(凝聚态物理专业论文)亚波长直径光纤波导特性研究.pdf_第1页
(凝聚态物理专业论文)亚波长直径光纤波导特性研究.pdf_第2页
(凝聚态物理专业论文)亚波长直径光纤波导特性研究.pdf_第3页
(凝聚态物理专业论文)亚波长直径光纤波导特性研究.pdf_第4页
(凝聚态物理专业论文)亚波长直径光纤波导特性研究.pdf_第5页
已阅读5页,还剩47页未读 继续免费阅读

(凝聚态物理专业论文)亚波长直径光纤波导特性研究.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

硕十学何论文 摘要 微电子学、光电子学和光子学是现代光通信和光传感产业的支柱。随着器件 设计理论和制备工艺技术的发展,以及对器件工作性能、集成度和能量消耗等要 求的提高,微电子和光电子器件的特征线宽或长度己经达到了亚微米和纳米尺寸。 在网络通信的信息传递材料中,光纤被公认为是现今通信带宽最大的传输介质。 在过去3 0 年间,介质光波导的线宽或直径已经从毫米量级发展到微米量级,大大 促进了其在光子器件,如光通信、光传感、光功率传输系统等中的应用。近年来, 已经成功制备出亚微米和纳米直径的光纤( 下文统一称为微纳光纤) ,它们可以用 来构造未来的微米乃至纳米光子器件。其中,波导特性的研究是其应用的基础。 本文运用电磁场计算方法,对亚波长直径光纤及其阵列的波导特性进行了较详细 的研究,获得了具有一定学术价值和实际意义的创新性结果。 理论建模并分析了单根亚波长直径实芯和空芯光纤的波导特性。通过合理调 整光纤参数,亚波长直径实芯和空芯光纤均具有大的倏逝波模场。结果表明,亚 波长直径空芯光纤外包层中具有强的倏逝波模场,中空纤芯具有增强的强度分布; 改变中空纤芯的大小,可以控制中空纤芯及外包层的模场分布及光纤的波导色散。 此种亚波长直径空芯光纤在原子光学和光纤传感等领域具有潜在的应用价值。 研究了多根亚波长直径光纤的耦合特性及模场整形能力。利用亚波长直径光 纤的大倏逝波模场特性,结合时域有限差分方法,数值模拟了多根亚波长直径实 芯和空芯光纤的耦合特性及其模场整形能力。结果表明,多根亚波长直径实芯和 空芯光纤均可以有效耦合。这一特性表明多根亚波长直径光纤可应用于高速光通 信等领域。 关键词:亚波长直径光纤;波导特性;单根亚波长直径光纤;亚波长直径光纤组 束 a b s t r a c t m i c r o e l e c t r o n i c s ,o p t o e l e c t r o n i c sa n dp h o t o n i c sp l a ya ni m p o r t a n tr o l e i nt h e m o d e mo p t i c a lc o m m u n i c a t i o na n do p t i c a ls e n s o ri n d u s t r y w i t ht h ed e v e l o p m e n to f t h ed e s i g n t h e o r y a n dp r e p a r a t i o n t e c h n i q u e s ,a n dt h er e q u i r e m e n t so fd e v i c e p e r t o r m a n c e ,i n t e g r a t i o na n de n e r g yc o s t ,t h ew i d t ho r l e n g t h o fd e v i c e si n m i c r o e l e c t r o n i c sa n do p t o e l e c t r o n i c sh a v eb e e nd e c r e a s e d t os u b m i c r o m e t e ro r n a n o m e t e r i ti sw e l lk n o w nt h a tt h eo p t i c a lf i b e rh a st h em a x i m u m b a i l d w i d t hi na 1 1 t r a n s m i t t i n gm e d i u mu s e di nt h en e t w o r kc o m m u n i c a t i o n s i nt h ep a s t3 0y e a r s ,t h e w i d t ho rl e n g t ho ft h ed i e l e c t r i cw a v e g u i d eh a v eb e e nt h i n n e do rs h o r t e n e d 舶m m i l l i m e t e rt on a n o m e t e r ,w h i c hf a c i l i t a t e si t s a p p l i c a t i o ni no p t i c a lc o m m u n i c a t i o n , o p t i c a lf i b e rs e n s i n g ,o p t i c a lp o w e rd e l i v e r ys y s t e ma n ds oo n h o w e v e r , h o wt o p r e p a r et h el o wl o s sw a v e g u i d ei ss t i l la c h a l l e n g et oa l lo fu s i nr e c e n ty e a r s ,o p t i c a l t i b e r sw i t hs u b 。