预应力筋布置图.dwg
预应力筋布置图.dwg

株洲湘江四桥第 7 联施工图设计

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:32938689    类型:共享资源    大小:9.36MB    格式:ZIP    上传时间:2019-12-19 上传人:遗**** IP属地:湖北
25
积分
关 键 词:
株洲湘江四桥第 联施工图设计 株洲 湘江 四桥第 施工图 设计
资源描述:
株洲湘江四桥第 7 联施工图设计,株洲湘江四桥第,联施工图设计,株洲,湘江,四桥第,施工图,设计
内容简介:
工何 远 高桥 梁 1002 班201018020217李 传 习 张 玉 平图长沙理工大学桥梁工程专业 2014 届毕业设计施设 计 人 :班 级 :学 号 :指 导 老 师 :二 O 一四年六月长沙理工大学桥梁工程专业 2014 届毕业设计株洲湘江四桥第株洲湘江四桥第 7 7 联联施工图设计施工图设计施工图设 计 人 :何 远 高班级 :桥 梁 1002 班学号 :201018020217指 导 老 师 :李 传 习张 玉 平二 O 一四年六月录号设计方案桥型布置图比选方案桥型布置图一比选方案桥型布置图二上部结构一般构造图箱梁预应力钢束纵向布置图箱梁纵向预应力钢束横截面图桥墩承台钢筋构造图泄水管构造图支座构造图桥面铺装构造图桩基钢筋图跨中合拢段普通钢筋构造图人行道栏杆布置图下部结构构造图防撞栏钢筋构造图箱梁纵向预应力钢束横截面图图XJ-01XJ-02XJ-03XJ-04XJ-05XJ-06XJ-11XJ-12XJ-13XJ-14XJ-15XJ-16XJ-17XJ-18XJ-19XJ-20手绘 XJ-21手绘 XJ-22名图号目一. 说明二. 图纸序12345678910121314151415目录一. 说明二. 图纸序号图名图号1设计方案桥型布置图XJ-012比选方案桥型布置图一XJ-023比选方案桥型布置图二XJ-034上部结构一般构造图XJ-04XJ-055箱梁预应力钢束纵向布置图XJ-06XJ-116箱梁纵向预应力钢束横截面图XJ-127桥墩承台钢筋构造图XJ-138泄水管构造图XJ-149支座构造图XJ-1510桥面铺装构造图XJ-1612桩基钢筋图XJ-1713跨中合拢段普通钢筋构造图XJ-1814人行道栏杆布置图XJ-1915下部结构构造图XJ-2014防撞栏钢筋构造图手绘 XJ-2115箱梁纵向预应力钢束横截面图手绘 XJ-22明概况2. 预应力钢材本设计中,预应力钢筋:1 7 钢绞线,直径15.2mm,截面面积139mm ,重量= =0.75 1860 1395MPa。弹性模量1.95 10束f3. 普通钢筋R235、HRB335钢筋标准应符合GB1499.22007和GB1499.12008的规定。凡钢筋直径小于等于12mm者,均采用HRB335热轧带肋钢筋;凡钢筋直径小12mm着,采用R235钢,钢板应符合GB4. 钢材合GB/T5117或GB/T14957的要求,并与所采用的钢材材质和强度相适应。5. 锚具6. 预应力管道采用预埋圆形塑料波纹管成型。7. 支座8.栏杆桥梁人行道一侧采用钢管护栏。桥面铺装采用12cm厚的沥青混凝土。25j15.2T7002006规定的Q235钢板。MPa。预应力钢筋采用19根1和15根1束fj15.2的预应力钢绞线。说一.株洲湘江四桥第七联设计为变截面预应力连续箱梁桥,遵照“技术先进、安全可靠、使用耐久、经济合理、美观、环境保护和可持续发展”的基本原则进行设计。1.101kg/m,强度标准值1860MPa,强度设计值1260MPa,控制张拉应力二 设计标准(1) 跨径:(49+70+49)m,施工方法为对称悬臂挂篮浇筑施工。(2) 荷载标准:公路I级。(3) 桥面组成:分两幅,两幅间隔0.5m;单幅桥宽=2.0m人行道+33.75m机动车道+0.5m防撞栏=13.75m.(4) 桥上纵坡为2.0%,桥面横坡为2.0% 。(5) 通航等级:无通航要求。均采用A3钢,技术标准必须符合GB/709-2006的规定,选用的焊接材料应(6) 不考虑地震及漂流物撞击作用。(7) 结构重要性系数:1.0。本设计选用的预应力锚具及其配套相关产品应符合国家标准预应力筋用具,夹具和连接器(GB/T14370-2007 )的规定。三. 采用规范1. 公路桥涵设计通用规范 JTGD60-20042. 公路钢筋混凝土及预应力混凝土桥涵设计规范 JTGD62-2004桥梁支座应符合公路桥梁板式橡胶支座(JT/T4-2004),公路桥梁盆板式橡支座(JT391-99)及球型支座技术条件(GB/T17955-2009)的有关规定。四. 主要材料1. 混凝土现浇连续箱梁采用C50混凝土墩柱用C30混凝土桩基均采用C30混凝土第1页共2页9. 其它砂、石、水的质量要求应符合公路桥梁施工技术规范JTJ041-2000的有关规定。五. 设计要点本桥上部结构为(49+70+49m)的三跨变截面预应力混凝土连续箱梁桥,全长168m。采用对称悬臂灌篮浇筑施工,连续梁刚度大,变形小,伸缩缝少,行车平顺,能充分发挥高强材料的特性,促使结构轻型化,跨越能力满足要求,施工相对于其他桥型也较简单。桥梁恒载内力由箱梁自重和铺装叠加而成,而汽车荷载,人群荷载和温度,墩台沉降等作用在成桥以后才发生,与施工方法无关。为使较精确地模拟本桥施工、使用过程,箱梁纵向计算采用有限元程序Midas模拟。1. 上部构造箱梁设计为单箱单室直腹板变截面预应力混凝土连续梁。箱梁顶板宽13.75m,底板宽8.05m,梁高按抛物线变化,跨中梁高4.0m,根部梁高2.0m。箱梁顶板厚度采用28cm,悬臂端顶板取24cm;底板厚度从桥墩支点到跨中由50cm渐变到28cm;腹板厚度从桥墩支点到跨中由60cm渐变到40cm,桥梁两端预应力锚固区加宽至100cm。各跨箱梁在支点截面各设一道横隔板以满足支座布置及承受支座反力需要,设置跨中横隔梁。2. 下部构造据钻探揭示,桥址处底层从上到下依次为:筑填土,亚粘土,强分化泥质粉砂岩,桥趾处地基稳定,无不良地质现象。通过水文分析,地下水对混凝土无侵蚀性。因此全桥桥墩基础均采用钻孔灌注端承桩。每墩桩基为单排共2根D200cm钻孔灌注桩;桥墩为两根D250cm实心墩。六施工方法株洲湘江四桥第7联大主梁采用悬臂浇筑施工,即以移动式挂篮为主要施工设备,以桥墩为中心,对称的向两岸利用挂篮浇筑梁节段的混凝土。混凝土采用水平分层浇注,先浇注底板,待达到一定强度后浇筑腹板,最后浇注顶板,待达到强度后,便张拉预应力束施加预应力。需控制好合龙的准确位置,待合龙后卸落挂篮,最后进行桥面铺装的施工,实现全桥竣工。第2页共2页第 1 页 共 2 页说说明明一. 概况株洲湘江四桥第七联设计为变截面预应力连续箱梁桥,遵照“技术先进、安全可靠、使用耐久、经济合理、美观、环境保护和可持续发展”的基本原则进行设计。二 设计标准(1) 跨径: (49+70+49)m,施工方法为对称悬臂挂篮浇筑施工。