamic behaviour of the rotors. The displacement in the z direction will be fully compensated by regular rotation of the rotors around the Z axis. However, the angular acceleration involved in this processmay cause the rotors to lose contact at some stages of the compressor cycle. Rotation about the X axis is effectively the same as if the main or gate rotor rotated relatively through angles or respectively and the rotor backlash will be reduced by . Such an approach substantially simplifies the analysis and allows the problem to be presented in two dimensions in the rotor end plane. Although the rotor movements, described here are entirely three-dimension-al, their two-dimensional presentation in the rotor end plane section can be used for analysis. Equation (2.2) serves to calculate both the coordinates of the rotor meshing points ,on the rotor helicoids and ,in the end plane from the given rotor coordinates points and . It may also be used to determine the contact line coordinates and paths of contact between the rotors. The sealing line of screw compressor rotors is somewhat similar to the rotor contact line. Since there is a clearance gap between rotors, sealing is effected at the points of the most proximate rotor position. A convenient practice to obtain the clearance gap between the rotors is to consider the gap as the shortest distance between the rotors in a section normal to the rotor helicoids. The end plane clearance gap can then be obtained from the normal clearance by appropriate transformation.If is the normal clearance between the rotor helicoid surfaces, the cross product of the r derivatives, given in the left hand side of (2.5), which defines.螺杆压缩机2.4审查最流行的转子型线 37图.2.21.“N”转子在5-6配置图.2.22. “N”转子在5-7配置38 2螺杆式压缩机几何图.2.23. “N”转子6/7的配置密封线,小局限于卷,渐开线转子的接触和正确的门转子与转子的机械刚性高扭矩分配。所需的波瓣的数目,根据指定的压缩机的工作而变化。3/5的安排是最适合于干燥的空气压缩,4/5和5/6的石油淹没具有适度的压力差的压缩机6/ 7内置的体积比制冷的高压和大应用程序。虽然全面评估的转子型线,需要的不仅仅是一个几何评估,一些关键功能的“ N”配置文件可能它有三个最流行的螺丝比较容易理解在这里已经描述了转子型线, (一) “西格玛”配置文件 Bammert1979年, (二), (三) SRM“ D” Astberg1982年的档案,并在“ CYCLON ”个人资料霍夫和莫里斯,1984年。所有这些转子的示于图中. 