m i c r o m e t e ro rn a n o m e t e rc o r es i z eh a v eb e e np r e p a r e ds u c c e s s f u l l y , w h i c hl a yaf o u n d a t i o nf o rt h ef u t u r es u b m i c r o m e t e ro rn a n o m e t e ro p t i c a ld e v i c e s a m o n ga l lt h ea p p l i c a t i o n s ,t h em o s ti m p o r t a n ta n db a s i ct h i n gi st os t u d vt h e w a v e g u i d ec h a r a c t e r i s t i c so fs u c ho p t i c a lf i b e r s b a s e do nt h ep r e v i o u sw o r k s ,t h e t h e s i sh a s f o c u s e do n s t u d y i n g t h e w a v e g u i d ec h a r a c t e r i s t i c so f s i n g l e s u b w a v e l e n g t h - d i a m e t e ro p t i c a lf i b e ra n dt h ef i b e r a r r a yu s i n ge l e c t r o m a g n e t i c c o m p u t a t i o nm e t h o d s b yt h e o r e t i c a ls i m u l a t i o n ,s o m ei n n o v a t i v ea n d i m p o r t a n t r e s u l t sh a v eb e e na c h i e v e d t h ew a v e g u i d ec h a r a c t e r i s t i c so fs i n g l e s u b w a v e l e n g t h d i a m e t e ro p t i c a lf i b e r s i n c l u d i n gs o l i dc o r ea n dh o l l o wc o r e ,h a v eb e e nm o d e l e da n da n a l y z e d b ya d j u s t i n g t h ef i b e rp a r a m e t e r s ,t h es u b w a v e l e n g t h d i a m e t e rs o l i dc o r eo rh o l l o wc o r eo p t i c a l f i b e r sh a v el a r g ee v a n e s c e n tf i e l d f o rt h e s u b w a v e l e n g t h d i a m e t e rh o l l o wo p t i c a l f i b e r , b e s i d e st h el a r g ee v a n e s c e n tf i e l di nt h eo u t e rc l a d d i n g ,i th a se n h a n c e di n t e n s i t v i nt h ec e n t r a lh o l l o wr e g i o n b yv a r y i n gt h es i z eo fc e n t r a lh o l l o wr e g i o n t h em o d a l f i e l da n dw a v e g u i d ed i s p e r s i o nc a nb ea d j u s t e d t h eu n q i u ec h a r a c t e r i s t i c so ft h e s u b w a v e