(2) 荷载标准:公路 I 级。(3) 桥面组成:分两幅,两幅间隔 0.5m;单幅桥宽=2.0m 人行道+33.75m 机动车道+0.5m 防撞栏=13.75m.(4) 桥上纵坡为 2.0%,桥面横坡为 2.0% 。(5) 通航等级:无通航要求。(6) 不考虑地震及漂流物撞击作用。(7) 结构重要性系数:1.0。三. 采用规范1. 公路桥涵设计通用规范 JTG D60-20042. 公路钢筋混凝土及预应力混凝土桥涵设计规范 JTG D62-2004四. 主要材料1. 混凝土现浇连续箱梁采用 C50 混凝土墩柱用 C30 混凝土桩基均采用 C30 混凝土桥面铺装采用 12cm 厚的沥青混凝土。2. 预应力钢材本设计中,预应力钢筋:1 7钢绞线,直径 15.2mm,截面面积 1392mm ,重量1.101kg/m ,强度标准值 1860MPa,强度设计值 1260MPa,控制张拉应力0.75 18601395conMPa。弹性模量51.95 10MPa。预应力钢筋采用 19 根 1束15.2j和 15 根 1 束15.2j的预应力钢绞线。3. 普通钢筋R235、 HRB335 钢筋标准应符合 GB 1499.22007 和 GB 1499.12008 的规定。凡钢筋直径小于等于 12mm者,均采用 HRB335 热轧带肋钢筋;凡钢筋直径小12mm着,采用 R235 钢,钢板应符合 GBT7002006 规定的 Q235 钢板。4. 钢材均采用 A3 钢,技术标准必须符合 GB/709-2006 的规定,选用的焊接材料应合 GB/T 5117 或 GB/T 14957 的要求,并与所采用的钢材材质和强度相适应。5. 锚具本设计选用的预应力锚具及其配套相关产品应符合国家标准预应力筋用具,夹具和连接器 (GB/T14370-2007 )的规定。6. 预应力管道采用预埋圆形塑料波纹管成型。7. 支座桥梁支座应符合公路桥梁板式橡胶支座 (JT/T4-2004) , 公路桥梁盆板式橡支座 (JT391-99)及球型支座技术条件 (GB/T 17955-2009)的有关规定。8.栏杆桥梁人行道一侧采用钢管护栏。第 2 页 共 2 页9. 其它砂、石、水的质量要求应符合公路桥梁施工技术规范JTJ041-2000 的有关规定。五. 设计要点本桥上部结构为 (49+70+49m) 的三跨变截面预应力混凝土连续箱梁桥, 全长 168m。采用对称悬臂灌篮浇筑施工,连续梁刚度大,变形小,伸缩缝少,行车平顺,能充分发挥高强材料的特性,促使结构轻型化,跨越能力满足要求,施工相对于其他桥型也较简单。桥梁恒载内力由箱梁自重和铺装叠加而成,而汽车荷载,人群荷载和温度,墩台沉降等作用在成桥以后才发生,与施工方法无关。为使较精确地模拟本桥施工、使用过程,箱梁纵向计算采用有限元程序 Midas 模拟。1. 上部构造箱梁设计为单箱单室直腹板变截面预应力混凝土连续梁。箱梁顶板宽 13.75m,底板宽 8.05m,梁高按抛物线变化,跨中梁高 4.0m,根部梁高 2.0m。箱梁顶板厚度采用 28cm,悬臂端顶板取 24cm;底板厚度从桥墩支点到跨中由 50cm 渐变到 28cm;腹板厚度从桥墩支点到跨中由 60cm 渐变到 40cm,桥梁两端预应力锚固区加宽至 100cm。各跨箱梁在支点截面各设一道横隔板以满足支座布置及承受支座反力需要,设置跨中横隔梁。2. 下部构造据钻探揭示,桥址处底层从上到下依次为:筑填土,亚粘土,强分化泥质粉砂岩, 桥趾处地基稳定,无不良地质现象。通过水文分析,地下水对混凝土无侵蚀性。因此全桥桥墩基础均采用钻孔灌注端承桩。每墩桩基为单排共 2 根 D200cm 钻孔灌注桩;桥墩为两根D250cm 实心墩。六施工方法株洲湘江四桥第 7 联大主梁采用悬臂浇筑施工,即以移动式挂篮为主要施工设备,以桥墩为中心,对称的向两岸利用挂篮浇筑梁节段的混凝土。混凝土采用水平分层浇注,先浇注底板,待达到一定强度后浇筑腹板,最后浇注顶板,待达到强度后,便张拉预应力束施加预应力。需控制好合龙的准确位置,待合龙后卸落挂篮,最后进行桥面铺装的施工,实现全桥竣工。Department of Civil Engineering, Tokai University, 1117 Kitakaname, Hiratsuka 259-1292, JapanDesign Section, Bridge Division, Kawada Industry Co., Takinogawa, Kita-ku, Tokyo, Japana b s t r a c tA new type of cable supported bridge, cable-stayed CFT arch bridge, was proposed and its static strengthwas studied in this paper. Arch ribs consist of concrete filled steel tubes (CFT). CFTs have high resistanceagainst bending moments and compressive axial forces and are ideal as arch ribs. A cable-stayed CFT archbridge with a main-span of 300 m was designed and the safety of its structural members was checkedby the limit state design method. Large deformation analysis was used to obtain sectional forces. The CFTarch ribs and the steel box girders and towers of the designed bridge satisfied the required safety criteriafor ultimate design loads. The applied loads were further increased until the bridge collapsed when thearch ribs buckled. The amount of steel required for the cable-stayed CFT arch bridge was significantlyFig. 