2.20地方可以看出,在“N”公司有一个更大的吞吐量和一个更硬的闸转子可用于所有情况下,当其他特性,如吹孔区域,密闭体积和高压力的密封线的长度是相同的。此外,在低压力密封线短,但,这是不太重要的因为相应的间隙可以保持很小。可以控制的吹塑孔区域的尖端半径调整的两个主转子和闸转子,并通过使栅极的外径等于或小于的节圆直径。此外,密封线可以保持非常短的转子型线,圈,其中心是通过构建距离的节圆。但是,吹孔区域的任何减少会增加转子侧上的平坦的密封线的长度。之间的折衷因此,这些趋势要求,以获得最佳的结果。2.4 审查最流行的转子型线 39在闸转子的扭矩分配通常是由转子失稳一个完整的周期过程中改变方向。该配置文件的生成过程本文中描述的,使得它能够控制栅极上的扭矩转子,从而避免这种影响。此外,完整的渐开线之间的联系的“N”的转子允许任何额外的触点负载更容易被人体吸收比与任何其他类型的转子。两个转子对示于图.2.24什么被描述为“负”的闸转子转矩的第一展品而第二更常见的“积极的”扭矩。图.2.24.“N”负转矩,左侧和正面的扭矩,对2.4.13鼓风机转子型线鼓风机的档案中,示于图. 2.25是对称的。因此,只有一个季它需要被指定,以便定义整个转子。它由两个分部,在转子上的叶尖端的一个非常小的圆和一个直线。摆线圈滑动产生,而直线生成渐开线。40 2螺杆式压缩机几何图. 2.25. 吹风机配置文件2.5 转子位置的识别在压缩机轴承转子的轴向力和径向力被传递到壳体由轴承 。滚动元件轴承通常选择为中小型螺杆压缩机,这些都必须精心挑选,以获得满意保守党的设计。一般,两个轴承中采用的每个的排出端为了吸收在转子轴的径向和轴向负荷分开。此外,转子的中心线之间的距离是确定的部分轴承的尺寸和内部游隙。任何制造缺陷轴承箱,如位移或偏心,将改变转子位置和从而影响压缩机行为。转子的螺杆式压缩机轴承的是,该系统示于图中.2.26.转子轴是平行的,它们的位置由轴和定义。轴承被标记为1至4,和他们的间隙,以及在和方向上的轴承孔的制造公差,和分别在同一图中。转子中心的距离为和轴承之间的轴向跨度是一个。螺杆压缩机转子的制造中的所有缺陷应该落在内,占生产公差。这些都是错误的轴承位置的轴承孔,转子轴的偏心度,明确差和不完善之处,转子不对。总之,他们占转子轴不平行。让在方向上的转子运动包含所有的位移,这被示于图.2.27,并导致虚拟周围的和轴的转子的旋转,如图所示.2.27.让2.5 鉴定压缩机轴承转子的位置 41图.2.26.在压缩机壳体和位移在轴承的转子轴图.2.27.转子与相交轴和坐标系转子运动在的方向的原因左右旋转的,和轴,如图所示.2.28.的运动可能导致转子轴相交。然而,运动使轴成为非平行和非相交。这些都改变了性质的转子位置,所以轴可以不再被视为平行。以下分析方法使转子的运动来计算,这些帐户的变化。矢量和,现在代表的螺旋面的表面在交叉轴的主转子和闸转子。轴角,是旋转关于。42 2螺杆式压缩机几何图.2.28.转子与非平行的和非相交的轴和它们的坐标系统 (2.15) (2.16)由于该旋转角的关系(2.16 )通常非常小,可以假定。方程(2.15),然后,可以简化用于进一步分析。 旋转将导致位移在方向和方向的位移,而在没有位移的方向发展。位移矢量变为:在大多数实际情况下, 是小比和只在方向上的位移,需要加以考虑。这意味着,旋转绕轴的,有效的,只有改变转子的中心的距离。在方向上的位移可能是显着的动态行为的转子。在方向上的位移将调整由转子绕轴的相对旋转,它可以伴随着显着的角加速度。这可能会导致转子失去在一定的接触压缩机循环阶段霍霍,这可能会增加,从而创造压缩机的噪声。由于旋转角时,所造成的公差范围内的位移限制,是非常小的,在转子端面上可以是一个两维的分析应用,如在下一节中完成。2.5 鉴定压缩机轴承转子的位置 43如图中所示.2.28,其中的转子对非平行和不相交轴,矢量和,(2.10)现在给出代表螺旋面的主转子和闸转子的表面上的交叉轴。是(2.11 )给出的绕X轴的旋转角度。 (2.17) (2.18) 由于角是非常小的,它可以以简化的形式表示,如在(2.18)。然后促进进一步的分析,以书面形式( 2.17): 旋转将导致显示投放在方向和位移在方向上,而没有位移在的的方向展。的位移矢量可以被写为:虽然,在大多数实际情况下,在方向上的位移是不重要的考虑转子的干扰非常小,因此,它可能发挥的作用在转子的动态行为。位移在方向上,将被充分通过定期的转子的旋转补偿绕轴的。然而,参与在这个过程中的角加速度可能会导致转子在压缩机循环的某些阶段,失去接触。绕轴的旋转实际上是一样的,如果主要或门转子相对旋转通过的角度 或再分别与转子的齿隙将减少 。这样的做法大大简化了分析,并允许将呈现的问题在转子端面上的两个维度。虽然转子的运动,这里描述的是完全的三维人,其二维地列在转子端部的平面部,可以用于分析。等式(2.2),用于计算转子网格的坐标是点,在转子的螺旋和,在的端面给定的转子的坐标点和。