l e n g t h - d i a m e t e rh o l l o wo p t i c a lf i b e rm a yh a v em a n ya p p l i c a t i o n si na t o m o p t i c s ,o p t i c a lf i b e rs e n s i n ga n ds oo n t h e c o u p l i n gc h a r a c t e r i s t i c sa n dm o d a l s h a p i n ga b i l i t i e so fm u l t i p l e s u b w a v e l e n g t h - d i a m e t e ro p t i c a lf i b e r sh a v e b e e ns t u d i e d b a s e do nt h e l a r g e e v a n e s c e n tf i e l do fs u b w a v e l e n g t h d i a m e t e ro p t i c a lf i b e r , b yu s i n gf i n i t e d i f f e r e n c e t i m e d o m a i n ( f d t d ) m e t h o d ,t h ec o u p l i n gc h a r a c t e r i s t i c sa n dm o d a ls h a p i n ga b i l i t i e s i i 硕+ 学位论文 o fm u l t i p l es u b w a v e l e n g t h - d i a m e t e ro p t i c a lf i b e r s ,i n c l u d i n gs o l i dc o r ea n dh o l l o w c o r e ,h a v eb e e ns i m u l a t e d t h er e s u l t sj u s t i f yt h a tt h es u b w a v e l e n g t h - d i a m e t e ro p t i c a l f i b e rc a nc o m b i n ew i t h e a c ho t h e re f f i c i e n t l y a l lt h ef e a t u r e sm a yp r o v i d e a p p l i c a t i o n si nh i g h - s p e e do p t i c a lc o m m u n i c a t i o n s ,o p t i c a ld e l i v e r ys y s t e m ,e t c k e yw o r d s :s u b w a v e l e n g t h - d i a m e t e ro p t i c a lf i b e r ;w a v e g u i d ec h a r a c t e r i s t i c s ; s i n g l es u b w a v e l e n g t h d i a m e t e ro p t i c a lf i b e r ;m u l t i p l es u b w a v e l e n g t h d i a m e t e r o p t i c a lf i b e r s i i i 弧波k 直径光纤波导特性研究 插图索引 图1 1 两步拉制法实验示意图一2 图1 2 ( a ) 一根直径为2 6 0n n l 、长度为4m m 的光纤的s e m 照片;( b ) 至( d ) 是直径 为5 0n i n 至1 0 0n m 左右的典型微纳光纤的s e m 照片;( e ) 和( f ) 直径分别为2 4 0n n l 和3 3 0n m 的光纤的t e m 照片。3 图1 3 微纳光纤拉制方法示意图3 图1 4 熔融拉锥装置4 图1 5 加热装置4 图1 6 镀有8n l t l 厚铂拉锥微结构光纤,( a ) 不同氢浓度的透射谱:( b ) 强度和氢气 浓度的关系6 图1 7 ( a ) 微纳光纤打结部分;( b ) 实验示意图7 图1 8 ( a ) a d d d r o p 滤波器示意图;( b ) 和( c ) 是光纤的显微图片7 图1 9 微纳光纤环激光器实验示意图8 图1 1 02 岬拉锥光纤的输出光谱,从上至下,平均功率分别为3 8 0 ,2 1 0 和6 0m w 8 图1 1 l 原子囚禁和导引示意图一8 图2 1 三维时域有限差分算法的y e e 氏差分网格1 9 图2 2 紧凑二维时域有限差分算法中所用的差分网格1 9 图3 1 光纤芯径与传播常数的关系2 5 图3 2 电场的径向分量示意图2 5 图3 3 电场的角向分量示意图2 6 图3 4 