DSP论文(精).doc_第1页
DSP论文(精).doc_第2页
DSP论文(精).doc_第3页
DSP论文(精).doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字信号处理技术与发展前景缪家骏(徐州医学院,江苏 徐州)内容摘要:20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。通过对互联网上资料的搜集和整理,以及由资深工程师多年的实践经验总结,得出了DSP技术的七大特点和五大趋势。希望对读者在学习以及研究方面有些许启发。关键词:数字信号处理,DSP技术,发展趋势Abstract: When it appeared in 1960s, Digital Signal Processing developed rapidly by the rapid development of computer and information technology . In the past 20 years , DSP has been largely used in the field like information communication. We founded that DSP has seven characteristics and five development directions through collecting information on the internet and asking DSP engineers. It might will be useful to the readers.Key words: DSP,embedded,electronic technology数字信号处理(DigitalSignalProcessing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛DSP技术图解的应用。数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。1.实现方法DSP的实现方法一般有以下几种:(1) 在通用的计算机(如PC机)上用软件(如Fortran、C语言)实现;(2) 在通用计算机系统中加上专用的加速处理机实现;(3) 用通用的单片机(如MCS-51、96系列等)实现,这种方法可用于一些不太复杂的数字信号处理,如数字控制等;(4) 用通用的可编程DSP实现。与单片机相比,DSP芯片具有更加适合于数字信号处理的软件和硬件资源,可用于 复杂的数字信号处理算法;(5) 用专用的DSP芯片实现。在一些特殊的场合,要求的信号处理速度极高,用通用DSP芯片很难实现,例如专用于FFT、数字滤波、卷积、相关等算法的DSP芯片,这种芯片将相应的信号处理算法在芯片内部用硬件实现,无需进行编程。在上述几种方法中,第1种方法的缺点是速度较慢,一般可用于DSP算法的模拟;第2种和第5种方法专用性强,应用受到很大的限制,第2种方法也不便于系统的独立运行;第3种方法只适用于实现简单的DSP算法;只有第4种方法才使数字信号处理的应用打开了新的局面。历史世界上第一个单片DSP芯片应当是1978年AMI公司发布的S2811,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的PD7720是第一个具有乘法器的商用DSP芯片。2.特点考虑一个数字信号处理的实例,比如有限冲击响应滤波器(FIR)。用数学语言来说,FIR滤波器是做一系列的点积。取一个输入量和一个序数向量,在系数和输入样本的滑动窗口间作乘法,然后将所有的乘积加起来,形成一个输出样本。类似的运算在数字信号处理过程中大量地重复发生,使得为此设计的器件必须提供专门的支持,促成了了DSP器件与通用处理器(GPP)的分流:2.1对密集的乘法运算的支持GPP不是设计来做密集乘法任务的,即使是一些现代的GPP,也要求多个指令周期来做一次乘法。而DSP处理器使用专门的硬件来实现单周期乘法。DSP处理器还增加了累加器寄存器来处理多个乘积的和。累加器寄存器通常比其他寄存器宽,增加称为结果bits的额外bits来避免溢出。同时,为了充分体现专门的乘法-累加硬件的好处,几乎所有的DSP的指令集都包含有显式的MAC指令。2.2存储器结构传统上,GPP使用冯.诺依曼存储器结构。这种结构中,只有一个存储器空间通过一组总线(一个地址总线和一个数据总线)连接到处理器核。