1.CFT girder bridge.and are suspended by cable stays. A similar bridge was constructedin Malaysia with arch ribs consisting of steel box sections 6.It is expected that the CFT arch ribs have higher resistanceagainst axial compression and bending moments and also are moreeconomical than steel box sections. Horizontal thrusts exist at thearch supports of the proposed bridge. It is assumed in this bridgethat the ground is hard and strong enough to bear these horizontalthrusts.In this paper large deformation structure analyses are con-ducted to obtained design sectional forces and then the safety ofstruction cost is also evaluated to compare a cable-stayed CFT archbridge with a conventional steel cable-stayed bridge.Journal of Constructional Steel Research 65 (2009) 776Contents lists available atScienceDirectJournal of Constructional Steel Researchjournal homepage:/locate/jcsrStatic analysis of cable-stayed bridge with CFT arch ribsShun-ichi Nakamuraa, Hiroyasu Tanakab, Kazutoshi Katoaaba r t i c l e i n f oArticle history:Received 29 February 2008Accepted 18 May 2008Keywords:Arch bridgeCable-stayed bridgeConcrete filled steel tubelower than that for the cable-stayed bridge. It has been found that the proposed cable-stayed CFT archbridge is feasible and potentially economical.2008 Elsevier Ltd. All rights reserved.1. IntroductionThe authors have proposed new types of bridges using concretefilled steel tubes (CFT) 1. One of the ideas was adopted andactually constructed for a railway bridge 3, as shown inFig. 1.The CFT girder has many advantages. First, it has large axial andbending strength due to the confined effects of the concrete insidethe steel tubes 5. Second, levels of noise and vibration causedby trains and vehicles are much lower in the CFT girders than inthe steel girders 3. This is particularly advantageous for railwaybridges. Third, as steel pipes are produced at steel mills, the amountof work in welding and assembling of the CFT girders in thefabrication process is much smaller than that for conventionalplate girders. Fourth, as steel tubes work as moulds for concretepouring, the concrete filling work is easy.Fig. 2is another idea: a suspension CFT arch bridge 3. The archrib is CFT, which has large resistance against axial compressionand bending moments. These CFT arch ribs are suspended by thesuspension cables. This bridge is basically a mixed structure ofsuspension bridge and CFT arch bridge.Fig. 3is a cable-stayed bridge using the pipe girder 4. Thegirder consists of a large center pipe girder and two small edgepipe girders with an orthotropic steel deck. Concrete is pouredinside the pipes in the side spans and tower positions to increaseresistance against axial compressive forces and to restrain uplifts.The cable-stayed CFT arch bridge (Fig. 4) is proposed and itsstatic strength is studied in this paper. The arch ribs consist of CFTstructural members are checked for ultimate loads. The globalbuckling strength of the structure is also found. Approximate con-Corresponding author. Tel.: +81 463 58 1211; fax: +81 463 5045.E-mail