电场的纵向分量示意图2 6 图3 5 基模纤芯所占功率与纤芯直径关系一2 7 图3 6 ( a ) z 向能流分布;( b ) 图( a ) 中心部分放大图2 7 图3 7 ( a ) z 向能流分布;( b ) 图( a ) 中心部分放大图2 8 图3 8 亚波长中空光纤的折射率分布2 9 图3 9b 和波长的关系:( a ) 石英亚波长直径空芯光纤;( b ) 硅亚波长直径空芯光纤 :;( ) 图3 1 0b 和波长的关系:( a ) 石英亚波长直径空芯光纤;( b ) 硅亚波长直径空芯光 ! ;1 :;1 图3 1 1 石英亚波长直径空芯光纤中h e l l 模的电场分布3 2 图3 1 2z 方向能流分布:( a ) 石英亚波长直径空芯光纤;( b ) 石英亚波长直径实芯光 i v 硕十学侍论文 纤;( c ) 硅亚波长直径空芯光纤;( d ) 硅亚波长直径实芯光纤3 3 图3 1 3 波导色散,( a ) 石英亚波长直径空芯光纤;( b ) 硅亚波长直径空芯光纤3 4 图4 1 芯径2 0 0n m 时,( a ) 单根能流密度分布:( b ) 两根微纳光纤耦合时能流分布 3 5 图4 2 芯径4 0 0 n m 时,( a ) 单根能流密度分布;( b ) 两根微纳光纤耦合时能流密度 分布3 6 图4 3 芯径8 0 0 n m 时,( a ) 单根能流密度分布;( b ) 两根微纳光纤耦合时能流密度 分布3 6 图4 4 四根微纳光纤耦合时的能流密度分布,( a ) 2 0 0a m ;( b ) 4 0 0n l t i i ( c ) 8 0 0r i m 3 7 图4 5 六根微纳光纤耦合时的能流密度分布,( a ) 2 0 0a m ;( b ) 4 0 0r i m ;( c ) 8 0 0n m 3 7 图4 6 七根微纳光纤耦合时的能流密度分布。3 8 图4 7 七根微纳光纤耦合时的能流密度分布3 8 图4 8 七根微纳光纤耦合时的能流密度分布3 8 v 湖南大学 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的 研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或 集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均 已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名: 襄歧 日期:觯,f 月髫日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保 留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借 阅。本人授权湖南大学可以将本学位论文的全部或部分内容编入有关数据库进行 检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1 、保密e l ,在年解密后适用本授权书。 2 、不保密吖 ( 请在以上相应方框内打“) 作者签名: 导师签名: 宴歧 童纫至硝 日期:伽埤,1 月扩日 日期:懈,1 月占日 硕十学传论文 1 1 引言 第1 章绪论 微电子学、光电子学和光子学是现代光通信和光传感产业的支柱。随着器件设 计理论和制备工艺技术的发展,以及对器件工作性能、集成度和能量消耗等要求的 提高,微电子和光电子器件的特征线宽或长度己经达到了亚微米和纳米尺寸。在网 络通信的信息传递材料中,光纤被公认为是现今通信带宽最大的传输介质。在过去 3 0 年间,线宽或直径从毫米量级到微米量级的介质光波导己经在许多领域得到成功 应用【l 】,例如,光通信、光传感、光功率传输系统等【2 一钉。波导宽度减小使光子器件 应用从中受益。近年来,已经成功制备出亚微米和纳米直径的光纤( 下文统一称为微 纳光纤) ,它们可以用来构造未来的微米乃至纳米光子器件【l 】。 随着低损耗微纳光纤的制备成功,越来越多的科研人员投入到微纳光纤的制备 及应用中来。微纳光纤的波导特性是其应用的基础,所以对其基本波导特性的研究 是至关重要的。 1 2 亚波长直径光纤的国内外研究现状 微纳光纤的制备方法己有很多报导【5 0 。最初是采用简单的弩弓装置,用射箭 的方法来拉制石英细线,并对线的一些基本性质进行了研究,提出了初步的应用设 想。后来人们开始用一种弹射器来代替弓和箭,只要选择合适的石英直径以及加热 长度,这种方法也可以拉s e j d , 直径的石英线。只是弹射器的操作复杂,获得石英线 的直径均匀性也没有弓箭方法得到的好。另外,人们还单独用火焰拉制石英线。这 一方法利用高压氧气吹管焰的火焰的摩擦力,来克服导致产生球形液滴的表面张力, 并且带动熔融石英向前,引起细石英线沿着火焰气方向被向外投出。这一方法操作 简单,在两三分钟内就可获得大量石英线,只是获得的石英线大都缠结在一起,类 似蛛网,分离较困难。