它也可以被用来确定转子之间的接触的接触线的坐标和路径。该密封螺杆压缩机转子的线是有点类似的转子接触线。因为有一个之间的间隙的转子,封装是在点的最接近的转子位置。获得一个方便的做法在转子之间的间隙是要考虑的差距,在最短的之间的距离中的转子的截面垂直于转子螺旋。“端面间隙,然后可以正常清关适当的改造。如果是转子的螺旋表面的正常间隙,交叉产品的的衍生物,(2.5)的左手侧,它定义中给出16编号无锡太湖学院毕业设计(论文)相关资料题目: 轴承检测装置的外观设计 信机 系 机械工程及自动化专业学 号: 0923815学生姓名: 鲁 浩 指导教师: 何雪明 (职称:副教授 ) (职称: )2013年5月20日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 轴承检测装置的外观设计 信机 系 机械工程及自动化 专业学 号: 0923815 学生姓名: 鲁 浩 指导教师: 何雪明 (职称:副教授 ) (职称: )2013年11月25日 课题来源来自企业。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1) 课题科学意义 传统的检测项目不够全面,不能全面反映轴承的质量问题,不能对轴承的质量问题进行统计分析,现代的检测技术逐渐全面、一体化,其外观的设计也应该跟上步伐,做到便于轴承的检测,并将其人性化。(2)轴承检测仪器的发展预测 随着世界上精密制造技术的飞速发展和产品精度的日益提高,产品检测和试验技术也获得了较大的发展,并呈现出多态性和超精密的特性。从纳米制造到纳米测量,从智能仪器、虚拟仪器到网络仪器,国内轴承行业测试与试验技术在多方面逐步与世界接轨,并不断开发出一系列适合国情和国家标准的测试仪器与试验设备。另一方面,中国正在逐步成为世界上的产品制造中心,国外的先进制造技术和测试技术日益冲击着国内的轴承行业。由于在应用技术领域和国外存在的差距,以及行业内较多的企业对产品质量和检测方面认识不够,造成目前国内的轴承检测仪器和试验设备仍然与国外的同类先进企业存在着较大的差距。从总体考虑,一方面要在先进技术上进行突破,另一方面要提高已有产品的可靠性和稳定性。两个方面齐头并进,相辅相成,这样才能在赶上世界潮流的同时,更能满足国内企业的实际需要。 1. 在先进技术方面 (1) 纳米测量技术 (2) 网络技术 (3) 虚拟仪器与智能仪器2. 产品的可靠性、稳定性国内针对各种轴承的不同,其外观设计也有所不同。有分布式,台式等,有的简单,来自于手动检测轴承装置的改良;有的加入了电子检测环节和PLC控制环节,结构稍显复杂。轴承检测装置从单一化趋向于集成化,其外观也从裸机转变为箱体化。研究内容 比较好的机械理论知识、自动控制的硬、软件知识和一定的计算机编程能力; 达到设备技术指标所规定要求,满足实际工作需要,安全、可靠、工作稳定 ; 完成轴承检测装置的装配图设计(三维及工程图纸); 关键部件需作有限元应力分析,以及整缸的运动学分析。拟采取的研究方法、技术路线、实验方案及可行性分析(1) 研究方法:多种方案比较法。(2) 技术线路:利用UG软件建立轴承检测装置的外观,并对装置用key shot 进行美化。(3) 实验方案:根据人机工程学对人机关系进行分析,并得出最佳的外观设计。(4) 可行性分析:结合工作要求、设计成本、技术条件等,对外观拟定可行性报告,该设计满足要求,设计可行。研究计划及预期成果研究计划:2009年10月12日-2009年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2010年1月11日-2010年3月5日:填写毕业实习报告。2010年3月8日-2010年3月14日:按照要求修改毕业设计开题报告。2010年3月15日-2010年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2010年3月22日-2010年4月11日:合围机构设计。2010年4月12日-2010年4月25日:绘制三维及工程图。2010年4月26日-2010年5月21日:毕业论文撰写和修改工作。预期成果:轴承检测装置的外观设计保证,轴承能够自动给料、隔离、入料、出料及分拣等。并且保证轴承检测装置的箱体能够完全打开,内部的PLC、油泵、计算机能够从箱体内拿出,便于检修;工作面板能够折叠起来,不占据空间。特色或创新之处 使用PLC编程仿真,能够实现设备的自动气缸运作。 采用分析几种方案以及相互比较来研究问题的方法,思路清晰,简洁明了,行之有效。 所有窗口能够完全打开。 参考人机工程学,整体美观,更多的考虑人性化。已具备的条件和尚需解决的问题 具备条件 人机工程方面的资料,能较
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。