address:snakamukeyaki.cc.u-tokai.ac.jp(S. Nakamura).0143-974X/$ see front matter2008 Elsevier Ltd. All rights reserved.doi:10.1016/j.jcsr.2008.05.005777a tensile strength of 1570 MPa are used for stays and hangers. The.3:0 kN=m2/.check. The second case is the first case result added to the resultdue to the maximum live load multiplied by the load factor of 1.98.Axial forces and bending moments of the tower are shown inshows that axial forces are in compression and increase from thepeaks at the cable anchor position F and at the base point G.On this cable-stayed CFT arch bridge the girder is suspendedby the cables and the arch ribs. It is therefore expected thatthis bridge shows intermediate characteristics between the cablestayed bridge and the arch bridge. The deflection due to live loadscan be smaller than that of the conventional steel cable-stayedbridge. To validate this a steel cable-stayed bridge with samedimension of the cable-stayed CFT arch bridge is designed. Thedeflection due to fully distributed live load LC1 of the cable-stayedCFT arch bridge is 362 mm whereas that of the conventional cable-stayed bridge is 747 mm. This suggests that the applied loads aresustained by both the cable system and the arch system on theS. Nakamura et al. / Journal of Constructional Steel Research 65 (2009) 776Light aggregate concrete with a unit weight of 15 kN=m3is usedfor the concrete filling. It is well known that concrete fillingimproves resistance against local bucking of steel plates andtherefore increases resistance against resistance axial and bendingmoments 5.The cross section of the tower is rectangular in the lower partand square in the upper part, as shown inFig. 9. This is becausethe stays are anchored at the upper part and the upper column isseparated into two columns at the lower part to let the girder gothrough.Cross beams connect the two side arch ribs and rolled H-beamswith a height of 700 mm and a width of 250 mm are used. Parallelwire strands consisting of 7 mm diameter high strength wires withFig. 2.Suspension bridge with CFT arch ribs.numbers of wires are decided by the design tensile forces.3. Static structural analysesStatic structural analyses are conducted to obtain designsectional forces. The structural model is three dimensional, asshown inFig. 10where all of the elements are beam elements. Asthe assumed bridge is a long span arch bridge, the analysis includesthe non-linearity of geometric deformation. Pre-stress forces areintroduced into the stay cables so that the bending moments ofthe girder and tower due to dead loads are flattened. Five patternsof live loads are considered as shown inFig. 11. The live loadsconsists of the concentrated load (10 kN=m2with 10 m long) andthe distributed loadAxial forces and bending moments of the arch rib are shown inFigs. 12and13respectively. Three load cases are shown. The firstcase is the result due to the dead load and cable pre-stress forcesmultiplied by the load factor of 1.1. This case is for the serviceabilityFig. 