早期拉制石英线的方法可控性差,机构复杂,材料损耗大, 无法预先估计获得的线直径,由于原材料的纯度问题难以保证获得高质量的石英线, 获得的石英线最小直径也在微米量级以上,远没有达到纳米量级【5 j 。 目前,几乎所有亚微米线的制造较为成熟的拉制方法都是基于火焰加热或是激 光加热使得氧化硅熔化,但是火焰加热法中火焰的湍流和对流使得进一步拉细光纤 并保持光纤较好均匀性有较大难度。另外,选择用激光来加热熔化光纤可以克服火 焰法的l 述敞陷,但人遗噱的是用激光! | | 热浊柬托制纳米竹绒光 r 州,所需激光 能量将夫的儿乎小可能奂现1 6 j 。 2 0 0 3 年,浙江夫学奄利民教授等人使几| 火焰加热两出拉伸的方法,从破璃光纤 拉制出了赢径均匀性很好的微纳光纤【”。两步拉伸的方法如图11 所不。首先,使 川步拉伸法将光纤拉细砸微米肇数。然后,为了在拉伸区域得到个稳定的温度 分布,他们用一个尖端卣稃大约为1 0 0u m 的临书石光纤锥米吸收火焰的能醯,惰 宝打光纤的热 ! i 性在光纤拉仲过程中起到保持温度稳定的作用。将微光纤的一端绕 在蓝+ 莨石光纤锥上并放置于火焰边缘处,调整火焰至合适温度( 约2 0 0 0k ) ,就可 以进步将光纤拉细至纳米量级。拉仲速度一般为卜1 0m r a s 。使用这个方法制备 的光纤直径昂小叮达到5 01 2 m 。微纳光纤的典型显微形貌如图12 所示:幽12 ( a ) 足根直径为2 6 0n m 、k 度为4 m m 的光纤的扫描电子显微镜( s e m ) 照片,光纤盘 在一块硅片上以显示它的长度。直径测量结果表明,遮根光纤在整个4m m 蚝度内 的晟人直径波动a d 约为8n m ,即直径均匀度为a d l ;2 x 1 06 。从图12 ( b ) 一12 ( d ) 也能够看卅其他直径的微纳光纤同样具有很好的直径均匀性。图l2 ( 曲和l2 ( t 3 分别 是2 4 0 i l r f l 和3 3 0r i m 直径光纤的透射电子显微镜f t e m ) 照片,从图中町看出,即使 在高倍电子显微镜下,光纤的表面也看不出明显的缺陷。典型的表面粗糙度测量值 ( 均方根) 小于05n m 。从上述显微形貌来看,这些光纤的直径均匀度和表面粗糙 度要比其他方法制备的维结构好得多。 。:挈! 懋k 图l l 两步拉制法实验示意图 虽然上进高温拉伸方法呵以很容易地制各高质最的微纳光纤,但是山于需耍使 用玻璃光纤作为匣材毒 ,所咀可用以制备微纳光 f 的材料就受到限制。最近,章利 民教授小组使用局域熔化玻璃材料直接拉制微纳光纤,已经从睹如磷酸盐、碲酸枯、 硅酸盐玻璃等材料中制备出低损耗微纳光纤( 直径晟小达到5 0n l n 左右) ,大大扩 展了微纳光纤的种类和功能。具体拉制方法如下:先用c 0 2 激光自l i 热蓝:t 石光纤, 温度一蜀至可以熔化玻璃,然后把加热的光纤放入体玻璃r p ,然后抽出,其上粘有部 分玻璃,然后使用第一根蓝宝石光纤与第一楸接触,然后以0i 一1m s 的速度向外拉 仲,氲至断裂,这样微纳光纤就叮以拉制得到,具体步螈如幽13 所示。例如商折 冀 射率的碲酸盐微纳光纤r 以提供比钉英玻璃微纳光纤强谮多的光场约求能力,稀土 掺杂微纳光纤可用f 制备有源光子器件。另外,陔方法还可以使用毫克量级的玻璃 碎片或粉柬拉制微纳光纤,减小了对原材料的量的要求【l ”。 口- i 。 图12 ( a ) 一根直径为2 6 0n m 、长度为4m m 的光纤的s e m 照片;( b ) i ( d ) 是直径为5 0a m 至1 0 0 n m 左右的典型微纳光纤的s e m 照片:( e ) 和( d 直径分别为2 4 0a m 和3 3 0n m 的光纤的t e m 照 片。 产三 ( 5 j 日 图13 徽纳光纤拉制方法示意图 上海交通大学陈险峰等人总结了酊人经验提出了条形电加热炉拉锥方法,采用 瓢霎 毫 彳手 n 渡k 阿停光纤波导特性研究 这种新的拉锥方法已经成功的拉制出卣径可低至6 5 0n m ,长度u t 达l 一儿个厘米量 绌,光损耗在0ld b c m 左右的业微米直径光纤,其熔融扣锥裟置碲咖热装置如阁 l4 ,15 所示1 。由新j 锂a 1 2 0 3 纤维隔热材料制成的两块隔热砖眵成一个腔体,高 温热源i hm o s i 2 材料制成的电加热丝提供,热丝长15c m ,置于下盖的槽r f l ,通 过涮甘其所连电极两端电压柬调节加热温度,光纤则从加热丝上方通过,拉锥速度 通过可编稃控制的步进电机驸动器政变转台转速束调节。 “k “篇? 9 m “ o m c d n hi 匡薹藿毡善宫 图14 熔融拉锥装置 = :一 r 掣兰釜量矿 图15 加热装置 l3 亚波长直径光纤的理论研究方法 数值计算方法是设计、分析亚波长直径光纤的重要理论工具,目时研究此光纤 的数值方法主要有两大类:第一类是直接利用已有的阶跃光纤模式理论进行计算 这种方法简单快捷,但是只能用于折射率阶跃变化的情形;第一类是用于分析光波 导的通用数值方法,如时域有限差分法【t 4 - 1 7 j 、光束传播法旧2 、有限元法川、有限 差分法“等,这类方法由于具有通用性强、结果可靠等特点,可以方便应用于任何 电磁场求解问题,其主要缺点足由于未考虑光纤的特点,因而计算量较大,计算要 求较高。 