通常,做一次乘法会发生4次存储器访问,用掉至少四个指令周期。大多数DSP采用了哈佛结构,将存储器空间划分成两个,分别存储程序和数据。它们有两组总线连接到处理器核,允许同时对它们进行访问。这种安排将处理器存贮器的带宽加倍,更重要的是同时为处理器核提供数据与指令。在这种布局下,DSP得以实现单周期的MAC指令。还有一个问题,即现在典型的高性能GPP实际上已包含两个片内高速缓存,一个是数据,一个是指令,它们直接连接到处理器核,以加快运行时的访问速度。从物理上说,这种片内的双存储器和总线的结构几乎与哈佛结构的一样了。然而从逻辑上说,两者还是有重要的区别。GPP使用控制逻辑来决定哪些数据和指令字存储在片内的高速缓存里,其程序员并不加以指定(也可能根本不知道)。与此相反,DSP使用多个片内存储器和多组总线来保证每个指令周期内存储器的多次访问。在使用DSP时,程序员要明确地控制哪些数据和指令要存储在片内存储器中。程序员在写程序时,必须保证处理器能够有效地使用其双总线。此外,DSP处理器几乎都不具备数据高速缓存。这是因为DSP的典型数据是数据流。也就是说,DSP处理器对每个数据样本做计算后,就丢弃了,几乎不再重复使用。2.3零开销循环如果了解到DSP算法的一个共同的特点,即大多数的处理时间是花在执行较小的循环上,也就容易理解,为什么大多数的DSP都有专门的硬件,用于零开销循环。所谓零开销循环是指处理器在执行循环时,不用花时间去检查循环计数器的值、条件转移到循环的顶部、将循环计数器减1。与此相反,GPP的循环使用软件来实现。某些高性能的GPP使用转移预报硬件,几乎达到与硬件支持的零开销循环同样的效果。2.4定点计算大多数DSP使用定点计算,而不是使用浮点。虽然DSP的应用必须十分注意数字的精确,用浮点来做应该容易的多,但是对DSP来说,廉价也是非常重要的。定点机器比起相应的浮点机器来要便宜(而且更快)。为了不使用浮点机器而又保证数字的准确,DSP处理器在指令集和硬件方面都支持饱和计算、舍入和移位。2.5专门的寻址方式DSP处理器往往都支持专门的寻址模式,它们对通常的信号处理操作和算法是很有用的。例如,模块(循环)寻址(对实现数字滤波器延时线很有用)、位倒序寻址(对FFT很有用)。这些非常专门的寻址模式在GPP中是不常使用的,只有用软件来实现。2.6执行时间的预测大多数的DSP应用(如蜂窝电话和调制解调器)都是严格的实时应用,所有的处理必须在指定的时间内完成。这就要求程序员准确地确定每个样本需要多少处理时间,或者,至少要知道,在最坏的情况下,需要多少时间。如果打算用低成本的GPP去完成实时信号处理的任务,执行时间的预测大概不会成为什么问题,应为低成本GPP具有相对直接的结构,比较容易预测执行时间。然而,大多数实时DSP应用所要求的处理能力是低成本GPP所不能提供的。这时候,DSP对高性能GPP的优势在于,即便是使用了高速缓存的DSP,哪些指令会放进去也是由程序员(而不是处理器)来决定的,因此很容易判断指令是从高速缓存还是从存储器中读取。DSP一般不使用动态特性,如转移预测和推理执行等。因此,由一段给定的代码来预测所要求的执行时间是完全直截了当的。从而使程序员得以确定芯片的性能限制。2.7开发工具的要求因为DSP应用要求高度优化的代码,大多数DSP厂商都提供一些开发工具,以帮助程序员完成其优化工作。例如,大多数厂商都提供处理器的仿真工具,以准确地仿真每个指令周期内处理器的活动。无论对于确保实时操作还是代码的优化,这些都是很有用的工具。GPP厂商通常并不提供这样的工具,主要是因为GPP程序员通常并不需要详细到这一层的信息。GPP缺乏精确到指令周期的仿真工具,是DSP应用开发者所面临的的大问题:由于几乎不可能预测高性能GPP对于给定任务所需要的周期数,从而无法说明如何去改善代码的性能。3.应用现代社会对数据通信需求正向多样化、个人化方向发展。而无线数据通信作为向社会公众迅速、准确、安全、灵活、高效地提供数据交流的有力手段,其市场需求也日益迫切。正是在这种情况下,3G、4G通信才会不断地被推出,但是无论是3G还是4G,未来通信都将离不开DSP技术(数字信号处理器),DSP作为一种功能强大的特种微处理器,主要应用在数据、语音、视像信号的高速数学运算和实时处理方面,可以说DSP将在未来通信领域中起着举足轻重的作用。为了确保未来的通信能在各种环境下自由高效地工作,这就要求组成未来通信的DSP要具有非常高的处理信号的运算速度,才能实现各种繁杂的计算、解压缩和编译码。