3.Cable-stayed bridge with CFT girders.This is for the ultimate safety check. The third case is the first caseresult added to the result due to the minimum live load multipliedby the load factor of 1.98. This is also for the ultimate safety check.Fig. 12shows that axial forces are overall in compression and areminimum at the span center.Fig. 13shows that there are positiveand negative bending moments depending on the live load casesand the value is maximum at the quarter point A (L/4) instead of atthe center point B.Axial forces and bending moments of the girder are showninFigs. 14and15respectively. Three load cases are also shown.Fig. 14shows that axial forces are overall in compression and aremaximum at the tower positions.Fig. 15shows that there arepositive and negative bending moments depending on the live loadcases and the positive bending moments are maximum at the sidespan of point C and at the main span of point E. These behaviors arethe same as those of conventional steel cable-stayed bridges.Fig. 4.Cable-stayed bridge with CFT arch ribs.Figs. 16and17respectively. Three load cases are also shown.Fig. 162. Dimensions of the assumed cable-stayed CFT arch bridgetop to the base.Fig. 17shows that bending moments have twoThe layout of the assumed cable-stayed CFT arch bridge isshown inFigs. 5and6. The center span is 300 m with two sidespans of 100 m each. The tower is an inverse Y-shape 91.0 m high.The girder is a steel box girder with orthotropic deck (Fig. 7)with a width of 32.0 m accommodating six lanes. The deck is 12mm thick, the web is 2000 mm high and 19 mm thick, and thelower flange is 19 mm thick. The diaphragms are arranged at every5.0 m. All of the steel plates are assumed to have a yield stress of355 MPa and a tensile strength of 490 MPa.The arch rib consists of a steel pipe with a diameter of 1700mm and a thickness of 20 mm filled with concrete (Fig. 8). Thesame steel grade of the girder is assumed for the steel pipe.S. Nakamura et al. / Journal of Constructional Steel Research 65 (2009) 776whereFkis the nominal design load, the analysis factor (D1.0),f D1.2 for live load) andfthe modified load factor ( Rdis the resistanceexpressed by Eq.(3).Dwhere fkis the nominal material strength, the material factor( the member factor(are adopted from the Japanese Specification for Steel/ConcreteComposite Structures 7.51:0 (1)iDaS.Fkff/athe load factor (D1.1 for dead load,D1.65 for live load).(3)mD1.05 for steel,D1.3 for concrete) andbD1.1 for steel member,D1.3 for concrete member). These factors4.2. Safety check of CFT arch ribsThe safety check of CFT arch ribs is carried out by Eq.