时域有限差分( f i n i t e - d i f f e r e n c et i m e d o m a i nm e t h o d ,缩写f d t d l 法山 k s y e e 丁1 9 6 6 年首先提出,在以后的三十多年中经过众多学者的努力,使之不断 完善,现已基本域熟【l “。浚方法通过将麦克斯韦方程在日h j 空问上离散化的方法实 现对电磁波传播的模拟。它能够得到电磁波传输的瞬态( 即时域) 信息,通过傅罩 硕十学侍论文 叶变换即可得到相应的频域信息。 光束传播法是目前光波导器件研究与设计领域最流行的方法之一,其基本思想 是在给定初始场的前提下,一步一步地计算出各个传播截面上的场。光束传播法最 早是由m d f e i t 等人研究光场及大气激光束传播时提出的【l7 1 。最早的b p m 是以快 速傅里叶变换( f a s t f o u r i e rt r a n s f o r m ,称f f t ) 为数学手段实现的,称为f f t - b p m 。 d y e v i c k 等人于1 9 8 9 年提出了一种新方法一有限差分光束传播法f d b p m ,它将 波导截面分成很多方格,在每一个格内的场用差分方程来表示,然后加入边界条件, 就可得到整个横截面的场分布,沿纵向重复前面的步骤,就可得到整个波导的场分 布【1 8 】。有限元法与光束传播法的结合形成了另外一种方法一有限元光束传播法 ( f e b p m ) ,在f e b p m 方法中,波导横截面被分成很多三角形( 每个三角形成为 一个基元) ,每个基元内的场用多项式来表达,然后加入不同基元间场的连续条件, 就可得到整个横截面的场分布【1 9 1 。 有限元法是一种有效而精确的方法,特别适用于几何结构或介电特性分布比较 复杂的情况,因此在集成光学,特别是在新型光波导器件的分析和研究上,越来越 受到人们的重视。五十年代初,由于工程分析的需要,有限元法在复杂的航空结构 分析中最先得到应用。有限元法这个名称由c l o u g h 于1 9 6 0 年提出【2 1 1 ,运用到电磁 领域还是六十至七十年代初的一段时间。传统的有限元法以变分为基础,把所要求 解的微分方程首先转化为相应的变分问题,即泛函数求极值问题。然后,利用剖分 差值,离散化变分问题为普通多元函数的极值问题,即最终归结为一组多元的代数 方程组,解之即可得待求边值问题的数值解。该法适用于几何结构,或介电特性分 布比较复杂的情况。虽然这种方法的计算程序一般复杂、冗长,但其各环节易于标 准化,可以得到通用的计算程序,且有较高的计算精度。 有限差分法简称差分法,这种方法早在十九世纪末已经提出,但把差分法和近 似数值分析联系起来,则是在本世纪五十年代中叶以后的一段时间。它以简单、直 观的特点而得到广泛的应用,其应用范围极广,无论是常微分方程还是偏微分方程、 各种类型的二阶线性方程,以至高阶或非线性方程,均可利用差分法转化为代数方 程组,而后用电子计算机求其数值解【2 2 1 。有限差分法是以差分原理为基础的一种数 值算法,它把电磁场连续场域内的问题变为离散系统问题,即用各离散点上的数值 来逼近连续场域内的真实解,因而它是一种近似的计算方法,但根据目前电子计算 机的容量和速度,可以得到足够高的计算精度。 本文主要使用了阶跃光纤的模式理论和时域有限差分法。对于简单的情况,我 们直接求解阶跃光纤的特征方程;对于复杂情形,我们采用时域有限差分方法进行 模拟。这些理论方法,本文在第二章有详细的介绍。 5 弧波k 直径光纤波导特性研究 1 4 亚波长直径光纤的应用 由于微纳光纤具有小尺寸、低光学损耗、强光场约束、倏逝波传输、大波导色 散、抗拉强度高和易于弯曲等特性,并且可以保持传输光的相干性,所以在光通信、 传感和非线性光学等领域均具有潜在的应用价值,特别是在减小器件尺寸、提高器 件性能和集成度等方面【2 3 3 1 1 。 利用微纳光纤的小尺寸、强约束和倏逝波耦合等特性,可以研制小尺寸的光子 器件【3 2 】,如光耦合器等。选择合适的光纤直径和探测光的波长,使一定比例的传输 光能量以倏逝波形式在光纤外面传输,通过测量光纤输出端的强度、位相或光谱等 物理量来判断光纤传输过程中所受到的外部影响,可以研制成微纳光纤传感器【3 3 1 。 最近在这方面获得的一些研究结果表明,微纳光纤传感器具有尺寸小、灵敏度高、 响应速度快等优良特性。下图1 6 为镀有8n m 厚铂的拉锥微结构光纤在气体传感器 中的应用【3 4 i 。 图1 6 镀有8n m 厚铂拉锥微结构光纤 ( a ) 不同氢浓度的透射谱;( b ) 强度和氢气浓度的关系 因为具有很低的光传输和弯曲损耗,使用微纳光纤可以做成高品质的微型光纤 环谐振腔。