而目前DSP按照功能的侧重点不一样,可以分为定点DSP和浮点DSP,定点DSP以成本低见长,浮点DSP以速度快见长。如果单一地使用一种类型的DSP,未来通信的潜能就不能得到最大程度的发挥。为了能将定点与浮点的优势集于一身,突破DSP技术上的瓶颈,人们又推出了一种高级多重处理结构-VLIW结构,该结构可以在不提高时钟速度的情况下,实现很强的数字信号处理能力,而且它能同时具备定点DSP和浮点DSP所有的优点。为了能推出一系列更高档的新技术平台,人们又开始注重DSP的内核技术的开发,因为DSP的内核就相当于计算机的CPU一样,被誉为DSP的心脏,大量的算法和操作都得通过它来完成,因此该内核结构的质量如何,将会直接影响整个DSP芯片的性能、 功耗和成本。考虑到未来无线访问Internet因特网和开展多媒体业务的需要,现在美国的Sun公司又开始准备准将该公司的拳头产品-PersonalJava语言嵌入到DSP中,以便能进一步提高DSP在处理信号方面的自动化程度和智能化程度。当然,在以前DSP中也潜入了其他软件语言,例如高级C语言,但这种语言在处理网络资源以及多媒体信息方面无能为力;而PersonalJava是一种适合个人网络连接和应用的Java环境,基于该环境的个人通信系统可以从网络和Internet网上下载数据和图像。此外,人们还在研究开发符合MPEG-4无线解压缩标准DSP,该压缩标准将为未来通信传输各种多媒体信息提供了依据。作为一个案例研究,我们来考虑数字领域里最通常的功能:滤波。简单地说,滤波就是对信号进行处理,以改善其特性。例如,滤波可以从信号里清除噪声或静电干扰,从而改善其信噪比。为什么要用微处理器,而不是模拟器件来对信号做滤波呢?我们来看看其优越性:模拟滤波器(或者更一般地说,模拟电路)的性能要取决于温度等环境因素。而数字滤波器则基本上不受环境的影响。数字滤波易于在非常小的宽容度内进行复制,因为其性能并不取决于性能已偏离正常值的器件的组合。一个模拟滤波器一旦制造出来,其特性(例如通带频率范围)是不容易改变的。使用微处理器来实现数字滤波器,就可以通过对其重新编程来改变滤波的特性。4.发展趋势 在4G无线通信领域,数据吞吐量已经达到了3G时代的100到1000倍;在多媒体处理器领域,每天都有新的标准涌现出来;在更多其它DSP应用领域,密集的数据处理器需求不断给处理器设计团队带来新的挑战。随着更多新应用的更高要求,未来的DSP发展将呈现哪些趋势?带着这个问题,本期电子系统设计,我们特意采访了ADI、Atmel、Freescale以及TI公司在DSP领域的资深专家,并总结出以下四大发展趋势: 4.1DSP内核指令并行处理能力增强 DSP内核指令并行处理能力增强,SIMD(单指令多重数据)和VLIW(极长指令字)将会在新一代高性能处理器中占据主导地位。现在,几乎所有的DSP厂商都使用了VLIW构架,这一指令构架大大加强了DSP处理器的指令并行能力,而SIMD指令集能够大幅度提高数据并行处理能力,在通用处理器上也得到了大量使用。例如,CEVA最新的XC323内核就包括8路VLIW、512位SIMD操作、每周期32次MAC乘加运算,以及固有的复杂算术运算支持。这是CEVA针对4G应用推出的全新构架,直接针对高吞吐量高性能的应用需求。 4.2多核DSP方案会越来越多 在某些苛求高性能的应用中,多核DSP方案会越来越多。这点得益于半导体制造工艺的发展,单颗芯片上可以集成越来越多的晶体管,也符合处理器整体多核化的趋势,因为考虑到功耗的原因,单一内核通过提高主频的方式已经难以为继。依靠多核并行处理提高性能,已经成为整个行业的选择。例如德州仪器的C66x高性能多核DSP系列,最高可集成八个C66x内核,每个内核都可达到1GHz或1.25GHz的频率,总共可达到320 GMAC和160 GLOP定点和浮点性能,非常适合医疗和高端成像、测试和自动化、高性能计算和核心网络等高端应用。 4.3同时支持定点和浮点计算 同时支持定点和浮点计算。该趋势与通用处理器的发展方向保持一致,最早处理器也是整数运算单元和浮点运算单元分离的,现在的处理器都集成了整数和浮点计算单元。从目前面世的产品来看,德州仪器的TMS320C66x系列多核DSP已经融合了定点和浮点功能。德州仪器半导体事业部业务拓展经理丁刚表示:“在保证高性能的同时,统一定点和浮点支持更便于编程。TI已经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论