(4).i.Md=Mud/51:0 (4)778Fig. 5.Layout of cable-stayed CFT arch bridge.Fig. 8.CFT arch rib.Fig. 6.Layout of tower.Fig. 9.Cross section of steel towers.cable-stayed CFT arch bridge, and therefore it has higher bendingrigidity with less deflection than the steel cable-stayed bridge.Although it is difficult to show an accurate fraction of the totalload shared by the cable-stayed system and the arch system, thisparticular case study shows the fraction of both the systems isabout half.Rd R.fk=m/=b4. Safety check of members for ultimate state4.1. Basic equationsIn this chapter safety of the arch ribs and the girder and towersteel sections are checked for the ultimate design loads. The basicequation for the check of ultimate state is Eq.(1)7.i.Sd=Rd/where is the structure factor (D1.1) and Sdis the responseexpressed by Eq.(2).Sd (2)Fig. 7.Steel box girder with orthotropic decks.779Fig. 15.Bending moment of girder.4.3. Safety check of girder and tower steel sectionsThe girder and the tower have steel box sections and their safety51:0 (5)i.Nsd=NrdC CwhereNsd is the design axial compression,Nrd the ultimatebuckling strength, Msdz the design bending moment in thelongitudinal direction, Mrdz the ultimate strength of bendingmoments in the longitudinal direction,Msdzthe design bendingcheck is carried out by Eq.(6)Msdz=Mrdz Msdx=Mrdx/51:0 (6)S. Nakamura et al. / Journal of Constructional Steel Research 65 (2009) 776Fig. 10.Analytical model.Fig. 13.Bending moment of CFT arch bridge.Fig. 11.Design live loading cases.Fig. 14.Axial force of girder.Fig. 12.Axial force of CFT arch ribs.whereMdis the design bending moment andMudthe ultimatestrength of bending moments.Mudis a function of axial compres-sive force. To findMudthe steel pipes and filled concrete of CFT isdivided into fiber elements.Figs. 18and19show the stress andstrain relations of steel and concrete used for this analysis. Whenthe design bending moment is within the curve shown inFigs. 20and21, it satisfies Eq.(4). The CFT arch rib must also satisfy Eq.(5).i.N0d=N0oud/whereN0dis the design axial compression andN0oudthe ultimatebuckling strength. It is understood fromFigs. 20and21thatN0dis withinN0oud.Table 1shows the safety check of the arch ribs atPoint A (quarter span) and Point B (centre span), which satisfiesthe Eqs.(4)and(5).S. Nakamura et al. / Journal of Constructional Steel Research 65 (2009) 776Table 1Point A at quarter spanMd(kN m) 10,913Mud(kN m) 26,304iPoint B at half spanMd(kN m) 6173Mud(kN m) 23,988iN0d(kN) 33,999N0oud(kN) 45,877(Md=Mud) 0.46N0d(kN) 33,153N0oud(kN) 52,551(Md=Mud) 0.28ii(N0d=N0oud) 0.82(N0d=N0oud) 0.69780Fig. 16.Axial forces of tower columns.Fig. 17.Bending moments of tower columns.Fig. 19.Stress relation of concrete.Fig. 18.Stress relation of steel.Safety check of CFT arch ribsmoment in the transverse direction andMrdzthe ultimate strengthof bending moments in the transverse direction. These equationsmust be satisfied for both upper and lower flanges.Table 2shows safety check of the steel girder at points C, D andE.Table 3shows safety check of the steel tower at points F and G.The buckling strength is found by the elastic buckling analysis. It isfound by these figures that all of these values of Eq.