美国o f s 实验室最近报道了一个使用直径约为6 6 0n m 的氧化硅光纤制 作的微环谐振腔,微环直径约为5 0 0g m ,在1 5p , m 的光通信波段测量得到的q 值 高于1 0 4 ,有希望应用于光通信和光传感等领域f 3 5 确】。国内童利民教授小组最近报 道利用微纳光纤结制备了共振环和激光器。他们将微纳光纤( 直径为2 6 61 t m ) 打结, 然后利用倏逝波,使用锥形光纤把光耦合进入光纤结,最后再使用锥形光纤将光导 出,如下图1 7 所示。通过这样制备的微纳光纤结q 因子可达5 7 0 0 0 ,通过调节共 振环的大小可以控制自由光谱范围,而且因为打结的原因,这样制备的共振腔很稳 剖3 7 1 。 6 图17 ( a ) 微纳光纤打结部分;( b ) 实验示意图 另外,他们设计了基于微光纤环形结谐振腔的全光纤a d d - d r o p 滤波器。以第一 根微光纤制各成环形结谐振腔,环形结的端和单模光纤相连,环形结的男一端与 第二根微光纤耦合,用以引出非共振的光信号,将第三根微光纤相切措在环形结七, 用以引出在环形结谐振腔中共振的光信号。这种滤波器具有小型化、制各简单、易 于集成和调节等特性,最大自由光谱范围是81n m ”】。 图18 ( a ) a d d d r o p 滤波器示意图:( b ) 和( c ) 是光纤的显微图片 利用从铒镱共掺磷酸盐玻璃直接拉制得到的微纳光纤,他们进行了微纳光纤环 激光器的实验。微纳光纤直径38 岫,实验通过锥形光纤将9 7 5n n l 的泵浦光导入 微纳光纤,摄后激光再用锥形光纤输出。初步实验得到了8h w 的单纵模输出m 1 。 、【k 波k 亢杼光纤波导特性研究 3 o u t p u t 一划 一 【1m m 图i9 微纳光纤环激光器实验示意图 此外,微纳光纤在非线性光学和原子波导等方面也具有潜在的应用价值。例如 英国b a t h 大学的研究人员报道了在微纳光纤中产生超连续光谱的实验结果,表明使 用微纳光纤后抽运功率和光纤长度均可以大大减小。 。 。 4 0 0 8 0 07 删 1 8 0 0 w a v s l 舯g t h ( n r o ) 圈11 02u m 拉锥光纤的输出光谱,从上至下,平均功率分别为3 8 0 ,2 1 0 和6 0m w 日本和俄罗斯的研究人员研究了使用微纳光纤的强倏逝场来约束冷原子的设 想,发现导光的微纳光纤可以对原子产生束缚作用并可以用作原子波导【4 1 , 4 2 1 。 图i1 i 原干囚禁和导 i 示意图 硕十学何论文 1 5 本文内容与框架 本论文主要讨论了亚波长直径光纤及其阵列的波导特性。在本章绪论中,首先 介绍了亚波长直径光纤的研究背景;其次介绍了国内外微纳光纤研究的历史与现状, 以及亚波长直径光纤的理论研究方法;然后阐明了微纳光纤的应用。后面章节内容 安排如下: 第二章介绍了阶跃光纤的模式理论,包括电磁场基础、阶跃折射率光纤的严格 解及弱导光纤的线偏振模。另外,详细介绍了本文应用的一种电磁场计算方法:时 域有限差分法。 第三章主要研究了单根亚波长直径实芯和空芯光纤的波导特性。通过理论建模, 首先研究了亚波长直径实芯光纤,并讨论了其大倏逝波的模场性质。另外,理论上 研究了亚波长直径空芯光纤的波导特性,并比较了硅和石英亚波长直径空芯光纤的 波导特性异同。 第四章主要研究了多根亚波长直径光纤的耦合特性及模场整形能力。通过数值 计算,模拟了多根亚波长直径实芯和空芯光纤的耦合特性,验证了其模场整形能力。 最后对本论文的工作进行了总结,并展望今后需要进一步开展的工作。 9 波k 亢径光纤波导特性研究 第2 章亚波长直径光纤的主要理论研究方法 在绪论中,分析亚波长直径光纤的常用数值方法已经做了介绍。本论文主要采 用阶跃光纤的模式理论和时域有限差分法进行理论分析。本章首先介绍了阶跃光纤 的模式理论,包括电磁场基础、阶跃折射率光纤的严格解及线偏振模。另外,详细 介绍了时域有限差分法的基本公式、原理、参数选择等。 2 1 光纤的模式理论 2 1 1 电磁场基础 2 1 1 1m a x w e l l 方程 电磁场的基本规律可以用以下四个相互协调的方程组概括【4 3 舶】: v 日:挈+ j( 2 1 ) 西 、 v x e :一挈( 2 2 ) v d = p( 2 3 ) v b = 0 ( 2 4 ) 这组方程称为m a x w e l l 方程,它反应一般情况下电荷电流激发电磁场以及电磁场内 部的运动规律。其中e ,曰,日,d ,j ,p 都是位置和时间的函数,其中e 是电场强 度,d 是电位移,h 是磁场强度,曰是磁感应强度,是电流密度,p 是电荷密度。 方程( 2 1 ) 是全电流定律,它反应变化的电场和电流都可以产生磁场。方程( 2 2 ) 是法拉第电磁感应定律,它反应变化的磁场可以产生电场。方程( 2 3 ) 是高斯定律, 它指出电荷是电场的源,电力线从正电荷出发终止于负电荷。方程( 2 4 ) 是磁通连续 定律,它反应磁感应强度b 是无源场,磁力线总是闭合曲线。 