(6)are satisfied.It is understood from this chapter that the assumed cable-stayedCFT arch bridge is feasible.78111,40193,74336,3190.9416,99577,87726,9860.9510,46685,78916,783+Msdz/Mrdz+Msdx/Mrdx/28,10739,308671+Msdz=Mrdz+Msdx=Mrdx)25,27013,1218,998+Msdz/Mrdz+Msdx=Mrdx)Fig. 21.Safety check of CFT arch rib at half span B.at the same position. It is understood fromFig. 24that for the livetotal load of 2826 kN/m.Fig. 23shows the vertical displacementalso significantly increases at this load. It is understood fromFig. 24that for the live load case LC5, the horizontal displacement sharplyincreases at a total load of 2475 kN/m.Fig. 23shows the verticaldisplacement also significantly increases at this load.Fig. 25shows the vertical displacement versus applied load atthe center position andFig. 26shows the horizontal displacementat the same position. It is understood fromFig. 26that for the liveload case LC1 the horizontal displacement significantly increases atNrdMrdzMrdxNrdMrdzMrdxNrdMrdzMrdx0.76NrdMrdzMrdx0.66NrdMrdzMrdx0.84293,795338,10767,056323,444338,10746,622310,107338,10742,000117,570109,984100,03272,87562,42742,984Nsd/NrdMsdz/MrdzMsdx/MrdxNsd/NrdMsdz/MrdzMsdx/MrdxNsd/NrdMsdz/MrdzMsdx/MrdxNsd=NrdMsdzMsdxNsd=NrdMsdzMsdx0.040.280.540.050.230.580.030.250.400.24=Mrdz=Mrdx0.35=Mrdz=Mrdx0.360.010.210.21S. Nakamura et al. / Journal of Constructional Steel Research 65 (2009) 776Table 2Safety check of girdersPoint C in side spanNsdMsdzMsdx(Nsd=Nrd+Msdz=Mrdz+Msdx=Mrdx)Point D at towerNsdMsdzMsdx(Nsd/Nrd+Msdz/Mrdz+Msdx/Mrdx/Point E in main spanNsdMsdzMsdxi(Nsd/NrdNsd: Design Axial Force (kN),Nrd: Axial Resistant Force (kN).Msdz: Design Longitudinal Bending Moment (kN m).Mrdz: Longitudinal Resistant Bending Moment (kN m).Msdx: Design Transverse Bending Moment (kN m).Mrdx: Transverse Resistant Bending Moment (kN m).Table 3Safety check of tower columnsPoint F in upper partNsdMsdzMsdxi(Nsd=NrdPoint G in lower partNsdMsdzMsdxi(Nsd=NrdNotations are the same asTable 2.Fig. 20.Safety check of CFT arch rib at quarter span A.5. Global buckling strengthload case LC1 the horizontal displacement sharply increases at aIn this chapter global buckling strength of the cable-stayed CFTarch bridge is evaluated using the analysis including non-lineargeometric deformation. The calculation is carried out as follows.First, dead load and cable pre-stress forces with a load factor of 1.1and live load with a load factor of 1.98 is applied. Two live loadcases LC1 and LC5, as shown inFig. 22, are considered. Then 5.0%of the live load is incrementally applied until the bridge collapses.Fig. 23shows the vertical displacement versus applied load atthe quarter position andFig. 24shows the horizontal displacementS. Nakamura et al. / Journal of Constructional Steel Research 65 (2009) 776Fig. 30.Horizontal deformation due to LC5.30show deformation shapes due to LC5 at a load of 2475 kN/m,indicating that the arch rib buckles vertically and horizontally onthe half span asymmetrically. The deformation shapes agree withthe results ofFigs. 