电流密度,和电荷密度p 之间的关系遵循连续性定理 v ,+ 挈:0( 2 5 ) 2 1 1 2 物质方程 m a x w e l l 方程描写了6 个基本量e ,b ,日,d ,j 和p 之间的关系。要能从给定 1 0 硕十学侍论文 的电流和电荷分布唯一地确定场矢量,还必须补充描写物质在场影响下的特性的方 程即物质方程( 或结构关系式) 。一般地说,它们颇为复杂。但是如果场是时谐的, 并且如果物体彼此之间相对静止,或者运动非常缓慢,而且物质是各向同性的( 即 它每一点的物理性质不随方向改变) ,则它们通常呈如下比较简单的形式: j = o e ( 2 6 ) d = 6 e ( 2 7 ) b = ( 2 8 ) 式中仃叫做电导率,s 称为介电常数( 即电容率) ,叫做磁导率。 2 1 1 3 电磁场边值关系 m a x w e l l 方程只适用于媒质物理性质( 由和来表征) 处处连续的空间区域。 在介质突变处,可以预见,矢量丘e 日和d 也要变成不连续,而,和p 将退化成 相应的向量。边界场量之间的关系为: n x ( e 2 一e 1 ) = 0 ( 2 9 ) n x ( h 2 一h i ) = 以 ( 2 1 0 ) - ( d 2 一d 1 ) = 岛 ( 2 1 1 ) n ( 岛一b i ) = 0 ( 2 1 2 ) 其中p ,和以分别为面电荷密度和面电流密度。 2 1 1 4 波动方程 m a x w e l l 方程组以联立微分方程关联了各场矢量。在没有电荷和电流即j = 0 和 p = 0 的区域,通过消元化简m a x w e l l 方程组可以得到电场和磁场分别满足的方程: 俨e 一胪警棚( 1 n 小( v e ) w ( d v ( 1 n 砌_ o ( 2 1 3 ) v 2 日一, u s 等+ v ( i n s ) ( v 日) + v ( 日v ( 1 n “) ) = o ( 2 1 4 ) 如果媒质是均匀的,则v ( 1 n 占) = v ( 1 n , u ) = 0 。电场和磁场可以简化为 俨e 一肛警- o ( 2 1 5 ) v 2 b 一胆警= o ( 2 1 6 ) 这是标准的波动方程,它们意味着有电磁波存在,其传播速度 ,= 1 4 掣 ( 2 1 7 ) 对于单色波有 弧波k 直杼光纤波导特性研究 e ( r ) = e o ( r ) e x p 一i k o o ( r ) e x p i w t ( 2 18 ) h ( r ) = h o ( r ) e x p 一i k o q ( r ) e x p i w t 】( 2 19 ) 所以可以得到 v 2 肿k 2 e = 0 ( 2 2 0 ) v 2 + 七2 h = 0 ( 2 2 1 ) 式中利用了w 2 。u 0 e = 鳓s ,= 碍- - - - ! 2 懿2 = 尼2 。其中,g ,和n 为光纤材料的相对介电 常数和折射率;1 , 0 = 2 7 r 兄是真空中的波数;a 为真空中光波波长。上两式是矢量的 h e l m h o l t z 方程。在直角坐标系中,e ,日的x ,y ,z 分量均满足标量h e l m h o l t z 方 程: v 2 缈一后2 矿= 0( 2 2 2 ) 式中够代表e 或的各个分量。 2 1 2 阶跃折射率光纤中的严格解 2 1 2 1 波动方程的解 阶跃折射率光纤是由芯区和包层两个均匀的区域构成。由于光纤具有圆对称结 构,因此宜在柱坐标系下进行分析。在柱坐标系中,两个均匀区域电场强度所满足 的波动方程可写为: 窘+ 吾警+ 7 1 虿0 2 e + 警+ 砖俨2 = 。 ( 2 ) a ,2 。,a r 。,2a 西2 。a z 2 o ”“。 、。7 其中,_ 1 ,2 分别表示芯区和包层。z 为光纤轴向坐标,和西分别为光纤的径向坐 标和方位角坐标。磁场强度满足完全相同的方程。 上述电场和磁场强度的矢量波动方程共有六个分量进行求解,即日,协,丘, 研,协,飓。在纵向均匀介质光波导中,由于m a x w e l l 方程的限制,其中只有两个 分量是独立的。在柱坐标系中,由于横场所满足的方程具有相当复杂的形式,选择 历,总是最方便的,其他分量均可由方程组得到。 事实上,对于任意纵向均匀的无损光波导,沿z 方向传输的电磁场具有下述形 式: e ( r ,矽,z ) = e ( r ,) e x p ( 一印z )( 2 2 4 ) 其中为波导的传输常数。由m a x w e l l 方程可得: 巨2 耵j 可( 一印r 巨+ c o o e :x v 皿) ( 2 2 5 ) h t2 雨了j 卜熙t h = 哦e = x v t e :1 ( 2 2 6 0 1 2 硕十学位论文 其中e = e ,巨+ 白易,只= 巳4 + 勺q ,v ,= 巳万0 + 白;1 丽0 ,q ,勺表示相应坐标方 向的单位矢量。 另一方面,由于光纤是圆对称的,因此光纤中的电磁场沿痧方向应为驻波解。 据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论