23. The load intensity of 2826 kN/m in LC1corresponds toT1:1.DCPS/C6:051:98LUand that of 2475 kN/m782Fig. 25.Vertical displacements of CFT arch ribs at half span.Fig. 22.Design live loadings for buckling analysis.Fig. 26.Horizontal displacements of CFT arch ribs at half span.Fig. 27.Vertical deformation due to LC1.Fig. 23.Vertical displacements of CFT arch ribs at quarter span.Fig. 28.Horizontal deformation due to LC1.Fig. 29.Vertical deformation due to LC5.Fig. 24.Horizontal displacements of CFT arch ribs at quarter span.a total load of 2826 kN/m.Fig. 25shows the vertical displacementsharply increases at this load. It is understood fromFig. 26thatfor the live load case LC5 the horizontal displacement sharplyincreases at a total load of 2475 kN/m.Fig. 23shows the verticaldisplacement also significantly increases at this load.Fig. 27andFig. 28show deformation shapes due to LC1 at aload of 2826 kN/m, indicating that the arch rib buckles verticallyin a half sine wave and horizontally in two sine waves.Figs. 29and78353,56620,7221,29675,584(1.0)T1:1.DC CA new type of cable supported bridge, the cable-stayed CFT archpaper. Arch ribs consist of concrete filled steel tubes (CFT). CFTsaxial forces and are ideal for arch ribs. A cable-stayed CFT archbridge with a main-span of 300 m was designed and its safety ofstructural members was checked by the limit state design method.Large deformation analysis was used to obtain sectional forces. TheCFT arch ribs and the steel box girders and towers of the designedbridge satisfied the required safety criteria for ultimate designloads. The applied loads were further increased until the bridge col-lapsed when the arch ribs buckled. The required amount of steel forthe cable-stayed CFT arch bridge was significantly lower than thatfor the cable-stayed bridge. It has been found that the proposedcable-stayed CFT arch bridge is feasible and potentially economical.References1Nakamura Shun-ichi. Design strategy to make steel bridges more economical.Journal of Constructional Steel Research 1998;46.2Nakamura Shun-ichi. New structural forms of steel concrete composite bridges.Structural Engineering International, Journal of IABSE 2000;10(1):453Nakamura Shun-ichi, Momiyama Toshiyuki, Hosaka Tetsuya, Homma Koji. Newtechnologies of steel/concrete composite bridges. Journal of ConstructionalSteel Research 2002;58:994Nakamura Shun-ichi. Static and aero-dynamic studies on cable-stayed bridgesusing steel pipe girders. Structural Engineering International, Journal of IABSE2007;17(1):685Nakamura Shun-ichi, Hosaka Tetsuya, Nishiumi Kenji. Bending behavior of steelpipe girders filled with ultra-light m
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:株洲湘江四桥第 7 联施工图设计
链接地址:https://www.renrendoc.com/p-32938689.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!